Molecular Typing of Clostridium botulinum Isolated from Chili Pepper Preserves During a Botulism Outbreak
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Description and Epidemiological Investigation
- Patient 1 (male): On 5 May, patient reported abdominal cramps and intestinal constipation after the consumption of the preserve oil.
- Patient 2 (male): On 6 May, patient experienced weakness, vomiting, and dysphagia, after the consumption of a large quantity of chili peppers. He consulted the General Practitioner the same day; five days later, he was admitted to the Emergency Room and diagnosed with intestinal blockage. Between 12 and 20 May, he developed progressive neurological symptoms, including diplopia, ptosis, dysphagia, and diplegia. On 20 May, he was admitted to the Geriatric Department of the Niguarda Hospital (Milan, Italy), where foodborne botulism was suspected. Rectal swab and intestinal washing samples were collected on 31 May and sent to Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER, Brescia, Italy) for C. botulinum and BoNT detection.
- Patient 3 (female): On 7 May, patient reported vomiting and headache after the consumption of the preserve oil.
2.2. Laboratory Investigations
2.2.1. C. botulinum and BoNT Detection
2.2.2. Genomic Characterization of the Isolated Strains
3. Results
3.1. C. botulinum and BoNT Detection

3.2. Isolate Characterization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BoNT | Clostridium botulinum neurotoxin |
| BoNT/B | Clostridium botulinum neurotoxin type B |
| BoNT/B | Clostridium botulinum gene encoding for neurotoxin type B |
| WGS | Whole Genome Sequencing |
| IZSLER | Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna |
| LHA | Local Health Authority |
| CNRB | Italian National Reference Centre for Botulism |
| CP | Process control |
| FB | Foodborne botulism |
| TPGY | Triptone peptone glucose yeast extract |
| PCR | Polymerase chain reaction |
| EYA | Egg-yolk agar |
| AMR | Anti-microbial resistance |
| ST | Sequence type |
| PubMLST | Public databases for multi-locus sequence typing |
| SNP | Single-nucleotide polymorphism |
| bp | Base pair |
References
- Benevenia, R.; Arnaboldi, S.; Dalzini, E.; Todeschi, S.; Bornati, L.; Saetti, F.; Ferrari, M.; Varisco, G.; Finazzi, G.; Losio, M.-N. Foodborne Botulism Survey in Northern Italy from 2013 to 2020: Emerging Risk or Stable Situation? Food Control 2022, 132, 108520. [Google Scholar] [CrossRef]
- Marincu, I.; Bratosin, F.; Vidican, I.; Cerbu, B.; Suciu, O.; Turaiche, M.; Tirnea, L.; Timircan, M. Foodborne Botulism in Western Romania: Ten Years’ Experience at a Tertiary Infectious Disease Hospital. Healthcare 2021, 9, 1149. [Google Scholar] [CrossRef] [PubMed]
- Peck, M.W. Biology and Genomic Analysis of Clostridium Botulinum. In Advances in Microbial Physiology; Elsevier: Amsterdam, The Netherlands, 2009; Volume 55, pp. 183–320. ISBN 978-0-12-374790-7. [Google Scholar]
- Peck, M.W.; van Vliet, A.H. Impact of Clostridium botulinum Genomic Diversity on Food Safety. Curr. Opin. Food Sci. 2016, 10, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Woodburn, M.J.; Somers, E.; Rodriguez, J.; Schantz, E.J. Heat Inactivation Rates of Botulinum Toxins A, B, E and F in Some Foods and Buffers. J. Food Sci. 1979, 44, 1658–1661. [Google Scholar] [CrossRef]
- Williamson, C.H.D.; Sahl, J.W.; Smith, T.J.; Xie, G.; Foley, B.T.; Smith, L.A.; Fernández, R.A.; Lindström, M.; Korkeala, H.; Keim, P.; et al. Comparative Genomic Analyses Reveal Broad Diversity in Botulinum-Toxinproducing Clostridia. BMC Genom. 2016, 17, 180. [Google Scholar] [CrossRef] [PubMed]
- Anniballi, F.; Chironna, E.; Astegiano, S.; Auricchio, B.; Buonincontro, G.; Corvonato, M.; Segala, V.S.; Mandarino, G.M.; Medici, D.D.; Decastelli, L. Foodborne Botulism Associated with Home-Preserved Turnip Tops in Italy. Ann. Dell’Istituto Super. Sanità 2015, 51, 60–61. [Google Scholar]
- Rossetto, O.; Pirazzini, M.; Fabris, F.; Montecucco, C. Botulinum Neurotoxins: Mechanism of Action. In Handbook of Experimental Pharmacology; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2021; Volume 263, pp. 35–47. [Google Scholar]
- Botulism. Available online: https://www.who.int/news-room/fact-sheets/detail/botulism (accessed on 20 August 2025).
- O’Horo, J.C.; Harper, E.P.; El Rafei, A.; Ali, R.; DeSimone, D.C.; Sakusic, A.; Abu Saleh, O.M.; Marcelin, J.R.; Tan, E.M.; Rao, A.K.; et al. Efficacy of Antitoxin Therapy in Treating Patients With Foodborne Botulism: A Systematic Review and Meta-Analysis of Cases, 1923–2016. Clin. Infect. Dis. 2018, 66, S43–S56. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.K.; Sobel, J.; Chatham-Stephens, K.; Luquez, C. Clinical Guidelines for Diagnosis and Treatment of Botulism, 2021. MMWR Recomm. Rep. 2021, 70, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, I.A.; Nguyen, A.D.; Karim, S. Botulism. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Anniballi, F.; Auricchio, B.; Fiore, A.; Lonati, D.; Locatelli, C.A.; Lista, F.; Fillo, S.; Mandarino, G.; De Medici, D. Botulism in Italy, 1986 to 2015. Eurosurveillance Bull. Eur. Sur Mal. Transm. Eur. Commun. Dis. Bull. 2017, 22, 30550. [Google Scholar] [CrossRef] [PubMed]
- Squarcione, S.; Prete, A.; Vellucci, L. Botulism Surveillance in Italy: 1992–1996. Eur. J. Epidemiol. 1999, 15, 917–922. [Google Scholar] [CrossRef] [PubMed]
- CNRB, Italian National Reference Centre for Botulism. CNRB30, Metodo per la Ricerca di Clostridi Produttori di Tossine Botuliniche e per la Ricerca di Tossine Botuliniche (Metodo Colturale e Mouse Test) (pp. 1–33). Available online: https://www.iss.it/documents/20126/8159535/Metodo+CNRB30.013.pdf/6481393f-dfbd-2dfc-fda1-7d814ee0c74d?t=1674468668175 (accessed on 20 August 2025).
- CNRB, Italian National Reference Centre for Botulism. CNRB31, Metodo per la Ricerca di Clostridi Produttori di Tossine Botuliniche Mediante Multiplex Real-Time PCR (pp. 1–46). Available online: https://www.iss.it/documents/20126/8159535/Metodo+CNRB31.013.pdf/d8911198-2857-2a85-4430-fed9e64503cd?t=1674468738237 (accessed on 20 August 2025).
- PubMLST—Public Databases for Molecular Typing and Microbial Genome Diversity. Available online: https://pubmlst.org (accessed on 26 August 2025).
- EpiCentro—The European Union One Health 2022 Zoonoses Report. Available online: https://www.epicentro.iss.it/zoonosi/rapporto-efsa-ecdc-zoonosi-ue-2023 (accessed on 19 August 2025).
- Anniballi, F.; Fenicia, L.; Franciosa, G.; Aureli, P. Influence of pH and Temperature on the Growth of and Toxin Production by Neurotoxigenic Strains of Clostridium Butyricum Type E. J. Food Prot. 2002, 65, 1267–1270. [Google Scholar] [CrossRef] [PubMed]
- Montville, T.J. Dependence of Clostridium Botulinum Gas and Protease Production on Culture Conditions. Appl. Environ. Microbiol. 1983, 45, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Epicentro Istituto Superiore di Sanità (ISS). Available online: https://www.iss.it/documents/20126/2293568/LineeGuidaConserve_light.pdf/f76af27b-51bb-4675-158b-7433f66d07de?t=1575727110064 (accessed on 19 August 2025).
- Munir, M.T.; Mtimet, N.; Guillier, L.; Meurens, F.; Fravalo, P.; Federighi, M.; Kooh, P. Physical Treatments to Control Clostridium Botulinum Hazards in Food. Foods 2023, 12, 1580. [Google Scholar] [CrossRef] [PubMed]
- Atchison, W. Toxicology of the Neuromuscular Junction. In Comprehensive Toxicology; Elsevier: Amsterdam, The Netherlands, 2010; pp. 221–237. ISBN 978-0-08-046884-6. [Google Scholar]
- Umeda, K.; Wada, T.; Kohda, T.; Kozaki, S. Multi-Locus Variable Number Tandem Repeat Analysis for Clostridium Botulinum Type B Isolates in Japan: Comparison with Other Isolates and Genotyping Methods. Infect. Genet. Evol. 2013, 16, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Mazuet, C.; Legeay, C.; Sautereau, J.; Ma, L.; Bouchier, C.; Bouvet, P.; Popoff, M.R. Diversity of Group I and II Clostridium Botulinum Strains from France Including Recently Identified Subtypes. Genome Biol. Evol. 2016, 8, 1643–1660. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Zhang, W.; Du, X.-D.; Krüger, H.; Feßler, A.T.; Ma, S.; Zhu, Y.; Wu, C.; Shen, J.; Wang, Y. Mobile Oxazolidinone Resistance Genes in Gram-Positive and Gram-Negative Bacteria. Clin. Microbiol. Rev. 2021, 34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, P.; Wang, Y.; Shen, Z.; Wang, S. Multiresistance Gene cfr (C) in Clostridium Perfringens of Cattle Origin from China. J. Antimicrob. Chemother. 2021, 76, 3310–3312. [Google Scholar] [CrossRef] [PubMed]
- Stojković, V.; Ulate, M.F.; Hidalgo-Villeda, F.; Aguilar, E.; Monge-Cascante, C.; Pizarro-Guajardo, M.; Tsai, K.; Tzoc, E.; Camorlinga, M.; Paredes-Sabja, D.; et al. cfr (B), cfr (C), and a New cfr-Like Gene, cfr (E), in Clostridium Difficile Strains Recovered across Latin America. Antimicrob. Agents Chemother. 2019, 64. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, H.; Zhang, Y.; Yan, J.; Duan, Z.; Pang, L.; Xiong, X.; Cha, Q.; Zhao, S.; Hou, M.; et al. Genomic Characterisation and Traceability Analysis of a Clostridium Botulinum Strain Involved in a Food Poisoning Incident. BMC Infect. Dis. 2025, 25, 323. [Google Scholar] [CrossRef] [PubMed]
| Number of Cans Collected | Ingredients | Sample |
|---|---|---|
| 2 | Chili peppers–not Habanero, oil | 1–2 |
| 6 | Habanero peppers, oil | 3–8 |
| 1 | Habanero peppers, oil, garlic | 9 |
| Sample | Contigs ≥ 500 bp | N50 | L50 | Largest Contig (Mbp) | Total Length (Mbp) |
|---|---|---|---|---|---|
| 4 | 24 | 626,666 | 2 | 1.54 | 3.81 |
| 6 | 25 | 425,104 | 4 | 0.69 | 3.81 |
| 7 | 21 | 313,607 | 2 | 1.59 | 3.86 |
| 9 | 23 | 521,675 | 2 | 1.60 | 3.85 |
| Intestinal washing | 24 | 425,101 | 3 | 1.25 | 3.86 |
| Sample | Ingredients | ST | AMR Genes |
|---|---|---|---|
| 4 | Habanero peppers, oil | 29 | cfr(C) |
| 6 | Habanero peppers, oil | 53 | cfr(C) |
| 7 | Habanero peppers, oil | 53 | cfr(C) |
| 9 | Habanero peppers, oil, garlic | 53 | cfr(C) |
| Intestinal washing | / | 53 | cfr(C) |
| Samples | 4 | 6 | 7 | 9 | Intestinal Washing |
|---|---|---|---|---|---|
| 4 | 0 | 14,834 | 14,841 | 14,838 | 14,841 |
| 6 | 14,834 | 0 | 125 | 4 | 125 |
| 7 | 14,841 | 125 | 0 | 129 | 0 |
| 9 | 14,838 | 4 | 129 | 0 | 129 |
| Intestinal washing | 14,841 | 125 | 0 | 129 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnaboldi, S.; Benevenia, R.; Monastero, P.; Bornati, L.; Magagna, G.; Losio, M.N.; Finazzi, G. Molecular Typing of Clostridium botulinum Isolated from Chili Pepper Preserves During a Botulism Outbreak. Foods 2025, 14, 4189. https://doi.org/10.3390/foods14244189
Arnaboldi S, Benevenia R, Monastero P, Bornati L, Magagna G, Losio MN, Finazzi G. Molecular Typing of Clostridium botulinum Isolated from Chili Pepper Preserves During a Botulism Outbreak. Foods. 2025; 14(24):4189. https://doi.org/10.3390/foods14244189
Chicago/Turabian StyleArnaboldi, Sara, Roberto Benevenia, Paola Monastero, Luigi Bornati, Giulia Magagna, Marina Nadia Losio, and Guido Finazzi. 2025. "Molecular Typing of Clostridium botulinum Isolated from Chili Pepper Preserves During a Botulism Outbreak" Foods 14, no. 24: 4189. https://doi.org/10.3390/foods14244189
APA StyleArnaboldi, S., Benevenia, R., Monastero, P., Bornati, L., Magagna, G., Losio, M. N., & Finazzi, G. (2025). Molecular Typing of Clostridium botulinum Isolated from Chili Pepper Preserves During a Botulism Outbreak. Foods, 14(24), 4189. https://doi.org/10.3390/foods14244189

