Lipid Oxidation and Barrier Properties of the Coated Freeze-Dried Chicken Meat with Gelatin-Chitosan Film Enriched with Rosemary (Rosmarinus officinalis L.) Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rosemary Extract Characterization
2.2. Gelatin-Chitosan Film Forming Preparation
2.3. Experimental Design
2.4. Preparation of Chicken Meat Samples
- Control: consisting of uncoated cooked meat
- Coated with active film forming and treated with ultrasound: concentrations of 0%, 0.5%, 1%, 1.5%, and 2%
2.5. Freeze Drying of Meat
- Mf—final mass of the sample after total freeze drying;
- Ms—dry matter of the sample after total freeze drying (dried at 105 °C/4 h);
- U0—moisture content of the chicken meat sample to be freeze-dried at a time t expressed in kg H2O/kg d.m.;
- U1—moisture content of the chicken meat sample to be freeze-dried at a time t + 1 expressed in kg H2O/kg d.m.
2.6. Assessments and Characterization of Dried Meat Samples
2.6.1. Water Activity
2.6.2. Color
2.6.3. Water Content (Dry Matter)
2.6.4. Kinetics of Hygroscopicity (NaCl) (g Water/g Meat)
2.6.5. Kinetics of Rehydration (in Cold Water)
2.6.6. Kinetics of Rehydration (in Hot Water)
2.6.7. Lipid Oxidation
2.6.8. Scanning Electron Microscopy
2.7. Statistical Analysis
3. Results and Discussion
3.1. Optimization of the Coating Process Parameters
3.2. Characterization of Chicken Meat Samples Coated with Active Film Forming
3.2.1. Moisture Control
3.2.2. Evaluation of Color Changes
3.2.3. Evaluation of Meat Microstructure
3.2.4. Water Activity Measurement
3.2.5. Hygroscopicity Kinetic
3.2.6. Kinetic Rehydration in Cold Water
3.2.7. Kinetic Rehydration in Hot Water
3.2.8. Lipid Oxidation Property
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Höll, L.; Behr, J.; Vogel, R.F. Identification and Growth Dynamics of Meat Spoilage Microorganisms in Modified Atmosphere Packaged Poultry Meat by MALDI-TOF MS. Food Microbiol. 2016, 60, 84–91. [Google Scholar] [CrossRef]
- Latou, E.; Mexis, S.F.; Badeka, A.V.; Kontakos, S.; Kontominas, M.G. Combined Effect of Chitosan and Modified Atmosphere Packaging for Shelf Life Extension of Chicken Breast Fillets. LWT—Food Sci. Technol. 2014, 55, 263–268. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Sineiro, J.; Amado, I.R.; Franco, D. Influence of Natural Extracts on the Shelf Life of Modified Atmosphere-Packaged Pork Patties. Meat Sci. 2014, 96, 526–534. [Google Scholar] [CrossRef]
- Petrou, S.; Tsiraki, M.; Giatrakou, V.; Savvaidis, I.N. Chitosan Dipping or Oregano Oil Treatments, Singly or Combined on Modified Atmosphere Packaged Chicken Breast Meat. Int. J. Food Microbiol. 2012, 156, 264–271. [Google Scholar] [CrossRef]
- Mojaddar Langroodi, A.; Tajik, H.; Mehdizadeh, T.; Moradi, M.; Moghaddas Kia, E.; Mahmoudian, A. Effects of Sumac Extract Dipping and Chitosan Coating Enriched with Zataria Multiflora Boiss Oil on the Shelf-Life of Meat in Modified atmosphere Packaging. LWT—Food Sci. Technol. 2018, 98, 372–380. [Google Scholar] [CrossRef]
- Ahmed, I.; Lin, H.; Zou, L.; Brody, A.L.; Li, Z.; Qazi, I.M.; Pavase, T.R.; Lv, L. A Comprehensive Review on the Application of Active Packaging Technologies to Muscle Foods. Food Control 2017, 82, 163–178. [Google Scholar] [CrossRef]
- Bastarrachea, L.J.; Wong, D.E.; Roman, M.J.; Lin, Z.; Goddard, J.M. Active Packaging Coatings. Coatings 2015, 5, 771–791. [Google Scholar] [CrossRef]
- Umaraw, P.; Munekata, P.E.S.; Verma, A.K.; Barba, F.J.; Singh, V.P.; Kumar, P.; Lorenzo, J.M. Edible Films/Coating with Tailored Properties for Active Packaging of Meat, Fish and Derived Products. Trends Food Sci. Technol. 2020, 98, 10–24. [Google Scholar] [CrossRef]
- Kakaei, S.; Shahbazi, Y. Effect of Chitosan-Gelatin Film Incorporated with Ethanolic Red Grape Seed Extract and Ziziphora Clinopodioides Essential Oil on Survival of Listeria Monocytogenes and Chemical, Microbial and Sensory Properties of Minced Trout Fillet. LWT—Food Sci. Technol. 2016, 72, 432–438. [Google Scholar] [CrossRef]
- Domínguez, R.; Barba, F.J.; Gómez, B.; Putnik, P.; Bursać Kovačević, D.; Pateiro, M.; Santos, E.M.; Lorenzo, J.M. Active Packaging Films with Natural Antioxidants to Be Used in Meat Industry: A Review. Food Res. Int. 2018, 113, 93–101. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Batlle, R.; Gómez, M. Extension of the Shelf-Life of Foal Meat with Two Antioxidant Active Packaging Systems. LWT—Food Sci. Technol. 2014, 59, 181–188. [Google Scholar] [CrossRef]
- Hamidpour, R.; Elias, G.; Hamidpour, S. Rosmarinus officinalis (Rosemary): A Novel Therapeutic Agent for Antioxidant, Antimicrobial, Anticancer, Antidiabetic, Antidepressant, Neuroprotective, AntiInflammatory, and Anti-obesity Treatment. Biomed. J. Sci. Tech. Res. 2017, 1, 1098–1103. [Google Scholar] [CrossRef]
- Couto, R.O.; Conceição, E.C.; Chaul, L.T.; Oliveira, E.M.S.; Martins, F.S.; Bara, M.T.F.; Rezende, K.R.; Alves, S.F.; Paula, J.R. Spray-Dried Rosemary Extracts: Physicochemical and Antioxidant Properties. Food Chem. 2012, 131, 99–105. [Google Scholar] [CrossRef]
- Kaur, R.; Gupta, T.B.; Bronlund, J.; Kaur, L. The Potential of Rosemary as a Functional Ingredient for Meat Products—A Review. Food Rev. Int. 2023, 39, 2212–2232. [Google Scholar] [CrossRef]
- Georgantelis, D.; Ambrosiadis, I.; Katikou, P.; Blekas, G.; Georgakis, S.A. Effect of Rosemary Extract, Chitosan and α-Tocopherol on Microbiological Parameters and Lipid Oxidation of Fresh Pork Sausages Stored at 4 °C. Meat Sci. 2007, 76, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Yadav, D.N.; Ahmad, T.; Narsaiah, K. Recent Trends in the Use of Natural Antioxidants for Meat and Meat Products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 796–812. [Google Scholar] [CrossRef]
- Yeddes, W.; Chalghoum, A.; Aidi-Wannes, W.; Ksouri, R.; Saidani Tounsi, M. Effect of Bioclimatic Area and Season on Phenolics and Antioxidant Activities of Rosemary (Rosmarinus officinalis L.) Leaves. J. Essent. Oil Res. 2019, 31, 432–443. [Google Scholar] [CrossRef]
- Mounir, S. Texturing of Chicken Breast Meat as an Innovative Way to Intensify Drying: Use of a Coupled Washing/Diffusion CWD Phenomenological Model to Enhance Kinetics and Functional Properties. Dry. Technol. 2015, 33, 150420133150003. [Google Scholar] [CrossRef]
- Basiak, E.; Lenart, A.; Debeaufort, F. How Glycerol and Water Contents Affect the Structural and Functional Properties of Starch-Based Edible Films. Polymers 2018, 10, 412. [Google Scholar] [CrossRef]
- Samborska, K.; Bieńkowska, B. Physicochemical Properties of Spray Dried Honey Preparations. Adv. Agric. Sci. Probl. Issues 2013, 575, 91–105. [Google Scholar]
- Maurer, A.J.; Baker, R.C.; Vadehra, D.V. Factors Affecting the Drying, Stability, and Rehydration of Freeze-Dried Chicken Meat. Poult. Sci. 1973, 52, 784–792. [Google Scholar] [CrossRef]
- Chmiel, M.; Roszko, M.; Adamczak, L.; Florowski, T.; Pietrzak, D. Influence of Storage and Packaging Method on Chicken Breast Meat Chemical Composition and Fat Oxidation. Poult. Sci. 2019, 98, 2679–2690. [Google Scholar] [CrossRef] [PubMed]
- Al-Hilphy, A.R.; Al-Temimi, A.B.; Al Rubaiy, H.H.M.; Anand, U.; Delgado-Pando, G.; Lakhssassi, N. Ultrasound Applications in Poultry Meat Processing: A Systematic Review. J. Food Sci. 2020, 85, 1386–1396. [Google Scholar] [CrossRef] [PubMed]
- Jayasooriya, S.D.; Torley, P.J.; D’Arcy, B.R.; Bhandari, B.R. Effect of High Power Ultrasound and Ageing on the Physical Properties of Bovine Semitendinosus and Longissimus Muscles. Meat Sci. 2007, 75, 628–639. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Jung, T.-J.; Kim, T.-K.; Lee, J.H.; Shin, D.-M.; Yu, H.H.; Choi, Y.-S. The Effect of Gelatin Coating and Sonication on the Quality Properties of Wet-Aging Pork Loins. Food Sci. Anim. Resour. 2023, 43, 269–281. [Google Scholar] [CrossRef]
- Kang, D.; Gao, X.; Ge, Q.; Zhou, G.; Zhang, W. Effects of Ultrasound on the Beef Structure and Water Distribution during Curing through Protein Degradation and Modification. Ultrason. Sonochem. 2017, 38, 317–325. [Google Scholar] [CrossRef]
- Li, K.; Kang, Z.-L.; Zhao, Y.-Y.; Xu, X.-L.; Zhou, G.-H. Use of High-Intensity Ultrasound to Improve Functional Properties of Batter Suspensions Prepared from PSE-like Chicken Breast Meat. Food Bioprocess Technol. 2014, 7, 3466–3477. [Google Scholar] [CrossRef]
- Got, F.; Culioli, J.; Berge, P.; Vignon, X.; Astruc, T.; Quideau, J.M.; Lethiecq, M. Effects of High-Intensity High-Frequency Ultrasound on Ageing Rate, Ultrastructure and Some Physico-Chemical Properties of Beef. Meat Sci. 1999, 51, 35–42. [Google Scholar] [CrossRef]
- Jay, J.M.; Loessner, M.J.; Golden, D.A. (Eds.) Protection of Foods by Drying. In Modern Food Microbiology; Springer: Boston, MA, USA, 2005; pp. 443–456. ISBN 978-0-387-23413-7. [Google Scholar]
- Wideman, N.; O’Bryan, C.; Crandall, P. Factors Affecting Poultry Meat Colour and Consumer Preferences—A Review. Worlds Poult. Sci. J. 2016, 72, 353–366. [Google Scholar] [CrossRef]
- Labropoulos, A.E.; Varzakas, T.; Anestis, S.; Kostas, T.; Panagiotou, P. Preparation, Storage and Distribution of Coated and Uncoated Chicken Meat Products. Int. J. Food Eng. 2013, 9, 209–215. [Google Scholar]
- Wattanachant, S.; Benjakul, S.; Ledward, D.A. Microstructure and Thermal Characteristics of Thai Indigenous and Broiler Chicken Muscles. Poult. Sci. 2005, 84, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wang, Y.-J.; Ren, L.; Leng, Y.-X.; Gao, Q.-Y.; Ge, J. Preparation and Characterization of Gelatin-Immobilized Chitosan Film. J. Funct. Mater. 2008, 39, 1929–1932. [Google Scholar]
- Mallmann, E.; Maia, F.; Mazzetto, S.; Fechine, P. Microstructure and Magneto-Dielectric Properties of the Chitosan/Gelatin-YIG Biocomposites. Express Polym. Lett. 2011, 5, 1041–1049. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Rhim, J.-W. Chitosan-Based Biodegradable Functional Films for Food Packaging Applications. Innov. Food Sci. Emerg. Technol. 2020, 62, 102346. [Google Scholar] [CrossRef]
- Bialik-Wąs, K.; Królicka, E.; Malina, D. Impact of the Type of Crosslinking Agents on the Properties of Modified Sodium Alginate/Poly(Vinyl Alcohol) Hydrogels. Molecules 2021, 26, 2381. [Google Scholar] [CrossRef]
- Cai, L.; Shi, H.; Cao, A.; Jia, J. Characterization of Gelatin/Chitosan Ploymer Films Integrated with Docosahexaenoic Acids Fabricated by Different Methods. Sci. Rep. 2019, 9, 8375. [Google Scholar] [CrossRef]
- Foschino, R. James M. Jay, Martin J. Loessner, David A. Golden Modern food microbiology. Ann. Microbiol. 2006, 56, 81. [Google Scholar] [CrossRef]
- Duan, Q.; Chen, Y.; Yu, L.; Xie, F. Chitosan–Gelatin Films: Plasticizers/Nanofillers Affect Chain Interactions and Material Properties in Different Ways. Polymers 2022, 14, 3797. [Google Scholar] [CrossRef]
- Mathesan, S.; Rath, A.; Ghosh, P. Insights on Water Dynamics in the Hygromorphic Phenomenon of Biopolymer Films. J. Phys. Chem. B 2017, 121, 4273–4282. [Google Scholar] [CrossRef]
- Murugaraj, P.; Mainwaring, D.E.; Tonkin, D.C.; Al Kobaisi, M. Probing the Dynamics of Water in Chitosan Polymer Films by Dielectric Spectroscopy. J. Appl. Polym. Sci. 2011, 120, 1307–1315. [Google Scholar] [CrossRef]
- Umar, A.K.; Sriwidodo, S.; Maksum, I.P.; Wathoni, N. Film-Forming Spray of Water-Soluble Chitosan Containing Liposome-Coated Human Epidermal Growth Factor for Wound Healing. Molecules 2021, 26, 5326. [Google Scholar] [CrossRef] [PubMed]
- Lou, C.W.; Hu, J.J.; Lu, C.T.; Huang, C.C.; Huang, M.S.; Lin, J.H. Manufacturing of Functional Gelatin/Chitosan Composite Membrane. Adv. Mater. Res. 2011, 287–290, 150–153. [Google Scholar] [CrossRef]
- Wiles, J.l.; Vergano, P.j.; Barron, F.h.; Bunn, J.m.; Testin, R.f. Water Vapor Transmission Rates and Sorption Behavior of Chitosan Films. J. Food Sci. 2000, 65, 1175–1179. [Google Scholar] [CrossRef]
- Hoque, M.d.S.; Benjakul, S.; Prodpran, T. Properties of Film from Cuttlefish (Sepia Pharaonis) Skin Gelatin Incorporated with Cinnamon, Clove and Star Anise Extracts. Food Hydrocoll. 2011, 25, 1085–1097. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Harte, B. Physical Properties and Antioxidant Activity of a Journal of the Science of Food and Agriculture n Active Film from Chitosan Incorporated with Green Tea Extract. Food Hydrocoll. 2010, 24, 770–775. [Google Scholar] [CrossRef]
- Yazicioglu, N.; Mert, I.; Özmen, T.; Öztürk, Ş.; Saritaş, E.; Özer, R. Development of Edible Coating Incorporating Cherry Stem Powder or Leek Powder to Decrease Oil Uptake and Lipid Oxidation in Potatoes During Air, Oven, and Deep Oil Frying Methods. Potato Res. 2025. [Google Scholar] [CrossRef]
- Khin, M.M.; Zhou, W.; Perera, C.O. A Study of the Mass Transfer in Osmotic Dehydration of Coated Potato Cubes. J. Food Eng. 2006, 77, 84–95. [Google Scholar] [CrossRef]
- de Lima, A.F.; Leite, R.H.d.L.; Pereira, M.W.F.; Silva, M.R.L.; de Araújo, T.L.A.C.; de Lima Júnior, D.M.; Gomes, M.d.N.B.; Lima, P.d.O. Chitosan Coating with Rosemary Extract Increases Shelf Life and Reduces Water Losses from Beef. Foods 2024, 13, 1353. [Google Scholar] [CrossRef]
- Farkas, B.e.; Singh, R.p. Physical Properties of Air-Dried and Freeze-Dried Chicken White Meat. J. Food Sci. 1991, 56, 611–615. [Google Scholar] [CrossRef]
- Petersson, M.; Stading, M. Water Vapour Permeability and Mechanical Properties of Mixed Starch-Monoglyceride Films and Effect of Film Forming Conditions. Food Hydrocoll. 2005, 19, 123–132. [Google Scholar] [CrossRef]
- Wang, Y.; McClements, D.J.; Peng, X.; Xu, Z.; Meng, M.; Ji, H.; Zhi, C.; Ye, L.; Zhao, J.; Jin, Z.; et al. Effects of Crosslinking Agents on Properties of Starch-Based Intelligent Labels for Food Freshness Detection. Int. J. Biol. Macromol. 2024, 261, 129822. [Google Scholar] [CrossRef] [PubMed]
- Min, B.; Ahn, D.U. Mechanism of Lipid Peroxidation in Meat and Meat Products—A Review. Food Sci. Biotechnol. 2005, 14, 152–163. [Google Scholar]
- Brøndum, J.; Byrne, D.V.; Bak, L.S.; Bertelsen, G.; Engelsen, S.B. Warmed-over Flavour in Porcine Meat—A Combined Spectroscopic, Sensory and Chemometric Study. Meat Sci. 2000, 54, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Jridi, M.; Mora, L.; Souissi, N.; Aristoy, M.-C.; Toldrá, F. Effects of Active Gelatin Coated with Henna (L. Inermis) Extract on Beef Meat Quality during Chilled Storage. Food Control 2017, 84, 238–245. [Google Scholar] [CrossRef]
Sample Names | Treatments |
---|---|
Raw | Fresh meat |
C | Cooked meat |
0% | Coated meat with Ge-CH and treated with US for 10 min |
0.5% | Coated meat with 0.5% extract and treated with US for 10 min |
1% | Coated meat with 1% extract and treated with US for 10 min |
1.5% | Coated meat with 1.5% extract and treated with US for 10 min |
2% | Coated meat with 2% extract and treated with US for 10 min |
Sonication | 10 Min | 20 Min | 30 Min | 60 Min |
---|---|---|---|---|
ΔE | 2.756 b ± 3.916 | 5.376 a ± 2.934 | 7.678 a ± 3.010 | 6.269 a ± 3.522 |
aw | 0.081 b ± 0.0001 | 0.086 b ± 0.0004 | 0.099 a ± 0.0009 | 0.087 b ± 0.0002 |
Non-Enrobed | Coating Film with 0% Extract | Coating Film with 0.5% Extract | Coating Film with 1% Extract | Coating Film with 1.5% Extract | Coating Film with 2% Extract | |
---|---|---|---|---|---|---|
L* | 87.77 a ± 2.7 | 82.29 a ±3.12 | 84.41 a ± 2.64 | 84.77 a ± 2.7 | 83.23 a ± 2.55 | 87.02 a ± 1.86 |
a* | −0.67 a ± 0.5 | 0.35 a ± 1.03 | −0.21 a ± 1.08 | −1.24 a ± 0.32 | −0.6 a ± 0.59 | −1.34 a ± 0.27 |
b* | 12.49 b ± 1.5 | 17.86 a ± 1.82 | 15.15 a ±2.38 | 15.55 a ±2.07 | 16.09 a ± 1.86 | 16.32 a ± 1.05 |
°hue | 86.75 a ± 1.9 | 87.68 a ± 2.48 | 87.48 a ± 1.54 | 85.35 a ± 1.28 | 87.24 a ± 1.3 | 85.06 a ± 0.97 |
ΔE | Reference | 4.66 a ± 1.43 | 5.11 a ± 2.3 | 4.81 a ± 2.13 | 5.7 a ± 1.25 | 4.13 a ± 1.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeddes, W.; Rybak, K.; Rebey, I.B.; Pietrzak, D.; Adamczak, L.; Hammami, M.; Wannes, W.A.; Witrowa-Rajchert, D.; Tounsi, M.S.; Tixier, A.S.F.; et al. Lipid Oxidation and Barrier Properties of the Coated Freeze-Dried Chicken Meat with Gelatin-Chitosan Film Enriched with Rosemary (Rosmarinus officinalis L.) Extract. Foods 2025, 14, 1127. https://doi.org/10.3390/foods14071127
Yeddes W, Rybak K, Rebey IB, Pietrzak D, Adamczak L, Hammami M, Wannes WA, Witrowa-Rajchert D, Tounsi MS, Tixier ASF, et al. Lipid Oxidation and Barrier Properties of the Coated Freeze-Dried Chicken Meat with Gelatin-Chitosan Film Enriched with Rosemary (Rosmarinus officinalis L.) Extract. Foods. 2025; 14(7):1127. https://doi.org/10.3390/foods14071127
Chicago/Turabian StyleYeddes, Walid, Katarzyna Rybak, Iness Bettaieb Rebey, Dorota Pietrzak, Lech Adamczak, Majdi Hammami, Wissem Aidi Wannes, Dorota Witrowa-Rajchert, Moufida Saidani Tounsi, Anne Sylvie Fabiano Tixier, and et al. 2025. "Lipid Oxidation and Barrier Properties of the Coated Freeze-Dried Chicken Meat with Gelatin-Chitosan Film Enriched with Rosemary (Rosmarinus officinalis L.) Extract" Foods 14, no. 7: 1127. https://doi.org/10.3390/foods14071127
APA StyleYeddes, W., Rybak, K., Rebey, I. B., Pietrzak, D., Adamczak, L., Hammami, M., Wannes, W. A., Witrowa-Rajchert, D., Tounsi, M. S., Tixier, A. S. F., & Nowacka, M. (2025). Lipid Oxidation and Barrier Properties of the Coated Freeze-Dried Chicken Meat with Gelatin-Chitosan Film Enriched with Rosemary (Rosmarinus officinalis L.) Extract. Foods, 14(7), 1127. https://doi.org/10.3390/foods14071127