Next Issue
Previous Issue

Table of Contents

Fluids, Volume 3, Issue 2 (June 2018)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-21
Export citation of selected articles as:
Open AccessArticle Leaky Flow through Simplified Physical Models of Bristled Wings of Tiny Insects during Clap and Fling
Received: 30 March 2018 / Revised: 31 May 2018 / Accepted: 13 June 2018 / Published: 19 June 2018
Viewed by 507 | PDF Full-text (9401 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In contrast to larger flight-capable insects such as hawk moths and fruit flies, miniature flying insects such as thrips show the obligatory use of wing–wing interaction via “clap and fling” during the end of upstroke and start of downstroke. Although fling can augment
[...] Read more.
In contrast to larger flight-capable insects such as hawk moths and fruit flies, miniature flying insects such as thrips show the obligatory use of wing–wing interaction via “clap and fling” during the end of upstroke and start of downstroke. Although fling can augment lift generated during flapping flight at chord-based Reynolds number (Re) of 10 or lower, large drag forces are necessary to clap and fling the wings. In this context, bristles observed in the wings of most tiny insects have been shown to lower drag force generated in clap and fling. However, the fluid dynamic mechanism underlying drag reduction by bristled wings and the impact of bristles on lift generated via clap and fling remain unclear. We used a dynamically scaled robotic model to examine the forces and flow structures generated during clap and fling of: three bristled wing pairs with varying inter-bristle spacing, and a geometrically equivalent solid wing pair. In contrast to the solid wing pair, reverse flow through the gaps between the bristles was observed throughout clap and fling, resulting in: (a) drag reduction; and (b) weaker and diffuse leading edge vortices that lowered lift. Shear layers were formed around the bristles when interacting bristled wing pairs underwent clap and fling motion. These shear layers lowered leakiness of flow through the bristles and minimized loss of lift in bristled wings. Compared to the solid wing, peak drag coefficients were reduced by 50–90% in bristled wings. In contrast, peak lift coefficients of bristled wings were only reduced by 35–60% from those of the solid wing. Our results suggest that the bristled wings can provide unique aerodynamic benefits via increasing lift to drag ratio during clap and fling for Re between 5 and 15. Full article
(This article belongs to the Special Issue Bio-inspired Flow)
Figures

Figure 1

Open AccessReview Exploring “Dormant” Opto-Mechanical Properties of the Isotropic Phase of Liquid Crystals and Revealing Hidden Elasticity of (Ordinary) Liquids
Received: 15 April 2018 / Revised: 28 May 2018 / Accepted: 6 June 2018 / Published: 13 June 2018
Viewed by 403 | PDF Full-text (4913 KB) | HTML Full-text | XML Full-text
Abstract
There is little literature on the flow properties of the isotropic phase of liquid crystalline fluids. However, this phase is an ideal tool to bridge the physics of liquid crystals with those of (ordinary) fluids. Optical and mechanical studies are presented, demonstrating that
[...] Read more.
There is little literature on the flow properties of the isotropic phase of liquid crystalline fluids. However, this phase is an ideal tool to bridge the physics of liquid crystals with those of (ordinary) fluids. Optical and mechanical studies are presented, demonstrating that away from any phase transition, the isotropic phase of liquid crystalline molecules (LCs) and liquid crystalline polymers (LCPs) can work as an optical oscillator in response to low-frequency mechanical excitation, establishing the elastic origin of the flow birefringence and “visualizing” the very existence of the elastic nature of the liquid state. Additionally, mimicking the excellent anchoring ability of liquid crystals, an alternative rheological protocol optimizing the fluid/substrate interfaces is presented to access the low-frequency shear elasticity in various one-component liquids and salt-free aqueous solutions. Full article
(This article belongs to the Special Issue Liquid Crystal Rheology)
Figures

Figure 1

Open AccessArticle Extension of the Dupuit–Forchheimer Model for Non-Hydrostatic Flows in Unconfined Aquifers
Received: 28 April 2018 / Revised: 29 May 2018 / Accepted: 30 May 2018 / Published: 11 June 2018
Viewed by 433 | PDF Full-text (2272 KB) | HTML Full-text | XML Full-text
Abstract
The classical Dupuit–Forchheimer approach, commonly used in analysing unconfined groundwater-flow systems, relies on the assumption of a negligible vertical component of the flow. This approximation is valid only when the convergence of streamlines is very limited and the drawdown of the phreatic surface
[...] Read more.
The classical Dupuit–Forchheimer approach, commonly used in analysing unconfined groundwater-flow systems, relies on the assumption of a negligible vertical component of the flow. This approximation is valid only when the convergence of streamlines is very limited and the drawdown of the phreatic surface is small, or the thickness of the horizontal layer of the heterogeneous aquifers is sufficiently small. In this study, a higher-order one-dimensional model is proposed for groundwater-flow problems with significant inclination and curvature of the phreatic surface. The model incorporates non-hydrostatic terms that take into account the effects of the vertical velocity of the flow, and was solved with an implicit finite-difference scheme. The accuracy of the proposed model was demonstrated by simulating various unconfined seepage- and groundwater-flow problems with moderate curvilinear effects. The computational results for steady-state flows were compared with the results of the full two-dimensional potential-flow methods and experimental data, resulting in a reasonably good agreement. In general, the comparison results exhibited the efficiency and validity of the model in simulating complex unconfined flows over curved bedrock and curvilinear flows over planar bedrock with a steep slope. Full article
(This article belongs to the Special Issue Advances in Hydrodynamics)
Figures

Figure 1

Open AccessArticle A Comparison of Energy Recovery by PATs against Direct Variable Speed Pumping in Water Distribution Networks
Received: 8 March 2018 / Revised: 24 May 2018 / Accepted: 30 May 2018 / Published: 7 June 2018
Viewed by 432 | PDF Full-text (2479 KB) | HTML Full-text | XML Full-text
Abstract
Water systems are usually considered low efficiency systems, due to the large amount of energy that is lost by water leakage and dissipated by pressure reducing valves to control the leakage itself. In water distribution networks, water is often pumped from the source
[...] Read more.
Water systems are usually considered low efficiency systems, due to the large amount of energy that is lost by water leakage and dissipated by pressure reducing valves to control the leakage itself. In water distribution networks, water is often pumped from the source to an elevated tank or reservoir and then supplied to the users. A large energy recovery can be realized by the installation of energy production devices (EPDs) to exploit the excess of pressure that would be dissipated by regulation valves. The feasibility of such a sustainable strategy depends on the potential of energy savings and the amount of energy embedded in water streams, assessed by means of efficiency measures. Alternatively, energy savings can be pursued if the water is directly pumped to the network, bypassing the elevated reservoir. This study focuses on the comparison of two solutions to supply a real network, assessed as a case study. The first solution consists of water pumping to a reservoir, located upstream of the network; the excess of energy is saved by the employment of a pump as turbine (PAT). The second scenario is characterized by a smaller pressure head since a direct variable speed pumping is performed, bypassing the reservoir. The comparison has been carried out in terms of required energy, assessed by means of a new energy index and two literature efficiency indices. Furthermore, differing design conditions have been analyzed by varying the pumping head of both the scenarios, corresponding to different distances and elevation of the water source. Full article
(This article belongs to the Special Issue Advances in Hydrodynamics)
Figures

Figure 1

Open AccessArticle Material Transport under a Wave Train in Interaction with Constant Wind: A Eulerian RANS Approach Combined with a Lagrangian Particle Dispersion Model
Received: 18 March 2018 / Revised: 5 May 2018 / Accepted: 29 May 2018 / Published: 5 June 2018
Viewed by 546 | PDF Full-text (2952 KB) | HTML Full-text | XML Full-text
Abstract
The interaction of a developed train of gravity deep water waves with suddenly applied winds is investigated in this manuscript. The direction of the wind is the same as that of the wave train (i.e., following) and its imposed surface shear stress is
[...] Read more.
The interaction of a developed train of gravity deep water waves with suddenly applied winds is investigated in this manuscript. The direction of the wind is the same as that of the wave train (i.e., following) and its imposed surface shear stress is constant and steady. The focus of this study is on a micro-scale water wave field where the time scale is on the order of ten wave periods and the length scale is on the order of ten wave lengths. Accurate 2D Reynolds-averaged Navier–Stokes (RANS) multi-phase simulations of Navier–Stokes equations are performed in a Eulerian framework to capture the flow features, induced by the wave field and the surface wind. The sufficiently large spatial domain in the horizontal direction, combined with the sufficiently long simulation time, permits the development of surface currents and the consequent formation of a near-surface shear layer. The interaction of surface currents with the wave orbital velocity field results in the generation of spilling breaking waves. Downstream of the domain, vertical turbulent structures are observed as the result of such breaking waves. Lagrangian particle tracking is performed, using the RANS simulation velocity and eddy diffusivity data. A second order random acceleration particle tracking method is applied with the vitally important spatial gradients of the eddy diffusivity (Journal of Marine Science and Engineering, 2018, 6, 10.3390/jmse6010007.) also included in calculations. The spatial gradients of the eddy diffusivity were proved to be a key factor in material transport simulations. Our particle tracking results exhibit strong vertical mixing downstream of the domain and by means of visualizing the spiral trajectory of neutrally buoyant particles. Such enhanced vertical mixing (caused by horizontal winds) is the result of the strong near-surface advection (induced by currents) and the turbulence (induced by breaking waves). The objectives of this paper are twofold. Firstly, a numerical approach to simulate wind breaking waves is proposed based on: using K ϵ RANS model to capture turbulence features, employing the Volume of Fluid Method (VOF) to model the free surface flow, and applying a constant shear stress body force at the interfacial cells to simulate the wind force. Such treatment of the winds eliminates the need for fully resolving the air phase. The computed eddy viscosity profiles are in good agreement with the experimental profiles reported in the literature ( ν t = κ u * z , Journal of Physical Oceanography, 1977, 7, pp. 248–255; Journal of Physical Oceanography, 1984, 14, pp. 855–863). Secondly, effects of the horizontally applied wind on the vertical mixing and eddy viscosity profiles on the water column are studied. It is observed that, away from the surface and outside the shear layer, the negative horizontal gradient of eddy diffusivity (induced by the dampening effect of breaking surface waves), combined with the downwards advection velocities (induced by breaking waves), results in an enhanced vertical mixing and reduced horizontal drift of transported material. Full article
Figures

Figure 1

Open AccessArticle Flow and Nematic Director Profiles in a Microfluidic Channel: The Interplay of Nematic Material Constants and Backflow
Received: 13 March 2018 / Revised: 9 May 2018 / Accepted: 16 May 2018 / Published: 1 June 2018
Viewed by 585 | PDF Full-text (6803 KB) | HTML Full-text | XML Full-text
Abstract
We numerically and analytically study the flow and nematic order parameter profiles in a microfluidic channel, within the Beris–Edwards theory for nematodynamics, with two different types of boundary conditions—strong anchoring/Dirichlet conditions and mixed boundary conditions for the nematic order parameter. We primarily study
[...] Read more.
We numerically and analytically study the flow and nematic order parameter profiles in a microfluidic channel, within the Beris–Edwards theory for nematodynamics, with two different types of boundary conditions—strong anchoring/Dirichlet conditions and mixed boundary conditions for the nematic order parameter. We primarily study the effects of the pressure gradient, the effects of the material constants and viscosities modelled by a parameter L 2 and the nematic elastic constant L , along with the effects of the choice of the boundary condition. We study continuous and discontinuous solution profiles for the nematic director and these discontinuous solutions have a domain wall structure, with a layered structure that offers new possibilities. Our main results concern the onset of flow reversal as a function of L and L 2 , including the identification of certain parameter regimes with zero net flow rate. These results are of value in tuning microfluidic geometries, boundary conditions and choosing liquid crystalline materials for desired flow properties. Full article
(This article belongs to the Special Issue Liquid Crystal Rheology)
Figures

Figure 1

Open AccessArticle Evaluation of Interfacial Heat Transfer Models for Flashing Flow with Two-Fluid CFD
Received: 4 May 2018 / Revised: 25 May 2018 / Accepted: 29 May 2018 / Published: 1 June 2018
Cited by 1 | Viewed by 495 | PDF Full-text (818 KB) | HTML Full-text | XML Full-text
Abstract
The complexity of flashing flows is increased vastly by the interphase heat transfer as well as its coupling with mass and momentum transfers. A reliable heat transfer coefficient is the key in the modelling of such kinds of flows with the two-fluid model.
[...] Read more.
The complexity of flashing flows is increased vastly by the interphase heat transfer as well as its coupling with mass and momentum transfers. A reliable heat transfer coefficient is the key in the modelling of such kinds of flows with the two-fluid model. An extensive literature survey on computational modelling of flashing flows has been given in previous work. The present work is aimed at giving a brief review on available theories and correlations for the estimation of interphase heat transfer coefficient, and evaluating them quantitatively based on computational fluid dynamics simulations of bubble growth in superheated liquid. The comparison of predictions for bubble growth rate obtained by using different correlations with the experimental as well as direct numerical simulation data reveals that the performance of the correlations is dependent on the Jakob number and Reynolds number. No generally applicable correlations are available. Both conduction and convection are important in cases of bubble rising and translating in stagnant liquid at high Jakob numbers. The correlations combining the analytical solution for heat diffusion and the theoretical relation for potential flow give the best agreement. Full article
Figures

Figure 1

Open AccessArticle Turbulence Enhancement by Fractal Square Grids: Effects of Multiple Fractal Scales
Received: 9 April 2018 / Revised: 14 May 2018 / Accepted: 24 May 2018 / Published: 30 May 2018
Viewed by 618 | PDF Full-text (1297 KB) | HTML Full-text | XML Full-text
Abstract
Multi-scale fractal grids can be considered to mimic the fractal characteristic of objects of complex appearance in nature, such as branching pulmonary network and corals in biology, river network, trees, and cumulus clouds in geophysics, and the large-scale structure of the universe in
[...] Read more.
Multi-scale fractal grids can be considered to mimic the fractal characteristic of objects of complex appearance in nature, such as branching pulmonary network and corals in biology, river network, trees, and cumulus clouds in geophysics, and the large-scale structure of the universe in astronomy. Understanding the role that multiple length scales have in momentum and energy transport is essential for effective utilization of fractal grids in a wide variety of engineering applications. Fractal square grids, consisted of the basic square pattern, have been used for enhancing fluid mixing as a passive flow control strategy. While previous studies have solidified the dominant effect of the largest scale, effects of the smaller scales and the interaction of the range of scales on the generated turbulent flow remain unclear. This research is to determine the relationship between the fractal scales (varying with the fractal iteration N), the turbulence statistics of the flow and the pressure drop across the fractal square grids using well-controlled water-tunnel experiments. Instantaneous and ensemble-averaged velocity fields are obtained by a planar Particle Image Velocimetry (PIV) method for a set of fractal square grids (N = 1, 2 and 4) at Reynolds number of 3400. The static pressure drop across the fractal square grid is measured by a differential pressure transducer. Flow fields indicate that the multiple jets, wakes and the shear layers produced by the multiple scales of bars are the fundamental flow physics that promote momentum transport in the fractal grid generated turbulence. The wake interaction length scale model is modified to incorporate the effects of smaller scales and thereof interaction, by the effective mesh size M e f f and an empirical coefficient β . Effectiveness of a fractal square grid is assessed using the gained turbulence intensity and Reynolds shear stress level at the cost of pressure loss, which varies with the distance downstream. In light of the promising capability of the fractal grids to enhance momentum and energy transport, this work can potentially benefit a wide variety of applications where energy efficient mixing or convective heat transfer is a key process. Full article
(This article belongs to the Special Issue Bio-inspired Flow)
Figures

Figure 1

Open AccessArticle Comparative Study of PEGylated and Conventional Liposomes as Carriers for Shikonin
Received: 25 April 2018 / Revised: 21 May 2018 / Accepted: 25 May 2018 / Published: 26 May 2018
Cited by 1 | Viewed by 605 | PDF Full-text (2374 KB) | HTML Full-text | XML Full-text
Abstract
Liposomes are considered to be one of the most successful drug delivery systems. They apply nanotechnology to potentiate the therapeutic efficacy and reduce the toxicity of conventional medicines. Shikonin and alkannin, a pair of chiral natural naphthoquinone compounds, derived from Alkanna and Lithospermum
[...] Read more.
Liposomes are considered to be one of the most successful drug delivery systems. They apply nanotechnology to potentiate the therapeutic efficacy and reduce the toxicity of conventional medicines. Shikonin and alkannin, a pair of chiral natural naphthoquinone compounds, derived from Alkanna and Lithospermum species, are widely used due to their various pharmacological activities, mainly wound healing, antioxidant, anti-inflammatory and their recently established antitumor activity. The purpose of this study was to prepare conventional and PEGylated shikonin-loaded liposomal formulations and measure the effects of different lipids and polyethylene glycol (PEG) on parameters related to particle size distribution, the polydispersity index, the zeta potential, drug-loading efficiency and the stability of the prepared formulations. Three types of lipids were assessed (1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-Distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-distearoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DSPG)), separately and in mixtures, forming anionic liposomes with good physicochemical characteristics, high entrapment efficiencies (varying from 56.5 to 89.4%), satisfactory in vitro release profiles and good physical stability. The addition of the negatively charged DSPG lipids to DOPC, led to an increment in the drug’s incorporation efficiency and reduced the particle size distribution. Furthermore, the shikonin–loaded PEGylated sample with DOPC/DSPG, demonstrated the most satisfactory characteristics. These findings are considered promising and could be used for further design and improvement of such formulations. Full article
(This article belongs to the Special Issue Experimental and Numerical Studies in Biomedical Engineering)
Figures

Graphical abstract

Open AccessArticle Electrorheological Model Based on Liquid Crystals Membranes with Applications to Outer Hair Cells
Received: 2 February 2018 / Revised: 8 May 2018 / Accepted: 16 May 2018 / Published: 22 May 2018
Cited by 1 | Viewed by 474 | PDF Full-text (5393 KB) | HTML Full-text | XML Full-text
Abstract
Liquid crystal flexoelectric actuation uses an imposed electric field to create membrane bending, this phenomenon is found in outer hair cells (OHC) located in the inner ear, whose role is to amplify sound through the generation of mechanical power. Oscillations in the OHC
[...] Read more.
Liquid crystal flexoelectric actuation uses an imposed electric field to create membrane bending, this phenomenon is found in outer hair cells (OHC) located in the inner ear, whose role is to amplify sound through the generation of mechanical power. Oscillations in the OHC membranes create periodic viscoelastic flows in the contacting fluid media. A key objective of this work on flexoelectric actuation relevant to OHC is to find the relations and impact of the electro-mechanical properties of the membrane, the rheological properties of the viscoelastic media, and the frequency response of the generated mechanical power output. The model developed and used in this work is based on the integration of: (i) the flexoelectric membrane shape equation applied to a circular membrane attached to the inner surface of a circular capillary, and (ii) the coupled capillary flow of contacting viscoelastic phases, which are characterized by the Jeffreys constitutive equation with different material conditions. The membrane flexoelectric oscillations drive periodic viscoelastic capillary flows, as in OHCs. By applying the Fourier transform formalism to the governing equations and assuming small Mach numbers, analytical equations for the transfer function, associated to the average curvature, and for the volumetric rate flow as a function of the electrical field were found, and these equations can be expressed as a third-order differential equation which depends on the material properties of the system. When the inertial mechanisms are considered, the power spectrum shows several resonance peaks in the average membrane curvature and volumetric flow rate. When the inertia is neglected, the system follows a non-monotonic behavior in the power spectrum. This behavior is associated with the solvent contributions related to the retardation-Jeffreys mechanisms. The specific membrane-viscoelastic fluid properties that control the power response spectrum are identified. The present theory, model, and computations contribute to the evolving fundamental understanding of biological shape actuation through electromechanical couplings. Full article
(This article belongs to the Special Issue Liquid Crystal Rheology)
Figures

Figure 1

Open AccessArticle Nonlinear Rheology and Fracture of Disclination Network in Cholesteric Blue Phase III
Received: 29 March 2018 / Revised: 11 May 2018 / Accepted: 15 May 2018 / Published: 17 May 2018
Viewed by 500 | PDF Full-text (3482 KB) | HTML Full-text | XML Full-text
Abstract
Nonlinear rheological properties of chiral crystal cholesteryl oleyl carbonate (COC) in blue phase III (BPIII) were investigated under different shear deformations: large amplitude oscillatory shear, step shear deformation, and continuous shear flow. Rheology of the liquid crystal is significantly affected by structural rearrangement
[...] Read more.
Nonlinear rheological properties of chiral crystal cholesteryl oleyl carbonate (COC) in blue phase III (BPIII) were investigated under different shear deformations: large amplitude oscillatory shear, step shear deformation, and continuous shear flow. Rheology of the liquid crystal is significantly affected by structural rearrangement of defects under shear flow. One of the examples on the defect-mediated rheology is the blue phase rheology. Blue phase is characterized by three dimensional network structure of the disclination lines. It has been numerically studied that the rheological behavior of the blue phase is dominated by destruction and creation of the disclination networks. In this study, we find that the nonlinear viscoelasticity of BPIII is characterized by the fracture of the disclination networks. Depending on the degree of the fracture, the nonlinear viscoelasticity is divided into two regimes; the weak nonlinear regime where the disclination network locally fractures but still shows elastic response, and the strong nonlinear regime where the shear deformation breaks up the networks, which results in a loss of the elasticity. Continuous shear deformation reveals that a series of the fracture process delays with shear rate. The shear rate dependence suggests that force balance between the elastic force acting on the disclination lines and the viscous force determines the fracture behavior. Full article
(This article belongs to the Special Issue Liquid Crystal Rheology)
Figures

Figure 1

Open AccessArticle Experimental Measurement of Dolphin Thrust Generated during a Tail Stand Using DPIV
Received: 1 April 2018 / Revised: 7 May 2018 / Accepted: 14 May 2018 / Published: 17 May 2018
Viewed by 560 | PDF Full-text (15713 KB) | HTML Full-text | XML Full-text
Abstract
Estimation of force generated by dolphins has long been debated. The problem was that indirect estimates of force production for dolphins resulted in low values that could not be validated. Bubble digital particle image velocimetry (DPIV) measured hydrodynamic force production for swimming dolphins
[...] Read more.
Estimation of force generated by dolphins has long been debated. The problem was that indirect estimates of force production for dolphins resulted in low values that could not be validated. Bubble digital particle image velocimetry (DPIV) measured hydrodynamic force production for swimming dolphins and demonstrated high force production. To validate the bubble DPIV and reconcile force production measurements, two bottlenose dolphins (Tursiops truncatus) performing tail stands were measured with bubble DPIV. Microbubbles were generated from a finely porous hose and compressed air source. Displacement of the bubbles by the propulsive motions of the dolphin was tracked with a high-speed video camera. Oscillations of the dolphin flukes generated strong vortices and a downward directed jet flow into the wake. Application of the Kutta–Joukowski theorem measuring vortex circulations yielded forces up to 997.3 N. Another video camera recorded body height above the water surface to determine the mass-force of the dolphin above the water surface. For the dolphin to hold its position above the water surface, the mass-force approximately balanced the vertical hydrodynamic force from the flukes. The results demonstrated the fluke motions generate high sustained forces roughly equal to the dolphin’s weight out of the water. Bubble DPIV validated high forces measured previously for thrust generated in swimming by animals and demonstrated a more accurate technique compared to standard aerodynamic analysis. Full article
(This article belongs to the Special Issue Bio-inspired Flow)
Figures

Figure 1

Open AccessArticle Submesoscale Turbulence over a Topographic Slope
Received: 27 December 2017 / Revised: 29 April 2018 / Accepted: 2 May 2018 / Published: 7 May 2018
Viewed by 738 | PDF Full-text (3996 KB) | HTML Full-text | XML Full-text
Abstract
Regions of the ocean near continental slopes are linked to significant vertical velocities caused by advection over a sloping bottom, frictional processes and diffusion. Oceanic motions at submesoscales are also characterized by enhanced vertical velocities, as compared to mesoscale motions, due to greater
[...] Read more.
Regions of the ocean near continental slopes are linked to significant vertical velocities caused by advection over a sloping bottom, frictional processes and diffusion. Oceanic motions at submesoscales are also characterized by enhanced vertical velocities, as compared to mesoscale motions, due to greater contributions from ageostrophic flows. These enhanced vertical velocities can make an important contribution to turbulent fluxes. Sloping topography may also induce large-scale potential vorticity gradients by modifying the slope of interior isopycnal surfaces. Potential vorticity gradients, in turn, may feed back on mesoscale stirring and the generation of submesoscale features. In this study, we explore the impact of sloping topography on the characteristics of submesoscale motions. We conduct high-resolution (1 km × 1 km) simulations of a wind-driven frontal current over an idealized continental shelf and slope. We explore changes in the magnitude, skewness and spectra of surface vorticity and vertical velocity across different configurations of the topographic slope and wind-forcing orientations. All of these properties are strongly modulated by the background topography. Furthermore, submesoscale characteristics exhibit spatial variability across the continental shelf and slope. We find that changes in the statistical properties of submesoscale motions are linked to mesoscale stirring responding to differences in the interior potential vorticity distributions, which are set by frictional processes at the ocean surface and over the sloping bottom. Improved parameterizations of submesoscale motions over topography may be needed to simulate the spatial variability of these features in coarser-resolution models, and are likely to be important to represent vertical nutrient fluxes in coastal waters. Full article
(This article belongs to the collection Geophysical Fluid Dynamics)
Figures

Figure 1

Open AccessArticle Thermal Fluid Analysis of Cold Plasma Methane Reformer
Received: 3 February 2018 / Revised: 20 April 2018 / Accepted: 23 April 2018 / Published: 1 May 2018
Cited by 1 | Viewed by 807 | PDF Full-text (5696 KB) | HTML Full-text | XML Full-text
Abstract
One of the most important methods of methane utilization is the conversion to synthesis gas (syngas). However, conventional ways of reforming methane usually require very high temperature, therefore non-thermal (non-equilibrium) plasma methane reforming is an attractive alternative. In this study, a novel plasma
[...] Read more.
One of the most important methods of methane utilization is the conversion to synthesis gas (syngas). However, conventional ways of reforming methane usually require very high temperature, therefore non-thermal (non-equilibrium) plasma methane reforming is an attractive alternative. In this study, a novel plasma based reformer named 3D Gliding Arc Vortex Reformer (3D-GAVR) was investigated for partial oxidation of methane to produce syngas. The tangential input creates a vortex in the plasma zone and an expanded plasma presides within the entire area between the two electrodes. Using this method, the experimental results show that hydrogen can be produced for as low as $ 4.45 per kg with flow rates of around 1 L per minute. The maximum methane conversion percentage which is achieved by this technology is up to 62.38%. In addition, a computational fluid dynamics (CFD) modeling is conducted for a cold plasma reformer chamber named reverse vortex flow gliding arc reactor (RVF-GA) to investigate the effects of geometry and configuration on the reformer performance. In this modified reformer, an axial air input port is added to the top of the reaction vessel while the premixed reactants can enter the cylindrical reaction zone through tangential jets. The CFD results show that a reverse vortex flow (RVF) scheme can be created which has an outer swirling rotation along with a low pressure area at its center with some component of axial flow. The reversed vortex flow utilizes the uniform temperature and heat flux distribution inside the cylinder, and enhances the gas mixtures leading to expedition of the chemical reaction and the rate of hydrogen production. Full article
Figures

Graphical abstract

Open AccessArticle Spontaneous Synchronization of Beating Cilia: An Experimental Proof Using Vision-Based Control
Received: 21 March 2018 / Revised: 23 April 2018 / Accepted: 25 April 2018 / Published: 27 April 2018
Viewed by 612 | PDF Full-text (3030 KB) | HTML Full-text | XML Full-text
Abstract
This article investigates the formation of spontaneous coordination in a row of flexible 2D flaps (artificial cilia) in a chamber filled with a high viscous liquid (Re = 0.12). Each flap is driven individually to oscillate by a rotary motor with the
[...] Read more.
This article investigates the formation of spontaneous coordination in a row of flexible 2D flaps (artificial cilia) in a chamber filled with a high viscous liquid (Re = 0.12). Each flap is driven individually to oscillate by a rotary motor with the root of the flap attached to its spindle axle. A computer-vision control loop tracks the flap tips online and toggles the axle rotation direction when the tips reach a pre-defined maximum excursion. This is a vision-controlled implementation of the so-called “geometric clutch” hypothesis. When running the control loop with the flaps in an inviscid reference situation (air), they remain in their individual phases for a long term. Then, the flaps are studied in the chamber filled with a highly viscous liquid, and the same control loop is started. The flexible flaps now undergo bending due to hydrodynamic coupling and come, after a maximum of 15 beats, into a synchronous metachronal coordination. The study proves in a macroscopic lab experiment that viscous coupling is sufficient to achieve spontaneous synchronization, even for a symmetric cilia shape and beat pattern. Full article
(This article belongs to the Special Issue Bio-inspired Flow)
Figures

Figure 1

Open AccessArticle Aerodynamics of a Wing with a Wingtip Flapper
Received: 22 March 2018 / Revised: 9 April 2018 / Accepted: 17 April 2018 / Published: 23 April 2018
Viewed by 740 | PDF Full-text (5915 KB) | HTML Full-text | XML Full-text
Abstract
In the present study, an oscillating membrane flapper was pivotally attached to the tip of a conventional rigid wing. Stroke-averaged aerodynamic forces were measured for the range of the flapping frequency, showing significant increases in the lift coefficient and lift-to-drag ratio for the
[...] Read more.
In the present study, an oscillating membrane flapper was pivotally attached to the tip of a conventional rigid wing. Stroke-averaged aerodynamic forces were measured for the range of the flapping frequency, showing significant increases in the lift coefficient and lift-to-drag ratio for the wing with a flapper. Major vortex patterns were deduced from observations of smoke-wire visualization and 2D phase-locked particle image velocimetry (PIV). The centerline of the primary vortex wanders in the counterclockwise direction. On the contrary, its core rotates in the same sense of rotation as a wingtip vortex in a conventional wing. The secondary weaker vortex of opposite rotation lasts for a half stroke. The vortex ring sheds from the flapper during the second half of the upstroke and pronation. The outer parts of the vortex system are much stronger than the inner ones. The circulation and size of vortices decrease significantly at the most distant station from the wing. Strong vertical jets were found in smoke-wire visualization and confirmed with velocity and vorticity fields obtained by PIV. These jets are formed between undulating vortices and inside of the vortex ring. The jet airflow moves away from the flapper and downward or upward depending on the flapping direction. Full article
(This article belongs to the Special Issue Bio-inspired Flow)
Figures

Figure 1

Open AccessArticle One Dimensional Model for Droplet Ejection Process in Inkjet Devices
Received: 6 March 2018 / Revised: 11 April 2018 / Accepted: 18 April 2018 / Published: 23 April 2018
Viewed by 797 | PDF Full-text (10280 KB) | HTML Full-text | XML Full-text
Abstract
In recent years, physics-based computer models have been increasingly applied to design the drop-on-demand (DOD) inkjet devices. The initial design stage for these devices often requires a fast turnaround time of computer models, because it usually involves a massive screening of a large
[...] Read more.
In recent years, physics-based computer models have been increasingly applied to design the drop-on-demand (DOD) inkjet devices. The initial design stage for these devices often requires a fast turnaround time of computer models, because it usually involves a massive screening of a large number of design parameters. Thus, in the present study, a 1D model is developed to achieve the fast prediction of droplet ejection process from DOD devices, including the droplet breakup and coalescence. A popular 1D slender-jet method (Egger, 1994) is adopted in this study. The fluid dynamics in the nozzle region is described by a 2D axisymmetric unsteady Poiseuille flow model. Droplet formation and nozzle fluid dynamics are coupled, and hence solved together, to simulate the inkjet droplet ejection. The arbitrary Lagrangian–Eulerian method is employed to solve the governing equations. Numerical methods have been proposed to handle the breakup and coalescence of droplets. The proposed methods are implemented in an in-house developed MATLAB code. A series of validation examples have been carried out to evaluate the accuracy and the robustness of the proposed 1D model. Finally, a case study of the inkjet droplet ejection with different Ohnesorge number (Oh) is presented to demonstrate the capability of the proposed 1D model for DOD inkjet process. Our study has shown that 1D model can significantly reduce the computational time (usually less than one minute) yet with acceptable accuracy, which makes it very useful to explore the large parameter space of inkjet devices in a short amount of time. Full article
(This article belongs to the Special Issue Reduced Order Modeling of Fluid Flows)
Figures

Figure 1

Open AccessArticle Effect of the Non-Stationarity of Rainfall Events on the Design of Hydraulic Structures for Runoff Management and Its Applications to a Case Study at Gordo Creek Watershed in Cartagena de Indias, Colombia
Received: 7 January 2018 / Revised: 16 April 2018 / Accepted: 17 April 2018 / Published: 20 April 2018
Viewed by 895 | PDF Full-text (13923 KB) | HTML Full-text | XML Full-text
Abstract
The 24-h maximum rainfall (P24h-max) observations recorded at the synoptic weather station of Rafael Núñez airport (Cartagena de Indias, Colombia) were analyzed, and a linear increasing trend over time was identified. It was also noticed that the occurrence of the rainfall
[...] Read more.
The 24-h maximum rainfall (P24h-max) observations recorded at the synoptic weather station of Rafael Núñez airport (Cartagena de Indias, Colombia) were analyzed, and a linear increasing trend over time was identified. It was also noticed that the occurrence of the rainfall value (over the years of record) for a return period of 10 years under stationary conditions (148.1 mm) increased, which evidences a change in rainfall patterns. In these cases, the typical stationary frequency analysis is unable to capture such a change. So, in order to further evaluate rainfall observations, frequency analyses of P24h-max for stationary and non-stationary conditions were carried out (by using the generalized extreme value distribution). The goodness-of-fit test of Akaike Information Criterion (AIC), with values of 753.3721 and 747.5103 for stationary and non-stationary conditions respectively, showed that the latter best depicts the increasing rainfall pattern. Values of rainfall were later estimated for different return periods (2, 5, 10, 25, 50, and 100 years) to quantify the increase (non-stationary versus stationary condition), which ranged 6% to 12% for return periods from 5 years to 100 years, and 44% for a 2-year return period. The effect of these findings were tested in the Gordo creek watershed by first calculating the resulting direct surface runoff (DSR) for various return periods, and then modeling the hydraulic behavior of the downstream area (composed of a 178.5-m creek’s reach and an existing box-culvert located at the watershed outlet) that undergoes flooding events every year. The resulting DSR increase oscillated between 8% and 19% for return periods from 5 to 100 years, and 77% for a 2-year return period when the non-stationary and stationary scenarios were compared. The results of this study shed light upon to the precautions that designers should take when selecting a design, based upon rainfall observed, as it may result in an underestimation of both the direct surface runoff and the size of the hydraulic structures for runoff and flood management throughout the city. Full article
(This article belongs to the Special Issue Advances in Hydrodynamics)
Figures

Figure 1

Open AccessReview A Short Review on the Rheology of Twist Grain Boundary-A and Blue Phase Liquid Crystals
Received: 22 February 2018 / Revised: 30 March 2018 / Accepted: 4 April 2018 / Published: 9 April 2018
Viewed by 893 | PDF Full-text (5527 KB) | HTML Full-text | XML Full-text
Abstract
Topological defects are important in determining the properties of physical systems and are known varyingly depending on the broken symmetry. In superfluid helium, they are called vortices; in periodic crystals, one refers to dislocations; and in liquid crystals, they are disclinations. The defects
[...] Read more.
Topological defects are important in determining the properties of physical systems and are known varyingly depending on the broken symmetry. In superfluid helium, they are called vortices; in periodic crystals, one refers to dislocations; and in liquid crystals, they are disclinations. The defects and the inter-defect interaction in some highly chiral liquid crystals stabilize some intermediate complex phases such as Blue Phases (BPs) and Twist Grain Boundary-A (TGBA) phases. The defect dynamics of these phases contributes to the rheological properties. The temperature range of these intermediate phases usually are very small in pure liquid crystals; consequently, a detailed experiment has been difficult to achieve. However, the temperature range could be enhanced significantly in multicomponent systems. In this review article, we discuss some recent experimental progress made in understanding the rheological properties of the wide-temperature-range TGBA and BP liquid crystals. Full article
(This article belongs to the Special Issue Liquid Crystal Rheology)
Figures

Figure 1

Open AccessArticle Time-Dependent Shear Stress Distributions during Extended Flow Perfusion Culture of Bone Tissue Engineered Constructs
Received: 9 January 2018 / Revised: 23 March 2018 / Accepted: 29 March 2018 / Published: 3 April 2018
Cited by 4 | Viewed by 721 | PDF Full-text (5739 KB) | HTML Full-text | XML Full-text
Abstract
Flow perfusion bioreactors have been extensively investigated as a promising culture method for bone tissue engineering, due to improved nutrient delivery and shear force-mediated osteoblastic differentiation. However, a major drawback impeding the transition to clinically-relevant tissue regeneration is the inability to non-destructively monitor
[...] Read more.
Flow perfusion bioreactors have been extensively investigated as a promising culture method for bone tissue engineering, due to improved nutrient delivery and shear force-mediated osteoblastic differentiation. However, a major drawback impeding the transition to clinically-relevant tissue regeneration is the inability to non-destructively monitor constructs during culture. To alleviate this shortcoming, we investigated the distribution of fluid shear forces in scaffolds cultured in flow perfusion bioreactors using computational fluid dynamic techniques, analyzed the effects of scaffold architecture on the shear forces and monitored tissue mineralization throughout the culture period using microcomputed tomography. For this study, we dynamically seeded one million adult rat mesenchymal stem cells (MSCs) on 85% porous poly(l-lactic acid) (PLLA) polymeric spunbonded scaffolds. After taking intermittent samples over 16 days, the constructs were imaged and reconstructed using microcomputed tomography. Fluid dynamic simulations were performed using a custom in-house lattice Boltzmann program. By taking samples at different time points during culture, we are able to monitor the mineralization and resulting changes in flow-induced shear distributions in the porous scaffolds as the constructs mature into bone tissue engineered constructs, which has not been investigated previously in the literature. From the work conducted in this study, we proved that the average shear stress per construct consistently increases as a function of culture time, resulting in an increase at Day 16 of 113%. Full article
Figures

Figure 1

Open AccessArticle Numerical Study of Natural Gas/Diesel Reactivity Controlled Compression Ignition Combustion with Large Eddy Simulation and Reynolds-Averaged Navier–Stokes Model
Received: 12 February 2018 / Revised: 20 March 2018 / Accepted: 24 March 2018 / Published: 28 March 2018
Viewed by 769 | PDF Full-text (14217 KB) | HTML Full-text | XML Full-text
Abstract
In the current study, a comparative study is performed using Large Eddy Simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) turbulence models on a natural gas/diesel Reactivity Controlled Compression Ignition (RCCI) engine. The numerical results are validated against the available research work in the literature.
[...] Read more.
In the current study, a comparative study is performed using Large Eddy Simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) turbulence models on a natural gas/diesel Reactivity Controlled Compression Ignition (RCCI) engine. The numerical results are validated against the available research work in the literature. The RNG (Re-Normalization Group) k ε and dynamic structure models are employed to model turbulent flow for RANS and LES simulations, respectively. Parameters like the premixed natural gas mass fraction, the second start of injection timing (SOI2) of diesel and the engine speed are studied to compare performance of RANS and LES models on combustion and pollutant emissions prediction. The results obtained showed that the LES and RANS model give almost similar predictions of cylinder pressure and heat release rate at lower natural gas mass fractions and late SOI2 timings. However, the LES showed improved capability to predict the natural gas auto-ignition and pollutant emissions prediction compared to RANS model especially at higher natural gas mass fractions. Full article
Figures

Figure 1

Back to Top