Development and Characterization of Emulsion Gels with Pine Nut Oil, Inulin, and Whey Proteins for Reduced-Fat Meat Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Preparation of Inulin–Water Dispersion
2.3. Incorporation of Carrageenan
2.4. Addition of Oil and WPC
2.5. Final Composition Formation and Storage
2.6. Determination of Water-, Fat-Absorbing Capacity
2.7. Determination of Critical Gelation Concentration
2.8. Determination of Gel Strength and Hardness
2.9. Determination of Proximate Composition and pH
2.10. Microstructural Analysis
2.11. Determination of Fatty Acid Composition
2.12. Statistics
3. Results and Discussion
3.1. Inulin: Water Hydromodule
3.2. Determination of the Optimal Amount of Oil and Milk Whey Protein Concentrate (WPC) in the Emulsion Gels
3.3. The Chemical Compositions of Emulsion Gels
3.4. Gel Strength and Hardness of Emulsion Gel Samples
3.5. Microstructure of Emulsion Gels
3.6. The Fatty Acid Profiles and Trans-Isomer Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, M.; Vidhya, C.S.; Ojha, K.; Yashwanth, B.S.; Singh, B.; Gupta, S.; Pandey, S.K. The Role of Functional Foods and Nutraceuticals in Disease Prevention and Health Promotion. Eur. J. Nutr. Food. Saf. 2024, 16, 61–83. [Google Scholar] [CrossRef]
- Idyryshev, B.; Nurgazezova, A.; Rebezov, M.; Kassymov, S.; Issayeva, K.; Dautova, A.; Atambayeva, Z.; Ashakayeva, R.; Suychinov, A. Study of the Nutritional Value and Microstructure of Veal Cutlets with the Addition of Siberian Pine nut Nut Seed Cake. OnLine J. Biol. Sci. 2022, 22, 375–387. [Google Scholar] [CrossRef]
- Igenbayev, A.; Kakimov, M.; Mursalykova, M.; Wieczorek, B.; Gajdzik, B.; Wolniak, R.; Dzienniak, D.; Bembenek, M. Effect of Using Oleogel on the Physicochemical Properties, Sensory Characteristics, and Fatty Acid Composition of Meat Patties. Foods 2024, 13, 3849. [Google Scholar] [CrossRef] [PubMed]
- Fursov, R.; Ospanov, O.; Fursov, A. Prevalence of obesity in Kazakhstan. Australas. Med. J. 2017, 10, 916–920. [Google Scholar] [CrossRef]
- Sinyavskiy, Y.A.; Tuigunov, D.N.; Sarsembayev, K.S.; Omarov, E.N.; Imankulova, S.K.; Akhatayeva, E.N. Specialized product for sports nutrition. J. Almaty Technol. Univ. 2024, 143, 161–172. (In Russian) [Google Scholar] [CrossRef]
- Jiménez Colmenero, F. Relevant Factors in Strategies for Fat Reduction in Meat Products. Trends Food Sci. Technol. 2000, 11, 56–66. [Google Scholar] [CrossRef]
- Kloss, K. Sausage Nutrition: Benefits, Risks and Prep Tips. Available online: https://www.livestrong.com/article/13726766-sausage-nutrition/ (accessed on 9 January 2025).
- Jiménez-Colmenero, F. Healthier Lipid Formulation Approaches in Meat-Based Functional Foods. Technological Options for Replacement of Meat Fats by Non-Meat Fats. Trends Food Sci. Technol. 2007, 18, 567–578. [Google Scholar] [CrossRef]
- Dreher, J.; Blach, C.; Terjung, N.; Gibis, M.; Weiss, J. Formation and characterization of plant-based emulsified and crosslinked fat crystal networks to mimic animal fat tissue. J. Food Sci. 2020, 85, 421–431. [Google Scholar] [CrossRef]
- Bilska, A.; Krzywdzińska-Bartkowiak, M. The Influence of Vegetable Oil Addition Levels on the Fatty Acid Profile and Oxidative Transformation Dynamics in Liver Sausage-Type Processed Meats. Foods 2025, 14, 380. [Google Scholar] [CrossRef]
- Lima, T.L.S.; Costa, G.F.d.; Alves, R. do N.; Araújo, C.D.L. de; Silva, G.F.G. da; Ribeiro, N.L.; Figueiredo, C.F.V. de; Andrade, R.O. de. Vegetable Oils in Emulsified Meat Products: A New Strategy to Replace Animal Fat. Food Sci. Technol. 2022, 42, 103621. [Google Scholar] [CrossRef]
- Fontes-Candia, C.; Martínez-Sanz, M.; Gómez-Cortés, P.; Calvo, M.V.; Verdú, S.; Grau, R.; López-Rubio, A. Polysaccharide-based emulsion gels as fat replacers in Frankfurter sausages: Physicochemical, nutritional and sensorial evaluation. LWT 2023, 180, 114705. [Google Scholar] [CrossRef]
- Pintado, T.; Munoz-Gonzalez, I.; Salvador, M.; Ruiz-Capillas, C.; Herrero, A.M. Phenolic compounds in emulsion gel-based delivery systems applied as animal fat replacers in frankfurters: Physico-chemical, structural and microbiological approach. Food Chem. 2021, 340, 128095. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, M.; Ozaki, M.M.; Ribeiro, W.O.; Paglarini, C.D.; Vidal, V.A.S.; Campagnol, P.C.B.; Pollonio, M.A.R. Emulsion gels based on pork skin and dietary fibers as animal fat replacers in meat emulsions: An adding value strategy to byproducts. LWT-Food Sci. Technol. 2020, 120, 108895. [Google Scholar] [CrossRef]
- Kumar, Y.; Kumar, V. Effects of double emulsion (W1/O/W2) containing encapsulated Murraya koenigii berries extract on quality characteristics of reduced-fat meat batter with high oxidative stability-ScienceDirect. LWT-Food Sci. Technol. 2020, 127, 109365. [Google Scholar] [CrossRef]
- Baker, E.J.; Miles, E.A.; Calder, P.C. A Review of the Functional Effects of Pine Nut Oil, Pinolenic Acid and Its Derivative Eicosatrienoic Acid and Their Potential Health Benefits. Prog. Lipid Res. 2021, 82, 101097. [Google Scholar] [CrossRef]
- Yalim, N.; Zeynep, N.; Mehmet, M.Ö. Effect on human health components of pine nuts (Pinus pinea). J. Agroaliment. Process. Technol. 2022, 28, 203–213. [Google Scholar]
- Available online: https://siberianpinenutoil.org/pine-nut-oil-vs-olive-oil-which-one-is-healthier/ (accessed on 3 March 2025).
- Bascuas, S.; Hydrocolloids, F.; Morell, P.; Hernando, I.; Quiles, A. Recent trends in oil structuring using hydrocolloids. Food Hydrocoll. 2021, 118, 106612. [Google Scholar] [CrossRef]
- Freire, M.; Cofrades, S.; Pérez-Jiménez, J.; Gómez-Estaca, J.; Jiménez-Colmenero, F.; Bou, R. Emulsion Gels Containing N-3 Fatty Acids and Condensed Tannins Designed as Functional Fat Replacers. Food Res. Int. 2018, 113, 465–473. [Google Scholar] [CrossRef]
- Bao, H.; Wang, Y.; Huang, Y.; Zhang, Y.; Dai, H. The Beneficial Role of Polysaccharide Hydrocolloids in Meat Products: A Review. Gels 2025, 11, 55. [Google Scholar] [CrossRef]
- Xu, Q.; Qi, B.; Han, L.; Wang, D.; Zhang, S.; Jiang, L.; Xie, F.; Li, Y. Study on the Gel Properties, Interactions, and pH Stability of Pea Protein Isolate Emulsion Gels as Influenced by Inulin. LWT 2021, 137, 110421. [Google Scholar] [CrossRef]
- Kim, Y.; Faqih, M.N.; Wang, S.S. Factors Affecting Gel Formation of Inulin. Carbohydr. Polym. 2001, 46, 135–145. [Google Scholar] [CrossRef]
- Mishra, B.P.; Mishra, J.; Paital, B.; Rath, P.K.; Jena, M.K.; Reddy, B.V.V.; Pati, P.K.; Panda, S.K.; Sahoo, D.K. Properties and Physiological Effects of Dietary Fiber-Enriched Meat Products: A Review. Front. Nutr. 2023, 10, 1275341. [Google Scholar] [CrossRef] [PubMed]
- Montoya, L.; Quintero, N.; Ortiz, S.; Lopera, J.; Millán, P.; Rodríguez-Stouvenel, A. Inulin as a Fat-Reduction Ingredient in Pork and Chicken Meatballs: Its Effects on Physicochemical Characteristics and Consumer Perceptions. Foods 2022, 11, 1066. [Google Scholar] [CrossRef] [PubMed]
- Codex Stan 192-1995; Codex Alimentarius. General Standard for Food Additives. Food and Agriculture Organization of the United Nations; World Health Organization: Geneva, Switzerland, 1995.
- Technical Regulations of the Customs Union “On the Safety of Food Additives, Flavorings and Technological Aids” (TR TS 029/2012): Adopted by the Decision of the Council of the Eurasian Economic Commission on July 20, 2012 No. 58. Available online: http://www.eurasiancommission.org/ru/act/texnreg/deptexreg/tr/Pages/TRVsily.aspx (accessed on 3 March 2025).
- Chichko, A.A. Development of Cooked Sausage Technology Using Activated Protein-Containing Systems. Ph.D. Dissertation, North Caucasus State Technical University, Stavropol, Russia, 2005. [Google Scholar]
- Belousova, E.V. Development of Technology of Reduced-Calorie Pates with Heterogeneous Fat Composition Stabilized by Polysaccharides. Ph.D. Dissertation, North Caucasus Federal University, Stavropol, Russia, 2018. [Google Scholar]
- Huang, L.; Ren, Y.; Li, H.; Zhang, Q.; Wang, Y.; Cao, J.; Liu, X. Create Fat Substitute From Soybean Protein Isolate/Konjac Glucomannan: The Impact of the Protein and Polysaccharide Concentrations Formulations. Front. Nutr. 2022, 9, 843832. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis, 18th ed.; AOAC: Washington, DC, USA, 2010. [Google Scholar]
- GOST R 51478-99; Meat and meat products. Reference method for determination of hydrogen ion concentration (pH). Gosstandart: Moscow, Russia, 2001; 6p.
- Yessimbekov, Z.; Kakimov, A.; Kabdylzhar, B.; Suychinov, A.; Baikadamova, A.; Akimova, D.; Abdilova, G. Chemical, physical properties, microstructure and granulometric composition of ultra-finely ground chicken bone paste. Appl. Food Res. 2023, 3, 100318. [Google Scholar] [CrossRef]
- GOST R 55483-2013; Meat and Meat Products. Determination of Fatty Acid Composition by Gas Chromatography. Standardinform: Moscow, Russia, 2014; 14p.
- Zhang, S.-S.; Duan, J.-Y.; Zhang, T.-T.; Lv, M.; Gao, X.-G. Effect of Compound Dietary Fiber of Soybean Hulls on the Gel Properties of Myofibrillar Protein and Its Mechanism in Recombinant Meat Products. Front. Nutr. 2023, 10, 1129514. [Google Scholar] [CrossRef]
- Xu, W.; Xiong, Y.; Li, Z.; Luo, D.; Wang, Z.; Sun, Y.; Shah, B.R. Stability, Microstructural and Rheological Properties of Complex Prebiotic Emulsion Stabilized by Sodium Caseinate with Inulin and Konjac Glucomannan. Food Hydrocoll. 2020, 105, 105772. [Google Scholar] [CrossRef]
- Glisic, M.; Baltic, M.; Glisic, M.; Trbovic, D.; Jokanovic, M.; Parunovic, N.; Dimitrijevic, M.; Suvajdzic, B.; Boskovic, M.; Vasilev, D. Inulin-based Emulsion-filled Gel as a Fat Replacer in Prebiotic- and PUFA-enriched Dry Fermented Sausages. Int. J. Food Sci. Technol. 2018, 54, 787–797. [Google Scholar] [CrossRef]
- De Souza Paglarini, C.; Vidal, V.A.; Ribeiro, W.; Badan Ribeiro, A.P.; Bernardinelli, O.D.; Herrero, A.M.; Ruiz-Capillas, C.; Sabadini, E.; Rodrigues Pollonio, M.A. Using Inulin-based Emulsion Gels as Fat Substitute in Salt Reduced Bologna Sausage. J. Sci. Food Agric. 2020, 101, 505–517. [Google Scholar] [CrossRef]
- Mustafayeva, A.; Abdilova, G.; Akimov, M.; Yerengaliev, A.; Muratzhankyzy, N.; Okuskhanova, E. Change of yield stress of minced meat grinded with different kind of cutting mechanism. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 498–504. [Google Scholar]
- Okuskhanova, E.; Rebezov, M.; Yessimbekov, Z.; Tazeddinova, D.; Shcherbakov, P.; Bezhinar, T.; Vagapova, O.; Shcherbakova, T.; Stuart, M. Rheological Properties of Low-Calorie Red Deer Meat Pâté. J. Pharm. Res. Int. 2018, 23, 42317. [Google Scholar] [CrossRef]
- De Souza Paglarini, C.; de Figueiredo Furtado, G.; Honório, A.R.; Mokarzel, L.; da Silva Vidal, V.A.; Ribeiro, A.P.B.; Cunha, R.L.; Pollonio, M.A.R. Functional Emulsion Gels as Pork Back Fat Replacers in Bologna Sausage. Food Struct. 2019, 20, 100105. [Google Scholar] [CrossRef]
- Wang, W.-D.; Li, C.; Bin, Z.; Huang, Q.; You, L.-J.; Chen, C.; Fu, X.; Liu, R.H. Physicochemical Properties and Bioactivity of Whey Protein Isolate-Inulin Conjugates Obtained by Maillard Reaction. Int. J. Biol. Macromol. 2020, 150, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Paglarini, C.d.S.; Furtado, G. de F.; Biachi, J.P.; Vidal, V.A.S.; Martini, S.; Forte, M.B.S.; Cunha, R.L.; Pollonio, M.A.R. Functional Emulsion Gels with Potential Application in Meat Products. J. Food Eng. 2018, 222, 29–37. [Google Scholar] [CrossRef]
- Mohammadi, F.; Shiri, A.; Tahmouzi, S.; Mollakhalili-Meybodi, N.; Nematollahi, A. Application of Inulin in Bread: A Review of Technological Properties and Factors Affecting Its Stability. Food Sci. Nutr. 2022, 11, 639–650. [Google Scholar] [CrossRef]
- Xu, J.; Kenar, J.A. Rheological and Micro-Rheological Properties of Chicory Inulin Gels. Gels 2024, 10, 171. [Google Scholar] [CrossRef]
- Jamshidi, A.; Shabanpour, B.; Pourashouri, P.; Raeisi, M. Using WPC-Inulin-Fucoidan Complexes for Encapsulation of Fish Protein Hydrolysate and Fish Oil in W1/O/W2 Emulsion: Characterization and Nutritional Quality. Food Res. Int. 2018, 114, 240–250. [Google Scholar] [CrossRef]
- Yuguchi, Y.; Thu Thuy, T.T.; Urakawa, H.; Kajiwara, K. Structural Characteristics of Carrageenan Gels: Temperature and Concentration Dependence. Food Hydrocoll. 2002, 16, 515–522. [Google Scholar] [CrossRef]
- Trius, A.; Sebranek, J.G.; Lanier, T. Carrageenans and Their Use in Meat Products. Crit. Rev. Food Sci. Nutr. 1996, 36, 69–85. [Google Scholar] [CrossRef]
- Pasini, C.; Re, F.; Trenta, F.; Russo, D.; Sartore, L. Gelatin-Based Scaffolds with Carrageenan and Chitosan for Soft Tissue Regeneration. Gels 2024, 10, 426. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Liu, X.; Yu, Q. The Characteristics of Whey Protein and Blueberry Juice Mixed Fermentation Gels Formed by Lactic Acid Bacteria. Gels 2023, 9, 565. [Google Scholar] [CrossRef] [PubMed]
- Schröder, A.; Berton-Carabin, C.; Venema, P.; Cornacchia, L. Interfacial Properties of Whey Protein and Whey Protein Hydrolysates and Their Influence on O/W Emulsion Stability. Food Hydrocoll. 2017, 73, 129–140. [Google Scholar] [CrossRef]
- Loi, C.C.; Eyres, G.T.; Birch, E.J. Effect of Milk Protein Composition on Physicochemical Properties, Creaming Stability and Volatile Profile of a Protein-Stabilised Oil-in-Water Emulsion. Food Res. Int. 2019, 120, 83–91. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Ren, S.; Li, H.; Han, D.; Liu, T.; Wu, M.; Wang, J. Preparation, Characterization and Formation Mechanism of High Pressure-Induced Whey Protein Isolate/κ-Carrageenan Composite Emulsion Gel Loaded with Curcumin. Gels 2024, 10, 542. [Google Scholar] [CrossRef]
- Geremias-Andrade, I.M.; Souki, N.P.B.G.; Moraes, I.C.F.; Pinho, S.C. Rheology of Emulsion-Filled Gels Applied to the Development of Food Materials. Gels 2016, 2, 22. [Google Scholar] [CrossRef]
- Moakes, R.J.A.; Sullo, A.; Norton, I.T. Preparation and Rheological Properties of Whey Protein Emulsion Fluid Gels. RSC Adv. 2015, 5, 60786–60795. [Google Scholar] [CrossRef]
- Cîrstea, N.; Nour, V.; Boruzi, A.I. Effects of Pork Backfat Replacement with Emulsion Gels Formulated with a Mixture of Olive, Chia and Algae Oils on the Quality Attributes of Pork Patties. Foods 2023, 12, 519. [Google Scholar] [CrossRef]
- Hou, W.; Long, J.; Hua, Y.; Chen, Y.; Kong, X.; Zhang, C.; Li, X. Formation and Characterization of Solid Fat Mimetic Based on Pea Protein Isolate/Polysaccharide Emulsion Gels. Front. Nutr. 2022, 9, 1053469. [Google Scholar] [CrossRef]
- Sarraf, M.; Naji-Tabasi, S.; Beig-Babaei, A.; Moros, J.E.; Sánchez, M.C.; Franco, J.M.; Tenorio-Alfonso, A. Improving the Structure and Properties of Whey Protein Emulsion Gel Using Soluble Interactions with Xanthan and Basil Seed Gum. Food Sci. Nutr. 2023, 11, 6907–6919. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.; Cheng, H. Impact of κ-Carrageenan on the Cold-Set Pea Protein Isolate Emulsion-Filled Gels: Mechanical Property, Microstructure, and In Vitro Digestive Behavior. Foods 2024, 13, 483. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, Y.; Pietzner, A.; Elbelt, U.; Fan, Z.; Weylandt, K.H. Circulating Omega-3 Polyunsaturated Fatty Acids Levels in Coronary Heart Disease: Pooled Analysis of 36 Observational Studies. Nutrients 2024, 16, 1610. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.-S. Omega-3 and Omega-6 Polyunsaturated Fatty Acids: Dietary Sources, Metabolism, and Significance—A Review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef]
Indicator | Mean + SD |
---|---|
Fat absorption capacity, % | 114.0 ± 12.2 |
Water absorption capacity, % | 189.0 ± 11.1 |
Ingredients | Ingredients Consumption Per 100 g of Product, g | |||||
---|---|---|---|---|---|---|
Experiment 1 | Experiment 2 | Experiment 3 | Experiment 4 | Experiment 5 | Experiment 6 | |
Pine nut oil | 10 | 15 | 20 | 25 | 30 | 35 |
Sunflower oil | 10 | 10 | 10 | 10 | 10 | 10 |
Inulin | 20 | 18 | 20 | 18 | 20 | 20 |
WPC | 1 | 2 | 3 | 4 | 5 | 6 |
Carrageenan | - | 2 | - | 2 | - | 2 |
Water | 59 | 53 | 47 | 41 | 35 | 27 |
Total | 100 | 100 | 100 | 100 | 100 | 100 |
Indicator | Experiment 3 | Experiment 4 |
---|---|---|
Water | 57.65 ± 0.93 | 55.23 ± 0.72 |
Protein | 3.11 ± 0.03 | 3.85 ± 0.06 * |
Fat | 19.82 ± 0.37 | 20.79 ± 0.22 |
Carbohydrate | 18.21 ± 0.24 | 18.85 ± 0.36 |
Ash | 1.21 ± 0.02 | 1.28 ± 0.02 |
pH | 5.13 ± 0.06 | 5.28 ± 0.05 |
Indicator | Emulsion Gel (Experiment 4) | Animal Fat | |||||
---|---|---|---|---|---|---|---|
Tail Fat | Chicken Fat | Horse Fat | Lamb Fat | Beef Fat | Pork Fat | ||
Trans-isomers fatty acids, from fat content in product, % | 0.179 | 2.908 | 0.14 | 0.412 | 7.239 | 5.024 | 0.26 |
Name of Fatty Acid | Name of Samples | ||||||
---|---|---|---|---|---|---|---|
Emulsion Gel (Experiment 4) | Tail Fat | Chicken Fat | Horse Fat | Lamb Fat | Beef Fat | Pork Fat | |
Sum of saturated fatty acids, %, including: | 10.85 | 50.42 | 41.22 | 30.23 | 56.24 | 45.04 | 36.33 |
butyric | nd | nd | nd | 0.07 | nd | nd | nd |
capron | nd | nd | 0.03 | 0.06 | 0.52 | nd | nd |
caprylic | nd | nd | 0.04 | 0.04 | 0.02 | nd | 0.01 |
caprine | nd | 0.06 | 0.21 | 0.11 | 0.44 | 0.11 | 0.08 |
undecanoic | nd | nd | 0.02 | nd | nd | 0.06 | 0.01 |
lauric | nd | 0.20 | 0.71 | nd | 0.65 | 0.12 | 0.07 |
tridecane | nd | 0.04 | 0.04 | 0.01 | 0.05 | 0.14 | nd |
myristic acid | 0.02 | 6.02 | 5.60 | 1.03 | 7.52 | 3.00 | 1.34 |
pentadecane | nd | 0.73 | nd | 0.18 | nd | 2.17 | 0.06 |
palmitic | 6.81 | 26.54 | 29.25 | 21.07 | 25.26 | 22.26 | 22.68 |
margarine | 0.03 | 1.56 | 0.46 | 0.26 | 1.56 | 3.67 | 0.50 |
stearic | 3.74 | 14.78 | 4.02 | 6.71 | 20.20 | 13.27 | 9.93 |
arachinic | 0.19 | 0.35 | 0.35 | 0.42 | nd | 0.20 | 1.20 |
genecosan | 0.05 | 0.09 | 0.29 | 0.27 | nd | nd | 0.36 |
behenic | 0.02 | 0.04 | 0.21 | nd | 0.02 | 0.04 | 0.08 |
Sum of monounsaturated fatty acids, %, including: | 17.98 | 47.02 | 43.53 | 40.10 | 38.87 | 45.62 | 56.35 |
(cis-9) myristoleic acid | nd | 1.22 | 0.52 | 0.16 | 0.76 | 0.23 | 0.03 |
(cis-9) palmitoleic acid | 0.10 | 2.93 | 7.15 | 3.85 | 1.52 | 4.43 | 3.39 |
(cis-10) margarinoleic acid | nd | 0.74 | 0.62 | 0.46 | nd | nd | 0.51 |
(cis-9) oleic | 17.73 | 37.90 | 26.99 | 33.54 | 35.68 | 39.72 | 51.88 |
octadecenoic | 0.05 | 3.07 | 0.14 | 0.42 | nd | nd | 0.25 |
(cis-11) eicosenoic acid | 0.09 | 1.16 | 8.11 | 1.68 | 0.91 | 1.25 | 0.30 |
Sum of polyunsaturated fatty acids, %, including: | 71.17 | 2.56 | 15.25 | 29.67 | 4.89 | 9.34 | 7.32 |
linoleidic | 0.13 | 2.31 | nd | nd | nd | 1.60 | 0.01 |
linoleic | 70.19 | nd | 15.09 | 29.13 | 2.76 | 5.45 | 6.69 |
linolenic | 0.27 | 0.14 | 0.03 | 0.12 | 0.24 | 0.17 | 0.28 |
eicosadiene | nd | nd | nd | nd | 1.63 | 2.08 | nd |
arachidonic | nd | 0.04 | 0.03 | 0.10 | nd | nd | 0.05 |
(cis-8,11,14) eicosatrienoic acid | 0.56 | nd | nd | nd | 0.17 | nd | 0.02 |
(cis-11,14,17) eicosatrienoic | 0.02 | nd | 0.04 | 0.04 | 0.06 | 0.01 | 0.05 |
eicosapentaenoic | nd | 0.03 | 0.06 | 0.28 | 0.02 | 0.03 | 0.22 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idyryshev, B.; Muratbayev, A.; Tashybayeva, M.; Spanova, A.; Amirkhanov, S.; Serikova, A.; Serikov, Z.; Bakirova, L.; Jumazhanova, M.; Bepeyeva, A. Development and Characterization of Emulsion Gels with Pine Nut Oil, Inulin, and Whey Proteins for Reduced-Fat Meat Products. Foods 2025, 14, 962. https://doi.org/10.3390/foods14060962
Idyryshev B, Muratbayev A, Tashybayeva M, Spanova A, Amirkhanov S, Serikova A, Serikov Z, Bakirova L, Jumazhanova M, Bepeyeva A. Development and Characterization of Emulsion Gels with Pine Nut Oil, Inulin, and Whey Proteins for Reduced-Fat Meat Products. Foods. 2025; 14(6):962. https://doi.org/10.3390/foods14060962
Chicago/Turabian StyleIdyryshev, Berik, Alibek Muratbayev, Marzhan Tashybayeva, Assem Spanova, Shyngys Amirkhanov, Assel Serikova, Zhaksylyk Serikov, Laila Bakirova, Madina Jumazhanova, and Aigerim Bepeyeva. 2025. "Development and Characterization of Emulsion Gels with Pine Nut Oil, Inulin, and Whey Proteins for Reduced-Fat Meat Products" Foods 14, no. 6: 962. https://doi.org/10.3390/foods14060962
APA StyleIdyryshev, B., Muratbayev, A., Tashybayeva, M., Spanova, A., Amirkhanov, S., Serikova, A., Serikov, Z., Bakirova, L., Jumazhanova, M., & Bepeyeva, A. (2025). Development and Characterization of Emulsion Gels with Pine Nut Oil, Inulin, and Whey Proteins for Reduced-Fat Meat Products. Foods, 14(6), 962. https://doi.org/10.3390/foods14060962