A Critical Review: Gel-Based Edible Inks for 3D Food Printing: Materials, Rheology–Geometry Mapping, and Control
Abstract
1. Introduction
2. Printability Fundamentals and Characterization
2.1. Rheological Predictors of Printability
2.2. Printability Windows: Parameter Ranges and Decision Criteria
2.3. Quantitative Evaluation of Print Quality
2.4. Methodological Limitations and Mitigation Strategies
2.5. Data Infrastructure, In-Situ Sensing, and Inverse Design
3. Edible Hydrogel Materials
3.1. Gelatin
3.2. Alginate
3.3. Pectin
3.4. Kappa-Carrageenan
3.5. Agar
3.6. Starch-Based Gels
3.7. Gellan, Methylcellulose, Xanthan, Konjac, and Blends
3.8. Protein Gels
3.9. Emulsion Gels
3.10. Clean Label and Consumer Acceptance
3.11. Shelf Life and Stability in Printed Gels
4. Printing Technologies and Post-Set Enablers
4.1. Extrusion-Based Deposition
4.2. Drop-on-Demand Inkjet of Precursors
4.3. Binder Jetting on Food Powders
4.4. Laser Processing of Sugars/Isomalt
4.5. Ionic/Thermal/Dehydration Pathways and Shelf-Life Control
4.6. Technology Comparison and Post-Set Enablers
5. Gel-Forward Product Applications
5.1. Therapeutic Soft Gels and Low-Sugar Desserts
5.2. Structured Savory Foods and Emulsion-Gel Carriers
5.3. Hybrid Shell–Core Architectures
5.4. AI-Enhanced Formulation–Process–Quality Closed Loop
5.5. Nutritional Functionality and Sensory Performance
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Navarro-Hortal, M.D.; Romero-Márquez, J.M.; Jiménez-Trigo, V.; Xiao, J.; Giampieri, F.; Forbes-Hernández, T.Y.; Grosso, G.; Battino, M.; Sánchez-González, C.; Quiles, J.L. Molecular Bases for the Use of Functional Foods in the Management of Healthy Aging: Berries, Curcumin, Virgin Olive Oil and Honey; Three Realities and a Promise. Crit. Rev. Food Sci. Nutr. 2023, 63, 11967–11986. [Google Scholar] [CrossRef]
- Cassotta, M.; Forbes-Hernandez, T.; Iglesias, R.C.; Ruiz, R.; Zabaleta, M.E.; Giampieri, F.; Battino, M. Links Between Nutrition, Infectious Diseases, and Microbiota: Emerging Technologies and Opportunities for Human-Focused Research. Nutrients 2020, 12, 1827. [Google Scholar] [CrossRef]
- Ding, F.; Hu, B.; Lan, S.; Wang, H. Flexographic and Screen Printing of Carboxymethyl Chitosan Based Edible Inks for Food Packaging Applications. Food Packag. Shelf Life 2020, 26, 100559. [Google Scholar] [CrossRef]
- Pan, J.; Chen, X.; Zhu, Y.; Xu, B.; Li, C.; Khin, M.N.; Cui, H.; Lin, L. Design and Development of Dual-Extruder Food 3D Printer Based on Selective Compliance Assembly Robot Arm and Printing of Various Inks. J. Food Eng. 2024, 370, 111973. [Google Scholar] [CrossRef]
- Li, Z.; He, W.; Huang, X.; Hu, X.; Chen, H.; Zhang, Y.; Shi, J.; Zou, X. Contactless Printing of Food Micro-Particles Controlled by Ultrasound. J. Food Eng. 2025, 388, 112375. [Google Scholar] [CrossRef]
- Ekumah, J.-N.; Adade, S.Y.-S.S.; Nunekpeku, X.; Zhong, M.; Sun, Y.; Liang, Q.; Virk, M.S.; Johnson, N.A.N.; Kwadzokpui, B.A.; Ren, X. Nondestructive Prediction and Classification of Gel Strength in Ethanol-Treated Kudzu Starch Gels Using Near-Infrared Spectroscopy. Food Chem. 2025, 476, 143357. [Google Scholar] [CrossRef]
- Qin, Z.; Li, Z.; Huang, X.; Du, L.; Li, W.; Gao, P.; Chen, Z.; Zhang, J.; Guo, Z.; Li, Z. Advances in 3D and 4D Printing of Gel-Based Foods: Mechanisms, Applications, and Future Directions. Gels 2025, 11, 94. [Google Scholar] [CrossRef]
- Lin, L.; Duan, Y.; Aziz, T.; Shami, A.; Al-Asmari, F.; Mohamed, R.A.E.H.; Cui, H. Design of a Peristaltic Pump-Based Feeding Device for Achieving Continuous Production in Food 3D Printing. Innov. Food Sci. Emerg. Technol. 2025, 100, 103941. [Google Scholar] [CrossRef]
- Zhai, X.; Sun, Y.; Cen, S.; Wang, X.; Zhang, J.; Yang, Z.; Li, Y.; Wang, X.; Zhou, C.; Arslan, M. Anthocyanins-Encapsulated 3D-Printable Bigels: A Colorimetric and Leaching-Resistant Volatile Amines Sensor for Intelligent Food Packaging. Food Hydrocoll. 2022, 133, 107989. [Google Scholar] [CrossRef]
- Shen, C.; Chen, W.; Li, C.; Chen, X.; Cui, H.; Lin, L. 4D Printing System Stimulated by Curcumin/Whey Protein Isolate Nanoparticles: A Comparative Study of Sensitive Color Change and Post-Processing. J. Food Eng. 2023, 342, 111357. [Google Scholar] [CrossRef]
- Li, H.; Murugesan, A.; Shoaib, M.; Chen, Q. Emerging Trends and Future Prospects of Peptide-Based Hydrogels: Revolutionizing Food Technology Applications. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70187. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Yuan, L.; Li, W.; Lin, L. Edible Film Incorporated with Chitosan and Artemisia annua Oil Nanoliposomes for Inactivation of Escherichia coli O157: H7 on Cherry Tomato. Int. J. Food Sci. Technol. 2017, 52, 687–698. [Google Scholar] [CrossRef]
- Han, F.; Huang, X.; Mahunu, G.K. Exploratory Review on Safety of Edible Raw Fish Per the Hazard Factors and Their Detection Methods. Trends Food Sci. Technol. 2017, 59, 37–48. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, H.; Xiang, Q.; Chen, C. Comparison of PIV Experiment and Numerical Simulation on the Velocity Distribution of Intermediate Pressure Jets with Different Nozzle Parameters. Irrig. Drain. 2017, 66, 510–519. [Google Scholar] [CrossRef]
- Hu, L.; Ding, F.; Liu, W.; Cheng, Y.; Zhu, J.; Ma, L.; Zhang, Y.; Wang, H. Effect of Enzymatic-Ultrasonic Hydrolyzed Chitooligosaccharide on Rheology of Gelatin Incorporated Yogurt and 3D Printing. Food Hydrocoll. 2022, 132, 107851. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, J.; Cheng, Y. Mechanical Properties, Microstructure, and In Vitro Digestion of Transglutaminase-Crosslinked Whey Protein and Potato Protein Hydrolysate Composite Gels. Foods 2023, 12, 2040. [Google Scholar] [CrossRef]
- Luzio, A.; Ferrarese, F.M.; Butti, M.; Scaccabarozzi, A.D.; Petrović, B.; Kojić, S.; Stojanović, G.; Fiorini Granieri, S.; Tanwar, S.; Kyndiah, A. A Solution-Based Deposition Method Enabling Pigment Blue Edible Electrochemical Transistors. Adv. Sci. 2025, 12, 2416141. [Google Scholar] [CrossRef]
- Lazou, A.E. Food Extrusion: An Advanced Process for Innovation and Novel Product Development. Crit. Rev. Food Sci. Nutr. 2024, 64, 4532–4560. [Google Scholar] [CrossRef]
- Wang, R.; Gao, R.; Xiao, F.; Zhou, X.; Wang, H.; Xu, H.; Gong, C.; Huang, P.; Zhao, Y. Effect of Chicken Breast on the Physicochemical Properties of Unwashed Sturgeon Surimi Gels. LWT 2019, 113, 108306. [Google Scholar] [CrossRef]
- Gao, R.; Wijaya, G.Y.; Yu, J.; Jin, W.; Bai, F.; Wang, J.; Yuan, L. Assessing Gel Properties of Amur sturgeon (Acipenser schrenckii) Surimi Prepared by High-Temperature Setting (40 °C) for Different Durations. J. Sci. Food Agric. 2020, 100, 3147–3156. [Google Scholar] [CrossRef]
- Chuanxing, F.; Qi, W.; Hui, L.; Quancheng, Z.; Wang, M. Effects of Pea Protein on the Properties of Potato Starch-Based 3D Printing Materials. Int. J. Food Eng. 2018, 14, 20170297. [Google Scholar] [CrossRef]
- Yu, J.; Wang, X.-y.; Li, D.; Wang, L.-j.; Wang, Y. Development of Soy Protein Isolate Emulsion Gels as Extrusion-Based 3D Food Printing Inks: Effect of Polysaccharides Incorporation. Food Hydrocoll. 2022, 131, 107824. [Google Scholar] [CrossRef]
- Bugday, Z.Y.; Venkatachalam, A.; Anderson, P.D.; van der Sman, R.G.M. Rheology of Paste-Like Food Inks for 3D Printing: Effects of Nutrient and Water Content. Curr. Res. Food Sci. 2024, 9, 100847. [Google Scholar] [CrossRef]
- Herrada-Manchón, H.; Fernández, M.; Aguilar, E. Essential Guide to Hydrogel Rheology in Extrusion 3D Printing: How to Measure It and Why It Matters? Gels 2023, 9, 517. [Google Scholar] [CrossRef]
- Marques, A.M.; Oliveira, S.M.; Martins, A.J.; Bourbon, A.I.; Rousta, N.; Taherzadeh, M.J.; Teixeira, J.A.; Cerqueira, M.A.; Pastrana, L.M. Use of a Coaxial Nozzle-Assisted 3D Printing and Ionic Crosslinking to Control the Texture of a Mycoprotein-Based Food Product. Future Foods 2025, 11, 100530. [Google Scholar] [CrossRef]
- Arjoca, S.; Bojin, F.; Neagu, M.; Păunescu, A.; Neagu, A.; Păunescu, V. Hydrogel Extrusion Speed Measurements for the Optimization of Bioprinting Parameters. Gels 2024, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Alghamdy, M.; He, I.; Satsangee, G.R.; Keramati, H.; Ahmad, R. Enhancing Printability Through Design Feature Analysis for 3D Food Printing Process Optimization. Appl. Sci. 2024, 14, 9587. [Google Scholar] [CrossRef]
- Ma, Y.; Potappel, J.; Schutyser, M.A.I.; Boom, R.M.; Zhang, L. Quantitative Analysis of 3D Food Printing Layer Extrusion Accuracy: Contextualizing Automated Image Analysis with Human Evaluations: Quantifying 3D Food Printing Accuracy. Curr. Res. Food Sci. 2023, 6, 100511. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Rai, R.; Nitin, N. Image-Based Assessment and Machine Learning-Enabled Prediction of Printability of Polysaccharides-Based Food Ink for 3D Printing. Food Res. Int. 2023, 173, 113384. [Google Scholar] [CrossRef]
- Barjuei, E.S.; Shin, J.; Kim, K.; Lee, J. Precision Improvement of Robotic Bioprinting Via Vision-Based Tool Path Compensation. Sci. Rep. 2024, 14, 17764. [Google Scholar] [CrossRef]
- Aina, M.; Baillon, F.; Sescousse, R.; Sanchez-Ballester, N.M.; Begu, S.; Soulairol, I.; Sauceau, M. Assessing Texturometer-Derived Rheological Data for Predicting the Printability of Gummy Formulations in SSE 3D Printing. Int. J. Pharm. 2024, 662, 124471. [Google Scholar] [CrossRef]
- Aina, M.; Baillon, F.; Sescousse, R.; Sanchez-ballester, N.M.; Begu, S.; Soulairol, I.; Sauceau, M. Evaluation of the Printability of Agar and Hydroxypropyl Methylcellulose Gels as Gummy Formulations: Insights from Rheological Properties. Int. J. Pharm. 2024, 654, 123937. [Google Scholar] [CrossRef]
- Yang, T.; Jin, Y.; Smith, L.M.; Dahotre, N.B.; Neogi, A. Real-Time In-Situ Ultrasound Monitoring of Soft Hydrogel 3d Printing with Subwavelength Resolution. Commun. Eng. 2024, 3, 162. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.; Yang, S.; Wang, L.; Xu, M. Continuous and Highly Accurate Multi-Material Extrusion-Based Bioprinting with Optical Coherence Tomography Imaging. IJB 2023, 9, 707. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, S.; Tammaro, D.; D’Avino, G. Experimental and Numerical Investigation of the Die Swell in 3D Printing Processes. Micromachines 2023, 14, 329. [Google Scholar] [CrossRef] [PubMed]
- Jeong, E.H.; Choi, J.; Park, H.B.; Lee, J.W.; Bae, S.Y.; Kim, B.S.; Yoon, C.; Park, J.D. Data-Driven Printability Modeling of Hydrogels for Precise Direct Ink Writing Based on Rheological Properties. Adv. Sci. 2025, 2025, e07639. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Potappel, J.; Chauhan, A.; Schutyser, M.A.I.; Boom, R.M.; Zhang, L. Improving 3D Food Printing Performance Using Computer Vision and Feedforward Nozzle Motion Control. J. Food Eng. 2023, 339, 111277. [Google Scholar] [CrossRef]
- Rysenaer, V.B.J.; Ahmadzadeh, S.; Van Bockstaele, F.; Ubeyitogullari, A. An Extrusion-Based 3D Food Printing Approach for Generating Alginate-Pectin Particles. Curr. Res. Food Sci. 2023, 6, 100404. [Google Scholar] [CrossRef]
- Bediaga-Bañeres, H.; Moreno-Benítez, I.; Arrasate, S.; Pérez-Álvarez, L.; Halder, A.K.; Cordeiro, M.N.D.S.; González-Díaz, H.; Vilas-Vilela, J.L. Artificial Intelligence-Driven Modeling for Hydrogel Three-Dimensional Printing: Computational and Experimental Cases of Study. Polymers 2025, 17, 121. [Google Scholar] [CrossRef]
- Nadernezhad, A.; Groll, J. Machine Learning Reveals a General Understanding of Printability in Formulations Based on Rheology Additives. Adv. Sci. 2022, 9, 2202638. [Google Scholar] [CrossRef]
- Lin, L.; Zhu, Y.; Cui, H. Electrospun Thyme Essential Oil/Gelatin Nanofibers for Active Packaging Against Campylobacter Jejuni in Chicken. LWT 2018, 97, 711–718. [Google Scholar] [CrossRef]
- Liang, E.; Wang, Z.; Li, X.; Wang, S.; Han, X.; Chen, D.; Zheng, A. 3D Printing Technology Based on Versatile Gelatin-Carrageenan Gel System for Drug Formulations. Pharmaceutics 2023, 15, 1218. [Google Scholar] [CrossRef]
- Bian, M.-H.; Jiang, S.-Y.; Liu, S.-L.; Zhang, L.-T.; Miao, S.; Zhou, F.-Z.; Zheng, B.-D. Fish Gelatin and Gellan Gum Mixture as Edible Ink for 3D Printing. J. Food Eng. 2024, 362, 111762. [Google Scholar] [CrossRef]
- Petcharat, T.; Chaijan, M.; Indriani, S.; Pongsetkul, J.; Karnjanapratum, S.; Nalinanon, S. Modulating Fish Gelatin Gelling Properties Through Furcellaran Addition: A Structural and Physicochemical Analysis. Gels 2025, 11, 381. [Google Scholar] [CrossRef] [PubMed]
- Derossi, A.; Spence, C.; Corradini, M.G.; Jekle, M.; Fahmy, A.R.; Caporizzi, R.; Devahastin, S.; Moses, J.A.; Le-Bail, A.; Zhou, W.; et al. Personalized, Digitally Designed 3D Printed Food Towards the Reshaping of Food Manufacturing and Consumption. npj Sci. Food 2024, 8, 54. [Google Scholar] [CrossRef] [PubMed]
- Mouser, V.H.; Melchels, F.P.; Visser, J.; Dhert, W.J.; Gawlitta, D.; Malda, J. Yield Stress Determines Bioprintability of Hydrogels Based on Gelatin-Methacryloyl and Gellan Gum for Cartilage Bioprinting. Biofabrication 2016, 8, 035003. [Google Scholar] [CrossRef]
- Bui, V.T.N.T.; Nguyen, B.T.; Nicolai, T.; Renou, F. Mixed Iota and Kappa Carrageenan Gels in the Presence of both Calcium and Potassium Ions. Carbohydr. Polym. 2019, 223, 115107. [Google Scholar] [CrossRef]
- Tong, Q.; Zhao, W.; Guo, T.; Wang, D.; Dong, X. A Study of the Gelatin Low-Temperature Deposition Manufacturing Forming Process Based on Fluid Numerical Simulation. Foods 2023, 12, 2687. [Google Scholar] [CrossRef]
- Derkach, S.R.; Ilyin, S.O.; Maklakova, A.A.; Kulichikhin, V.G.; Malkin, A.Y. The Rheology of Gelatin Hydrogels Modified by κ-Carrageenan. LWT—Food Sci. Technol. 2015, 63, 612–619. [Google Scholar] [CrossRef]
- Surendhiran, D.; Cui, H.; Lin, L. Encapsulation of Phlorotannin in Alginate/PEO Blended Nanofibers to Preserve Chicken Meat from Salmonella contaminations. Food Packag. Shelf Life 2019, 21, 100346. [Google Scholar] [CrossRef]
- Yang, Z.; Li, M.; Li, Z.; Li, Y.; Shi, J.; Huang, X.; Sun, Y.; Zhai, X.; Zou, X.; Xiao, J. Incorporation of Hawthorn Pectin/β-Cyclodextrin-Stabilized Pickering Emulsion and Titanium Dioxide Nanoparticles for Improving the Physical, Biological, and Release Properties of Guar Gum/Agar/Sodium Alginate-Based Bilayer Films. Ind. Crops Prod. 2024, 212, 118302. [Google Scholar] [CrossRef]
- Yang, Z.; Li, M.; Li, Y.; Huang, X.; Li, Z.; Zhai, X.; Shi, J.; Zou, X.; Xiao, J.; Sun, Y. Sodium Alginate/Guar Gum Based Nanocomposite Film Incorporating β-Cyclodextrin/Persimmon Pectin-Stabilized Baobab Seed Oil Pickering Emulsion for Mushroom Preservation. Food Chem. 2024, 437, 137891. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhou, T.; Wang, X.; Zou, Y.; Wang, D.; Xu, W. Effects of the Structure and Gel Properties of Myofibrillar Protein on Chicken Breast Quality Treated with Ultrasound-Assisted Potassium Alginate. Food Chem. 2021, 358, 129873. [Google Scholar] [CrossRef] [PubMed]
- Lenie, M.D.R.; Ahmadzadeh, S.; Van Bockstaele, F.; Ubeyitogullari, A. Development of a pH-Responsive System Based on Starch and Alginate-Pectin Hydrogels Using Coaxial 3D Food Printing. Food Hydrocoll. 2024, 153, 109989. [Google Scholar] [CrossRef]
- Su, C.-Y.; Li, D.; Sun, W.; Wang, L.-J.; Wang, Y. Green, Tough, and Heat-Resistant: A GDL-Induced Strategy for Starch-Alginate Hydrogels. Food Chem. 2024, 449, 139188. [Google Scholar] [CrossRef]
- Iqbal, M.W.; Riaz, T.; Yasmin, I.; Leghari, A.A.; Amin, S.; Bilal, M.; Qi, X. Chitosan-Based Materials as Edible Coating of Cheese: A Review. Starch-Stärke 2021, 73, 2100088. [Google Scholar] [CrossRef]
- Yan, J.-K.; Wang, C.; Qiu, W.-Y.; Chen, T.-T.; Yang, Y.; Wang, W.-H.; Zhang, H.-N. Ultrasonic Treatment at Different pH Values Affects the Macromolecular, Structural, and Rheological Characteristics of Citrus Pectin. Food Chem. 2021, 341, 128216. [Google Scholar] [CrossRef]
- Wang, C.; Qiu, W.-Y.; Chen, T.-T.; Yan, J.-K. Effects of Structural and Conformational Characteristics of Citrus Pectin on Its Functional Properties. Food Chem. 2021, 339, 128064. [Google Scholar] [CrossRef]
- Qiu, W.-Y.; Cai, W.-D.; Wang, M.; Yan, J.-K. Effect of Ultrasonic Intensity on the Conformational Changes in Citrus Pectin Under Ultrasonic Processing. Food Chem. 2019, 297, 125021. [Google Scholar] [CrossRef]
- Said, N.S.; Olawuyi, I.F.; Lee, W.Y. Pectin Hydrogels: Gel-Forming Behaviors, Mechanisms, and Food Applications. Gels 2023, 9, 732. [Google Scholar] [CrossRef]
- Merli, M.; Sardelli, L.; Baranzini, N.; Grimaldi, A.; Jacchetti, E.; Raimondi, M.T.; Briatico-Vangosa, F.; Petrini, P.; Tunesi, M. Pectin-Based Bioinks for 3D Models of Neural Tissue Produced by a pH-Controlled Kinetics. Front. Bioeng. Biotechnol. 2022, 10, 1032542. [Google Scholar] [CrossRef]
- Teshima, R.; Osawa, S.; Kawano, Y.; Hanawa, T.; Kikuchi, A.; Otsuka, H. Physicochemical Properties of Egg-Box-Mediated Hydrogels with Transiently Decreased pH Employing Carbonated Water. ACS Omega 2023, 8, 7800–7807. [Google Scholar] [CrossRef]
- Cui, H.; Cheng, Q.; Li, C.; Khin, M.N.; Lin, L. Schiff Base Cross-Linked Dialdehyde β-Cyclodextrin/Gelatin-Carrageenan Active Packaging Film for the Application of Carvacrol on Ready-to-Eat Foods. Food Hydrocoll. 2023, 141, 108744. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Zhang, J.; Shi, J.; Liu, L.; Huang, X.; Song, W.; Li, Z.; Zou, X.; Povey, M. High-Stability Bi-Layer Films Incorporated with Liposomes@ Anthocyanin/Carrageenan/Agar for Shrimp Freshness Monitoring. Foods 2023, 12, 732. [Google Scholar] [CrossRef] [PubMed]
- Diañez, I.; Gallegos, C.; Brito-de la Fuente, E.; Martínez, I.; Valencia, C.; Sánchez, M.C.; Diaz, M.J.; Franco, J.M. 3D Printing in Situ Gelification of κ-Carrageenan Solutions: Effect of Printing Variables on the Rheological Response. Food Hydrocoll. 2019, 87, 321–330. [Google Scholar] [CrossRef]
- Kamlow, M.-A.; Spyropoulos, F.; Mills, T. 3D Printing of Kappa-Carrageenan Emulsion Gels. Food Hydrocoll. Health 2021, 1, 100044. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, L.; Li, F.; Huang, L.; Yan, Y.; He, R. Synergistic Effect of Edible Salts on the Physicochemical Properties of Whey Protein Isolate-Carrageenan Complexes and Their Application as Foam and Emulsion Stabilizers. Food Res. Int. 2025, 201, 115621. [Google Scholar] [CrossRef]
- Li, G.; Wang, B.; Lv, W.; Yang, L.; Xiao, H. Effect of κ-Carrageenan on Physicochemical and 3D Printing Properties of Walnut Protein-Stabilized Emulsion Gel. Food Hydrocoll. 2024, 156, 110288. [Google Scholar] [CrossRef]
- Shi, T.; Yuan, L.; Kong, Y.; Bao, Y.; Zhang, H.; Lu, C.; Jin, W.; Monto, A.R.; Gao, R. Towards Higher-Quality Low Salt Surimi Gels: Significance of the Combinatorial Effects of Chickpea Protein with Transglutaminase on Their Micro-Structures. LWT 2024, 199, 116103. [Google Scholar] [CrossRef]
- Chao, C.; Nam, H.K.; Park, H.J.; Kim, H.W. Potentials of 3D Printing in Nutritional and Textural Customization of Personalized Food for Elderly with Dysphagia. Appl. Biol. Chem. 2024, 67, 25. [Google Scholar] [CrossRef]
- Feng, L.; Wu, J.; Cai, L.; Li, M.; Dai, Z.; Li, D.; Liu, C.; Zhang, M. Effects of Different Hydrocolloids on the Water Migration, Rheological and 3D Printing Characteristics of β-Carotene Loaded Yam Starch-Based Hydrogel. Food Chem. 2022, 393, 133422. [Google Scholar] [CrossRef]
- Shi, X.; Liu, J.; Liu, Q.; Chen, Q.; Wang, H.; Sun, F.; Kong, B. Influence of Different Carrageenan Contents on the Rheological Properties and 3D Printing Suitability of Whey Isolate Protein-Based Emulsion Gels. Food Hydrocoll. 2025, 161, 110839. [Google Scholar] [CrossRef]
- Belova, K.; Dushina, E.; Popov, S.; Zlobin, A.; Martinson, E.; Vityazev, F.; Litvinets, S. Enrichment of 3D-Printed k-Carrageenan Food Gel with Callus Tissue of Narrow-Leaved Lupin Lupinus angustifolius. Gels 2023, 9, 45. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, F.; Wu, S.; Guo, Z.; Huang, X.; Hu, X.; Holmes, M.; Zou, X. Noise-Free Microbial Colony Counting Method Based on Hyperspectral Features of Agar Plates. Food Chem. 2019, 274, 925–932. [Google Scholar] [CrossRef]
- Wenger, L.; Radtke, C.P.; Gerisch, E.; Kollmann, M.; Niemeyer, C.M.; Rabe, K.S.; Hubbuch, J. Systematic Evaluation of Agarose-and Agar-Based Bioinks for Extrusion-Based Bioprinting of Enzymatically Active Hydrogels. Front. Bioeng. Biotechnol. 2022, 10, 928878. [Google Scholar] [CrossRef]
- Teng, X.; Li, C.; Mujumdar, A.S.; Zhang, M. Progress in Extrusion-Based Food Printing Technology for Enhanced Printability and Printing Efficiency of Typical Personalized Foods: A Review. Foods 2022, 11, 4111. [Google Scholar] [CrossRef] [PubMed]
- Rahman, J.M.H.; Shiblee, M.D.N.I.; Ahmed, K.; Khosla, A.; Kawakami, M.; Furukawa, H. Rheological and Mechanical Properties of Edible Gel Materials for 3D Food Printing Technology. Heliyon 2020, 6, e05859. [Google Scholar] [CrossRef] [PubMed]
- Aina, M.; Baillon, F.; Sescousse, R.; Sanchez-Ballester, N.M.; Begu, S.; Soulairol, I.; Sauceau, M. Development of Personalised Immediate-Release Gel-Based Formulations Using Semi-Solid Extrusion. Gels 2024, 10, 665. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Shi, J.; Zou, X.; Wang, S.; Jiang, C.; Zhang, J.; Huang, X.; Zhang, W.; Holmes, M. Novel Colorimetric Films Based on Starch/Polyvinyl Alcohol Incorporated with Roselle Anthocyanins for Fish Freshness Monitoring. Food Hydrocoll. 2017, 69, 308–317. [Google Scholar] [CrossRef]
- Hu, X.; Shi, J.; Zhang, F.; Zou, X.; Holmes, M.; Zhang, W.; Huang, X.; Cui, X.; Xue, J. Determination of Retrogradation Degree in Starch by Mid-Infrared and Raman Spectroscopy During Storage. Food Anal. Methods 2017, 10, 3694–3705. [Google Scholar] [CrossRef]
- Li, Q.; Liu, S.; Obadi, M.; Jiang, Y.; Zhao, F.; Jiang, S.; Xu, B. The Impact of Starch Degradation Induced by Pre-Gelatinization Treatment on the Quality of Noodles. Food Chem. 2020, 302, 125267. [Google Scholar] [CrossRef]
- Xian, D.; Wu, L.; Lin, K.; Liu, P.; Wu, S.; Yuan, Y.; Xie, F. Augmenting Corn Starch Gel Printability for Architectural 3D Modeling for Customized Food. Food Hydrocoll. 2024, 156, 110294. [Google Scholar] [CrossRef]
- Nikolaou, E.N.; Apostolidis, E.; Nikolidaki, E.K.; Karvela, E.D.; Stergiou, A.; Kourtis, T.; Karathanos, V.T. The Development and Optimization of Extrusion-Based 3D Food Printing Inks Using Composite Starch Gels Enriched with Various Proteins and Hydrocolloids. Gels 2025, 11, 574. [Google Scholar] [CrossRef]
- Qin, Z.; Li, Z.; Zou, X.; Guo, Z.; Wang, S.; Chen, Z. Simulation of Starch Gel Printing and Deformation Process Using COMSOL. Foods 2024, 13, 881. [Google Scholar] [CrossRef]
- Dai, L.; Chen, Y.; Li, C. Postharvest Preservation Effects of Starch-Based Self-Reinforcing Nanocomposite Coatings on Mechanically Graded Huangguan pear. LWT 2025, 224, 117852. [Google Scholar] [CrossRef]
- Wedamulla, N.E.; Fan, M.; Choi, Y.-J.; Kim, E.-K. Effect of Pectin on Printability and Textural Properties of Potato Starch 3D Food Printing Gel During Cold Storage. Food Hydrocoll. 2023, 137, 108362. [Google Scholar] [CrossRef]
- Cheng, Y.; Yuqing, H.; Xiao, L.; Gao, W.; Kang, X.; Sui, J.; Cui, B. Impact of Starch Amylose and Amylopectin on the Rheological and 3D Printing Properties of Corn Starch. Int. J. Biol. Macromol. 2024, 278, 134403. [Google Scholar] [CrossRef] [PubMed]
- Wedamulla, N.E.; Fan, M.; Choi, Y.-J.; Kim, E.-K. Combined Effect of Heating Temperature and Content of Pectin on the Textural Properties, Rheology, and 3D Printability of Potato Starch Gel. Int. J. Biol. Macromol. 2023, 253, 127129. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhuang, Y.; Song, J.; Shen, L.; Yin, Y. Evaluation of 3D Printing of Cereal–Legume Starch-Based Gels Formulated with Red Adzuki Bean and Germinated Brown Rice Flour. Foods 2025, 14, 1791. [Google Scholar] [CrossRef]
- Yu, H.-z.; Chi, S.-y.; Li, D.; Wang, L.-j.; Wang, Y. Effect of Gums on the Multi-Scale Characteristics and 3D Printing Performance of Potato Starch Gel. Innov. Food Sci. Emerg. Technol. 2022, 80, 103102. [Google Scholar] [CrossRef]
- Toniazzo, T.; Leverrier, C.; Souza, N.L.; Almeida, G.; Tadini, C.C.; Guenard-Lampron, V. Influence of Starch-Based Gels on 3D Food Printing: Linking Printability, Texture, Rheological Properties, and Sensory Evaluation. Future Foods 2025, 12, 100725. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, B.; Lv, W.; Zhong, Y.; Li, G. Effect of Xanthan Gum on Physicochemical Properties and 3D Printability of Emulsion-Filled Starch Gels. Food Hydrocoll. 2024, 149, 109613. [Google Scholar] [CrossRef]
- Lee, D.; Saleh, M.I.; Lee, Y. Effect of Sucrose on the Rheology and 3D Printability of Pregelatinized Rice Flour Paste. Foods 2025, 14, 1107. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Zhao, Z.; Zhang, N.; Ruan, H.; Yu, X.; Zhao, J.; Zhang, H.; Chen, W.; Fan, D. 3D food Printing Curing Technology Based on Gellan Gum. J. Food Eng. 2022, 327, 111036. [Google Scholar] [CrossRef]
- Cheng, Y.; Shi, X.; Jiang, X.; Wang, X.; Qin, H. Printability of a Cellulose Derivative for Extrusion-Based 3D Printing: The Application on a Biodegradable Support Material. Front. Mater. 2020, 7, 86. [Google Scholar] [CrossRef]
- Santhoshkumar, P.; Moses, J.A. Impact of Konjac Glucomannan on hot Extrusion 3D Printability of Cake Gel. Int. J. Biol. Macromol. 2025, 305, 141162. [Google Scholar] [CrossRef]
- In, J.; Kwak, M.; Min, S.C. Application of Xanthan and Locust Bean Gum Mix or Sorbitol in the Jelly Formulation to Improved Jelly 3D Printing Using a Fused Deposition Modeling Printer. Food Sci. Biotechnol. 2024, 33, 85–90. [Google Scholar] [CrossRef]
- Bai, C.; Liu, R.; Shen, L.; Zhuang, Y.; Hu, J. Effects of Konjac Glucomannan and Curdlan on the 3D Printability and Physicochemical Properties of Germinated Brown Rice Gel. Foods 2025, 14, 1764. [Google Scholar] [CrossRef]
- Polamaplly, P.; Cheng, Y.; Shi, X.; Manikandan, K.; Kremer, G.E.; Qin, H. 3D Printing and Characterization of Hydroxypropyl Methylcellulose and Methylcellulose for Biodegradable Support Structures. Procedia Manuf. 2019, 34, 552–559. [Google Scholar] [CrossRef]
- Li, M.; Feng, L.; Xu, Y.; Nie, M.; Li, D.; Zhou, C.; Dai, Z.; Zhang, Z.; Zhang, M. Rheological Property, β-Carotene Stability and 3D Printing Characteristic of Whey Protein Isolate Emulsion Gels by Adding Different Polysaccharides. Food Chem. 2023, 414, 135702. [Google Scholar] [CrossRef]
- Qiu, R.; Qiu, G.; Zhao, P.; Awais, M.; Fan, B.; Huang, Y.; Tong, L.; Wang, L.; Liu, L.; Wang, F. Regulation of Rheological Properties of Soy Protein Isolate-Beeswax Based Bigel Inks for High-Precision 3D Printing. Food Hydrocoll. 2024, 153, 110052. [Google Scholar] [CrossRef]
- Li, M.; Feng, L.; Dai, Z.; Li, D.; Zhang, Z.; Zhou, C.; Yu, D. Improvement of 3D Printing Performance of Whey Protein Isolate Emulsion Gels by Regulating Rheological Properties: Effect of Polysaccharides Incorporation. Food Bioprocess Technol. 2025, 18, 633–647. [Google Scholar]
- Xu, B.; Wang, X.; Chitrakar, B.; Xu, Y.; Wei, B.; Wang, B.; Lin, L.; Guo, Z.; Zhou, C.; Ma, H. Effect of Various Physical Modifications of Pea Protein Isolate (PPI) on 3D Printing Behavior and Dysphagia Properties of Strawberry-PPI Gels. Food Hydrocoll. 2025, 158, 110498. [Google Scholar]
- Yuan, L.; Liu, Y.-A.; Ge, J.; Feng, X.-P.; Gao, R.-C. Effects of Heat Treatment at Two Temperatures on the Myosin Cluster of Bighead Carp for Gel Formation. CyTA-J. Food 2017, 15, 574–581. [Google Scholar]
- Gao, R.; Wang, Y.; Mu, J.; Shi, T.; Yuan, L. Effect of L-Histidine on the Heat-Induced Aggregation of Bighead carp (Aristichthys nobilis) Myosin in Low/High Ionic Strength Solution. Food Hydrocoll. 2018, 75, 174–181. [Google Scholar]
- Gao, R.; Shi, T.; Sun, Q.; Li, X.; McClements, D.J.; Yuan, L. Effects of L-Arginine and L-Histidine on Heat-Induced Aggregation of Fish Myosin: Bighead carp (Aristichthys nobilis). Food Chem. 2019, 295, 320–326. [Google Scholar]
- Yan, Y.; Tang, R.; Li, F.; Huang, L.; Chen, Y.; He, R. Spectral Analysis of the Impact of Various Polysaccharides on the Entrapment of Curcumin by Whey Protein Isolate. Food Chem. 2025, 468, 142441. [Google Scholar]
- Sager, V.F.; Munk, M.B.; Hansen, M.S.; Bredie, W.L.P.; Ahrné, L. Formulation of Heat-Induced Whey Protein Gels for Extrusion-Based 3D Printing. Foods 2021, 10, 8. [Google Scholar]
- Li, G.; Wang, B.; Lv, W.; Mu, R.; Zhong, Y. Effect of Induction Mode on 3D Printing Characteristics of Whey Protein Isolate Emulsion Gel. Food Hydrocoll. 2024, 146, 109255. [Google Scholar] [CrossRef]
- Huang, L.; Yan, Y.; Qu, L.; Li, F.; Chen, L.; Li, Y. Structure, Emulsifying and Embedding Characteristics of Soy Protein Isolate Induced by the Complexation of Carrageenan with Different Charge Groups. Food Hydrocoll. 2024, 157, 110455. [Google Scholar] [CrossRef]
- Riantiningtyas, R.R.; Sager, V.F.; Chow, C.Y.; Thybo, C.D.; Bredie, W.L.P.; Ahrné, L. 3D Printing of a High Protein Yoghurt-Based Gel: Effect of Protein Enrichment and Gelatine on Physical and Sensory Properties. Food Res. Int. 2021, 147, 110517. [Google Scholar] [CrossRef]
- Guo, Z.; Arslan, M.; Li, Z.; Cen, S.; Shi, J.; Huang, X.; Xiao, J.; Zou, X. Application of Protein in Extrusion-Based 3D Food Printing: Current Status and Prospectus. Foods 2022, 11, 1902. [Google Scholar] [CrossRef]
- Gong, C.; Kang, C.; Jia, W.; Yang, W.; Wang, Y. The Effect of Spray Structure of Oil-Based Emulsion Spray on the Droplet Characteristics. Biosyst. Eng. 2020, 198, 78–90. [Google Scholar] [CrossRef]
- Cheng, Y.; Donkor, P.O.; Yeboah, G.B.; Ayim, I.; Wu, J.; Ma, H. Modulating the In Vitro Digestion of Heat-Set Whey Protein Emulsion Gels Via Gelling Properties Modification with Sequential Ultrasound Pretreatment. LWT 2021, 149, 111856. [Google Scholar] [CrossRef]
- Liu, H.; Guo, L.; Wang, F.; Tao, H.; Yu, B.; Zhao, H.; Li, J.; Xu, M.; Tao, H.; Cui, B. Recombinant Microgels Utilized to Formulate Green Pickering Emulsions. Food Hydrocoll. 2024, 150, 109678. [Google Scholar] [CrossRef]
- Wang, Y.; Aluko, R.E.; Julian McClements, D.; Yu, Y.; Xu, X.; Sun, Q.; Wang, Q.; Jiao, B.; Dai, L. Emulsion Gel-Based Inks for 3D Printing of Foods for Dysphagia Patients: High Internal Type Emulsion Gel-Biopolymer Systems. Food Hydrocoll. 2024, 156, 110340. [Google Scholar] [CrossRef]
- Liu, J.; Huang, G.; Li, R.; Ho, C.-T.; Huang, Q. Edible 3D Printed Emulsion Gels: Effects of Inulin on Sensory Characteristics and Mechanical Properties. Curr. Res. Food Sci. 2025, 11, 101154. [Google Scholar] [CrossRef]
- Xie, D.; Hu, H.; Huang, Q.; Lu, X. Influence of Oleogel/Hydrogel Ratios and Emulsifiers on Structural and Digestion Properties of Food-Grade 3D Printed Bigels as Carriers for Quercetin and Catechin. Food Hydrocoll. 2023, 144, 108948. [Google Scholar] [CrossRef]
- Xie, D.; Hu, H.; Huang, Q.; Lu, X. Development and Characterization of Food-Grade Bigel System for 3D Printing Applications: Role of Oleogel/Hydrogel Ratios and Emulsifiers. Food Hydrocoll. 2023, 139, 108565. [Google Scholar] [CrossRef]
- Guo, Z.; Li, Z.; Cen, S.; Liang, N.; Shi, J.; Huang, X.; Zou, X. Preparation of Pangasius Hypophthalmus Protein-Stabilized Pickering Emulsions and 3D Printing Application. J. Food Eng. 2023, 341, 111333. [Google Scholar] [CrossRef]
- Liu, H.; Wu, X.; Wang, F.; Tao, H.; Yu, B.; Zhao, H.; Li, J.; Xu, M.; Tao, H.; Cui, B. Adjusting the Hydrophobicity of Recombinant Microgels to Improve Interfacial Activity: Using a Promising Pickering Emulsion Stabilizer with a Dense Cubic Structure. Food Hydrocoll. 2025, 158, 110558. [Google Scholar] [CrossRef]
- Wang, M.; Yin, Z.; Zeng, M. Construction of 3D Printable Pickering Emulsion Gels Using Complexes of Fiber Polysaccharide-Protein Extracted from Haematococcus pluvialis Residues and Gelatin for Fat Replacer. Food Hydrocoll. 2023, 137, 108350. [Google Scholar] [CrossRef]
- Xu, D.; Liu, Z.; An, Z.; Hu, L.; Li, H.; Mo, H.; Hati, S. Incorporation of Probiotics into 3D Printed Pickering Emulsion Gel Stabilized by Tea Protein/Xanthan Gum. Food Chem. 2023, 409, 135289. [Google Scholar] [CrossRef] [PubMed]
- Farias, B.S.D.; Cunha, L.B.D.; Christ Ribeiro, A.; Jaeschke, D.P.; Gonçalves, J.O.; Fernandes, S.S.; Cadaval, T.R.S.A.; Pinto, L.A.D.A. Designing Emulsion Gels for 3D Food Printing: Structure, Stability, and Functional Applications. Surfaces 2025, 8, 64. [Google Scholar] [CrossRef]
- Wu, C.; Liu, Z.; Hei, X.; Li, S.; Jiao, B.; Ma, X.; Hu, H.; Zhu, J.; Binks, B.P.; Jia, Z.; et al. 3D Printing of Pickering Emulsion Gels of Protein Particles Prepared by High Pressure Homogenization and Heating. LWT 2024, 206, 116568. [Google Scholar] [CrossRef]
- Chang, M.-Y.; Chen, H.-S. Understanding Consumers’ Intentions to Purchase Clean Label Products: Evidence from Taiwan. Nutrients 2022, 14, 3684. [Google Scholar] [CrossRef]
- Maruyama, S.; Streletskaya, N.A.; Lim, J. Clean Label: Why This Ingredient but Not That One? Food Qual. Prefer. 2021, 87, 104062. [Google Scholar] [CrossRef]
- Zhong, Q.; Chen, Y.; Zhang, X.; Yang, G.; Jin, W.; Peng, D.; Huang, Q. Correlation Between 3D Printability and Rheological Properties of Biopolymer Fluid: A Case Study of Alginate-Based Hydrogels. J. Food Eng. 2024, 370, 111970. [Google Scholar] [CrossRef]
- Zhu, W.; Iskandar, M.M.; Baeghbali, V.; Kubow, S. Three-Dimensional Printing of Foods: A Critical Review of the Present State in Healthcare Applications, and Potential Risks and Benefits. Foods 2023, 12, 3287. [Google Scholar] [CrossRef]
- Pant, A.; Lee, A.Y.; Karyappa, R.; Lee, C.P.; An, J.; Hashimoto, M.; Tan, U.X.; Wong, G.; Chua, C.K.; Zhang, Y. 3D Food Printing of Fresh Vegetables Using Food Hydrocolloids for Dysphagic Patients. Food Hydrocoll. 2021, 114, 106546. [Google Scholar] [CrossRef]
- Hamilton, A.N.; Gibson, K.E. Tulane Virus Persistence and Microbial Stability in 3D Food Ink Under Various Storage Conditions: A Pre- and Post-Printing Analysis. Food Environ. Virol. 2024, 16, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Bhat, Z.F.; Bhat, H.F.; Mohan, M.S.; Aadil, R.M.; Hassoun, A.; Aït-Kaddour, A. Edible Packaging Systems for improved Microbial Quality of Animal-Derived Foods and the Role of Emerging Technologies. Crit. Rev. Food Sci. Nutr. 2024, 64, 12137–12165. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Li, D.; Wang, L.-J.; Wang, Y. Improving Freeze-Thaw Stability and 3D Printing Performance of Soy Protein Isolate Emulsion Gel Inks by Guar & Xanthan Gums. Food Hydrocoll. 2023, 136, 108293. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, W.; Wu, B.; Wu, P.; Duan, Y.; Yang, Q.; Ma, H. Modification of Garlic Skin Dietary Fiber with Twin-Screw Extrusion Process and In Vivo Evaluation of Pb Binding. Food Chem. 2018, 268, 550–557. [Google Scholar] [CrossRef]
- Jergitsch, M.; Soiunov, R.; Selinger, F.; Frauenlob, M.; Delgado, L.M.; Perez-Amodio, S.; Perez, R.A.; Mateos-Timoneda, M.A. Fabrication and Validation of an Affordable DIY Coaxial 3D Extrusion Bioprinter. Sci. Rep. 2025, 15, 22978. [Google Scholar] [CrossRef]
- Chai, W.; An, Y.; Wang, X.; Yang, Z.; Wei, Q. Optimization of SA-Gel Hydrogel Printing Parameters for Extrusion-Based 3D Bioprinting. Gels 2025, 11, 552. [Google Scholar]
- Rahman, T.T.; Rahman, A.M.; Pei, Z.; Wood, N.; Qin, H. Effects of Coaxial Nozzle’s Inner Nozzle Diameter on Filament Strength and Gelation in Extrusion-Based 3D Printing with In Situ Ionic Crosslinking. Biomimetics 2024, 9, 589. [Google Scholar]
- Talbot, E.L.; Yang, L.; Berson, A.; Bain, C.D. Control of the Particle Distribution in Inkjet Printing Through an Evaporation-Driven Sol–Gel Transition. ACS Appl. Mater. Interfaces 2014, 6, 9572–9583. [Google Scholar]
- Hakim, L.; Deshmukh, R.K.; Lee, Y.S.; Gaikwad, K.K. Edible Ink for Food Printing and Packaging Applications: A Review. Sustain. Food Technol. 2024, 2, 876–892. [Google Scholar] [CrossRef]
- Chadwick, E.; Bertola, G.P.S.R.; Lin, X.; Barrett, A.H.; Okamoto, M.; Lu, X.; Ma, A.W.K. 3D Printing Fortified Pea-Based Snacks with Precise Vitamin Dosing by Binder Jetting. J. Food Eng. 2025, 391, 112465. [Google Scholar] [CrossRef]
- Chadwick, E.; Barrett, A.H.; Okamoto, M.; Suleiman, Y.; Bertola, G.P.S.R.; Shahbazmohamadi, S.; Shetty, A.; Li, Y.; Ma, A.W.K. Binder-Jet 3D Printing of Pea-Based Snacks with Modulated Texture. J. Food Eng. 2024, 378, 112112. [Google Scholar] [CrossRef]
- Lee, J. A 3D Food Printing Process for the New Normal Era: A Review. Processes 2021, 9, 1495. [Google Scholar] [CrossRef]
- Xiao, S.; Yang, J.; Bi, Y.; Li, Y.; Cao, Y.; Zhou, M.; Pang, G.; Dong, X.; Tong, Q. Food 3D Printing Equipment and Innovation: Precision Meets Edibility. Foods 2025, 14, 2066. [Google Scholar] [CrossRef] [PubMed]
- Niemczyk-Soczynska, B.; Sajkiewicz, P.Ł. Hydrogel-Based Systems as Smart Food Packaging: A Review. Polymers 2025, 17, 1005. [Google Scholar] [CrossRef]
- Rodríguez-Herrera, V.V.; Umeda, T.; Kozu, H.; Sasaki, T.; Kobayashi, I. Printability of Nixtamalized Corn Dough during Screw-Based Three-Dimensional Food Printing. Foods 2024, 13, 293. [Google Scholar] [CrossRef]
- Zhao, D.; Zhou, H.; Wang, Y.; Yin, J.; Huang, Y. Drop-on-Demand (DOD) Inkjet Dynamics of Printing Viscoelastic Conductive Ink. Addit. Manuf. 2021, 48, 102451. [Google Scholar] [CrossRef]
- Karyappa, R.; Hashimoto, M. Chocolate-Based Ink Three-Dimensional Printing (Ci3DP). Sci. Rep. 2019, 9, 14178. [Google Scholar] [CrossRef]
- Chadwick, E.; Barrett, A.H.; Hobson-Rhoades, W.; Okamoto, M.; Suleiman, Y.; Oleksyk, L.E.; Xu, H.; Shahbazmohamadi, S.; Shetty, A.; Baker, R.; et al. 3D Printing Confectionaries with Tunable Mechanical Properties. J. Food Eng. 2024, 361, 111736. [Google Scholar] [CrossRef]
Research Topic/Material and Platform | Quantitative “Print Quality” Metrics | Benchmark Artifact/Condition | One-Sentence Key Conclusion | Reference |
---|---|---|---|---|
Automated image assessment of intra-/inter-layer geometric accuracy (food extrusion) | Over-/under-extrusion area %, strand-diameter error, layer infill ratio | Straight line–corner–honeycomb/rectangular infill; deer-shaped example | Digital image analysis agrees closely with human scoring and provides correction guidance. | [28] |
Image + machine learning to predict printability of edible polysaccharide inks | Strand diameter and surface roughness; printability classification via RSM/ML | Straight line and standard line segment | Diameter and roughness alone effectively separate printable vs. non-printable formulations. | [29] |
Vision-feedback path compensation (bio/hydrogel extrusion) | Path–filament deviation Δxy, contour error | Straight lines, arcs, grids | Real-time vision compensation significantly reduces contour error and improves repeatability. | [30] |
Texture analyzer as a surrogate for rheometer in printability classification (gummy system) | Equivalent viscosity/yield parameters → print pass/fail | Single line/thin wall | Texture analysis approximates key rheological information, enabling rapid formulation screening. | [31] |
Agar–HPMC printability and rheological window | G′/tan δ, apparent viscosity → line-width error, collapse | Single line, thin-walled column | Cold-gelation trigger plus compatibilization achieves high line fidelity at low solids. | [32] |
Extrusion speed/flow-rate metrology for parameter optimization | Measured volumetric flow rate, line-width error, speed–pressure calibration | Varied nozzles and speed settings | Speed–flow calibration markedly tightens the line-width prediction interval. | [26] |
In-situ ultrasound monitoring of hydrogel printing | Acoustic readouts of layer thickness/interfacial bonding and elastic evolution | Continuous extrusion + Ca2+ curing | Subwavelength ultrasound detects layer defects online and guides curing timing. | [33] |
In-situ OCT measurement of multi-material printing accuracy | Strand diameter, layer thickness, printhead synchronization error | Co-fabrication of multiple materials | OCT-based closed-loop control reduces deposition error at material interfaces. | [34] |
Experimental/numerical measurement of extrusion die swell | Exit strand-to-nozzle diameter ratio. Velocity dependence | Varied temperature/speed | Sr serves as a geometric proxy for exit elastic recoil and correlates with line-width drift. | [35] |
Design-feature-based printability scoring | Corner radius, bridge deflection, overhang success rate, line-width error | Single line, 90° corner, fixed-span bridge, open-cell lattice | DfAM-style scoring enables rapid comparison across formulations and toolpaths. | [27] |
Machine-learning-driven hydrogel printability database | Horizontal/vertical geometric error ↔ HB/3ITT features | Standard line/wall | A 150-case dataset yields transferable predictive relationships across formulations. | [36] |
Computer-vision metrology of instantaneous extrusion rate/strand width | Instantaneous extrusion rate; time-varying line width | Pressure-stabilized extrusion | CV metrology provides a baseline for pressure–speed closed-loop control and under/over-extrusion diagnosis. | [37] |
Focus/System | Key Result | Print Outcome | Trade-Off | Reference |
---|---|---|---|---|
Gelatin + κ-carrageenan composite | Composite improves thermal stability and printability | Complex shapes printed with fidelity | High κ-C may cause syneresis/brittleness | [42] |
Fish gelatin + high-acyl gellan (edible ink) | Co-network boosts G′/τy at modest solids | Cleaner filaments; taller features | Overdosing on gellan risks brittleness | [43] |
Gelatin-methacryloyl + gellan | Yield stress identified as dominant predictor | Better stand-up and wall fidelity | High τy increases extrusion burden | [46] |
κ/ι-carrageenan gels (cation effects) | Cation type modulates gelation and mechanics | Guides co-network ion tuning | Ionic sensitivity; drift risk | [47] |
Gelatin low-temperature deposition | Cooling stabilizes flow and early geometry | Reduced die-swell; cleaner lines | Over-cooling can clog nozzles | [48] |
System/Focus | Key Finding | Print Outcome | Trade-Off/Note | Reference |
---|---|---|---|---|
κ-carrageenan (κC) emulsion gels with sunflower oil | κC emulsion gels remain printable up to 40% oil; layering is evident between printed filaments | Smooth lines; stable cuboids under common settings | Some delamination between layers after compression | [66] |
Whey-protein–κC emulsion gels | κC increases viscosity and mechanical strength, improving deposition | Straighter strands; enhanced self-support | Excess κC tends to embrittle the matrix | [68] |
Whey-protein–κC emulsion gels | Optimal κC ≈ 0.6% yields best printing performance | Smooth lines; tall builds with good retention | Higher κC reduces ductility and chew | [72] |
κC solutions with in-situ gelation | Temperature-triggered gelation supports “print-then-set” strategy | Immediate stand-up; reduced sag | Requires tight thermal control | [65] |
κC–konjac glucomannan blends | KGM reduces syneresis/brittleness and improves elasticity of κC gels | Better layer cohesion; fewer cracks | Composition must be re-tuned for shape fidelity | [70] |
κC food gels enriched with lupin callus | Inclusion does not preclude printability; texture/digestibility tunable | Printable at several inclusion levels | Matrix heterogeneity may affect layers | [73] |
Starch System/Ink | Design Lever | Rheology/Process Notes | Print Outcome | Reference |
---|---|---|---|---|
Normal corn starch + pregelatinized high-amylose + soy/whey proteins | Pregelatinized/high-amylose boosts early support; proteins aid line retention | Wider self-support window; no support bath needed | Fine lines and hollow/overhang structures hold | [82] |
Composite starch–protein–hydrocolloid (κ-carrageenan/xanthan/CMC/arabic gum) | Mapping defines printability window; κ-carrageenan G’ rise and tan δ decline | Reported G′ > 4000 Pa, tan δ = 0.096 – 0.169; accuracy 93–96% | High-fidelity lines/lattices; low contour error | [83] |
Potato starch + pectin (cold storage) | Pectin mitigates retrogradation/syneresis, limits drift | Better G′/texture after refrigeration; less geometric change | Improved shape retention post-chill | [86] |
Corn starch (varying amylose/amylopectin) | Amylose raises support; too high breaks extrusion | Best ratio gave 88.12% accuracy; waxy continuous but weak | Stable lines/thin walls at optimal ratio | [87] |
Potato starch + pectin (heating T × pectin) | Heating modulates pectin effect | 80–90 °C: G′ rise /viscosity/printability; 70 °C: opposite | Straighter lines/walls/lattices at higher T | [88] |
Cereal–legume (germinated brown rice + red adzuki) + xanthan/guar | Gums improve viscoelasticity/printability in nutrient-dense blends | Higher stability; tunable texture | Stand-up walls/thin lattices; fewer collapses | [89] |
Potato starch + xanthan/locust bean gum | XG–LBG synergy strengthens network, faster recovery | Viscoelasticity rise; shear thinning with quick recovery | Continuous lines; less lattice sag | [90] |
Starch gels with/without κ-carrageenan (multi-source) | High-amylose + κ-carrageenan widens process window | — | High-fidelity lattices/thin walls across cases | [91] |
Xanthan gum in starch systems (corn/rice) | XG boosts strength/shape; excess hinders extrusion | tan δ and strength tunable by XG level | Straighter lines; sharper corners | [92] |
Rice-flour starch + sucrose | Soluble solids tune viscosity/recovery | Viscosity/recovery modulated by sugar | Smoother surfaces; steadier line width | [93] |
Technology | Principle | Materials and Operating Window | Post Set Enabler | Advantage | Limitation | Reference |
---|---|---|---|---|---|---|
Pneumatic direct ink writing | Pressure-driven extrusion | Yield-stress alginate or pectin gels; lines about 1 mm; 0.1 to 5 mL per minute | Calcium ionic set by bath or spray | Simple and versatile | Strand swelling and nozzle clogging with particulates | [38] |
Screw driven extrusion | Positive displacement screw | High-viscosity particulate pastes; lines about 0.6 to 1.2 mm | Thermal, ionic, or enzymatic at mild conditions | Handles solids with stable metering | Heavier tool head and cleaning load | [145] |
Drop-on-demand inkjet | Discrete droplet ejection | Low-viscosity viscoelastic liquids; dots about 50 to 200 micrometers | Ionic spray or enzyme trigger | Very fine patterning | Narrow printable window | [146] |
Hot melt extrusion | Melt deposit then cool | Chocolate and sugar melt; filaments about 0.2 to 0.8 mm | Cooling or tempering | Smooth finish with good adhesion | Tight temperature control needed | [147] |
Binder jetting | Liquid binder on powder bed | Sugar or starch powders; voxels about 200 to 500 micrometers | Drying or glazing for strength | Complex support-free shapes | Porous parts and limited powders | [148] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Z.; Yang, Y.; Zhang, Z.; Li, F.; Hou, Z.; Li, Z.; Shi, J.; Shen, T. A Critical Review: Gel-Based Edible Inks for 3D Food Printing: Materials, Rheology–Geometry Mapping, and Control. Gels 2025, 11, 780. https://doi.org/10.3390/gels11100780
Qin Z, Yang Y, Zhang Z, Li F, Hou Z, Li Z, Shi J, Shen T. A Critical Review: Gel-Based Edible Inks for 3D Food Printing: Materials, Rheology–Geometry Mapping, and Control. Gels. 2025; 11(10):780. https://doi.org/10.3390/gels11100780
Chicago/Turabian StyleQin, Zhou, Yang Yang, Zhaomin Zhang, Fanfan Li, Ziqing Hou, Zhihua Li, Jiyong Shi, and Tingting Shen. 2025. "A Critical Review: Gel-Based Edible Inks for 3D Food Printing: Materials, Rheology–Geometry Mapping, and Control" Gels 11, no. 10: 780. https://doi.org/10.3390/gels11100780
APA StyleQin, Z., Yang, Y., Zhang, Z., Li, F., Hou, Z., Li, Z., Shi, J., & Shen, T. (2025). A Critical Review: Gel-Based Edible Inks for 3D Food Printing: Materials, Rheology–Geometry Mapping, and Control. Gels, 11(10), 780. https://doi.org/10.3390/gels11100780