Next Article in Journal
The Refined USSR Peaceful Nuclear Explosions Database for Borovoye Geophysical Observatory
Previous Article in Journal
DiiS: A Biomedical Data Access Framework for Aiding Data Driven Research Supporting FAIR Principles
Article Menu

Export Article

Open AccessData Descriptor

Fuel Properties of Torrefied Biomass from Pruning of Oxytree

1
Faculty of Life Sciences and Technology, Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, 37/41 Chełmońskiego Str., 51-630 Wrocław, Poland
2
Faculty of Life Sciences and Technology, Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, 24A Grunwaldzki Sq., 53-363 Wrocław, Poland
3
Faculty of Life Sciences and Technology, Department of Horticulture, Wrocław University of Environmental and Life Sciences, 24A Grunwaldzki Sq., 53-363 Wrocław, Poland
4
Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA
*
Author to whom correspondence should be addressed.
Received: 31 March 2019 / Revised: 19 April 2019 / Accepted: 21 April 2019 / Published: 25 April 2019
  |  
PDF [1366 KB, uploaded 13 May 2019]
  |     |  

Abstract

The very fast growing Oxytree (Paulownia Clon in Vitro 112) is marketed as a promising new energy crop. The tree has characteristically large leaves, thrives in warmer climates, and requires initial pruning for enhanced biomass production in later years. We explored valorizing the waste biomass of initial (first year) pruning via thermal treatment. Specifically, we used torrefaction (‘roasting’) to produce biochar with improved fuel properties. Here for the first time, we examined and summarized the fuel properties data of raw biomass of Oxytree pruning and biochars generated via torrefaction. The effects of torrefaction temperature (200~300 °C), process time (20~60 min), soil type, and agro-technical cultivation practices (geotextile and drip irrigation) on fuel properties of the resulting biochars were summarized. The dataset contains results of thermogravimetric analysis (TGA) as well as proximate and ultimate analyses of Oxytree biomass and generated biochars. The presented data are useful in determining Oxytree torrefaction reaction kinetics and further techno-economical modeling of the feasibility of Oxytree valorization via torrefaction. Oxytree torrefaction could be exploited as part of valorization resulting from a synergy between a high yield crop with the efficient production of high-quality renewable fuel. View Full-Text
Keywords: renewable energy; biochar; biomass valorization; torrefaction; wood; fuel properties; paulownia; proximate analysis; ultimate analysis; Oxytree; carbon sequestration renewable energy; biochar; biomass valorization; torrefaction; wood; fuel properties; paulownia; proximate analysis; ultimate analysis; Oxytree; carbon sequestration
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary materials

SciFeed

Share & Cite This Article

MDPI and ACS Style

Świechowski, K.; Liszewski, M.; Bąbelewski, P.; Koziel, J.A.; Białowiec, A. Fuel Properties of Torrefied Biomass from Pruning of Oxytree. Data 2019, 4, 55.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Data EISSN 2306-5729 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top