An Innovative Bulgur Production Method Using Pullulanase Enzyme and Autoclaving–Cooling Cycles to Produce Bulgur with Low Glycemic Index
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Characterization of Svevo and High-Amylose Wheat Samples
2.2.2. Bulgur Production and Resistant Starch Formation
2.2.3. Determination of the Cooking Properties of Bulgur Samples
2.2.4. Determination of Phenolic Content and Antioxidant Capacity of Bulgur Samples
2.2.5. Texture Profile Analysis of Bulgur Samples
2.2.6. In Vitro Glycemic Index Value of Bulgur Samples
2.2.7. Statistical Analysis
3. Results and Discussion
3.1. Physical and Chemical Analysis of Wheat Samples
3.2. Color Properties of Bulgur Samples
3.3. Cooking Properties of Bulgur Samples
3.4. Texture Profiles of Bulgur Samples
3.5. Phenolic Contents and Antioxidant Capacity of Bulgur Samples
3.6. Resistant Starch Contents of Bulgur Samples
3.7. Estimated Hydrolysis Index and Glycemic Index Values of Bulgur Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tekin-Cakmak, Z.H.; Ozer, C.; Ozkan, K.; Yildirim, H.; Sestili, F.; Jilal, A.; Koksel, H. High-beta-glucan and low-glycemic index functional bulgur produced from high-beta-glucan barley. J. Funct. Foods 2024, 112, 105939. [Google Scholar] [CrossRef]
- Stone, A.K.; Wang, S.; Tulbek, M.; Koksel, F.; Nickerson, M.T. Processing and quality aspects of bulgur from Triticum durum. Cereal Chem. 2020, 97, 1099–1110. [Google Scholar] [CrossRef]
- Dueck, C.; Cenkowski, S.; Izydorczyk, M.S. Effects of drying methods (hot air, microwave, and superheated steam) on physicochemical and nutritional properties of bulgur prepared from high-amylose and waxy hull-less barley. Cereal Chem. 2020, 97, 483–495. [Google Scholar] [CrossRef]
- Evlice, A.K.; Ozkaya, H. Effects of wheat cultivar, cooking method, and bulgur type on the yield and colour properties of bulgur. Qual. Assur. Saf. Crops Foods 2019, 11, 381–390. [Google Scholar] [CrossRef]
- Bayram, M. Application of bulgur technology to food aid programs. Cereal Foods World 2007, 52, 249–256. [Google Scholar] [CrossRef]
- Evlice, A.K.; Ozkaya, H. Effects of wheat cultivar, cooking method, and bulgur type on nutritional quality characteristics of bulgur. J. Cereal Sci. 2020, 96, 103124. [Google Scholar] [CrossRef]
- Kahyaoglu, L.N.; Sahin, S.; Sumnu, G. Physical properties of parboiled wheat and bulgur produced using spouted bed and microwave assisted spouted bed drying. J. Food Eng. 2010, 98, 159–169. [Google Scholar] [CrossRef]
- Rasheed, A.; Parveen, S.; Afzaal, M.; Niaz, B.; Saeed, F.; Hussain, M.; Yasmin, A.; Qamar, A.; Ateeq, H.; Raza, M.A.; et al. Exploring biochemical profile, antioxidant activity and structural properties of Bulgur prepared from traditional and autoclave methods. Int. J. Food Prop. 2023, 26, 274–289. [Google Scholar] [CrossRef]
- Ozturk, S.; Koksel, H.; Ng, P.K. Production of resistant starch from acid-modified amylotype starches with enhanced functional properties. J. Food Eng. 2011, 103, 156–164. [Google Scholar] [CrossRef]
- Koksel, H.; Muti-Ozturk, S.; Kahraman, K. Starch. In ICC Handbook of 21st Century Cereal Science and Technology; Academic Press: Cambridge, MA, USA, 2023; pp. 45–54. [Google Scholar] [CrossRef]
- Lee, K.Y.; Lee, S.; Lee, H.G. Effect of the degree of enzymatic hydrolysis on the physicochemical properties and in vitro digestibility of rice starch. Food Sci. Biotechnol. 2010, 19, 1333–1340. [Google Scholar] [CrossRef]
- Vasiljevic, S.; Banasik, O.J. Quality Testing Methods for Durum Wheat and Its Products; Department of Cereal Chemistry and Technology, North Dakota State University: Fargo, ND, USA, 1980; 134p. [Google Scholar]
- ISO 520:2010; Determination of the Mass of 1000 Grains. ISO (International Organization for Standardization): Geneva, Switzerland, 2010.
- American Association of Cereal Chemist International (AACC International). Approved Methods of the AACC, 11th ed.; Method No: 32-40.01, 55-31.01, 44-15.02, 46-30.01, 08-01.01, 56-70, 32-40.01; American Association of Cereal Chemist International (AACC International): St. Paul, MN, USA, 2010. [Google Scholar] [CrossRef]
- Savas, K.; Basman, A. Infrared drying: A promising technique for bulgur production. J. Cereal Sci. 2016, 68, 31–37. [Google Scholar] [CrossRef]
- Shamanin, V.P.; Tekin-Cakmak, Z.H.; Gordeeva, E.I.; Karasu, S.; Pototskaya, I.; Chursin, A.S.; Pozherukova, V.E.; Ozulku, G.; Morgounov, A.I.; Sagdic, O.; et al. Antioxidant capacity and profiles of phenolic acids in various genotypes of purple wheat. Foods 2022, 11, 2515. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Chidambara Murthy, K.N.; Jayaprakasha, G.K. Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J. Agric. Food Chem. 2002, 50, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Canay-Unsal, F.; Sanal, T.; Koksel, H. Quality and nutritional characteristics of durum wheats grown in Anatolia. Qual. Assur. Saf. Crops Foods 2022, 14, 169–177. [Google Scholar] [CrossRef]
- Dexter, J.E.; Matsuo, R.R.; Kosmolak, F.G.; Leisle, D.; Marchylo, B.A. The suitability of the SDS-sedimentation test for assessing gluten strength in durum wheat. Can. J. Plant Sci. 1980, 60, 25–29. [Google Scholar] [CrossRef]
- Sakin, M.A.; Duzdemir, O.; Sayaslan, A.; Yuksel, F. Stability properties of certain durum wheat genotypes for major quality characteristics. Turk. J. Agric. For. 2011, 35, 343–355. [Google Scholar] [CrossRef]
- Kroupin, P.Y.; Bespalova, L.A.; Kroupina, A.Y.; Yanovsky, A.S.; Korobkova, V.A.; Ulyanov, D.S.; Karlov, G.I.; Divashuk, M.G. Association of high-molecular-weight glutenin subunits with grain and pasta quality in spring durum wheat (Triticum turgidum spp. durum L.). Agronomy 2023, 13, 1510. [Google Scholar] [CrossRef]
- Clarke, F.R.; Clarke, J.M.; Ames, N.A.; Knox, R.E.; Ross, R.J. Gluten index compared with SDS-sedimentation volume for early generation selection for gluten strength in durum wheat. Can. J. Plant Sci. 2010, 90, 1–11. [Google Scholar] [CrossRef]
- Ertas, N. A comparision of industrial and homemade bulgur in Turkey in terms of physical, chemical and nutritional properties. Chem. Ind. Chem. Eng. Q. 2017, 23, 341–348. [Google Scholar] [CrossRef]
- Yilmaz, V.A.; Koca, A.F. Quality, sensorial and textural properties of einkorn and durum bulgur produced with several methods. Int. J. Gastron. Food Sci. 2020, 22, 100263. [Google Scholar] [CrossRef]
- Bhattacharya, K.R.; Ali, S.Z. Changes in rice during parboiling and properties of parboiled rice. Adv. Cereal Sci. Technol. 1985, 7, 105–167. [Google Scholar]
- Hendek-Ertop, M. Comparison of industrial and homemade bulgur produced from einkorn wheat (Triticum monococcum) and durum wheat (Triticum durum): Physicochemical, nutritional and microtextural properties. J. Food Process. Preserv. 2019, 43, e13863. [Google Scholar] [CrossRef]
- Batista, K.A.; Pereira, W.J.; Moreira, B.R.; Silva, C.N.; Fernandes, K.F. Effect of autoclaving on the nutritional quality of hard-to-cook common beans (Phaseolus vulgaris). Int. J. Environ. Agric. Biotechnol. 2020, 5, 22–30. [Google Scholar] [CrossRef][Green Version]
- Yilmaz, V.A. Effects of several production methods on technological, textural and sensorial properties of emmer (Triticum turgidum ssp. dicoccum) bulgur. J. Food Sci. Technol. 2020, 57, 3874–3883. [Google Scholar] [CrossRef]
- Călinoiu, L.F.; Vodnar, D.C. Thermal processing for the release of phenolic compounds from wheat and oat bran. Biomolecules 2019, 10, 21. [Google Scholar] [CrossRef]
- Rico, D.; Villaverde, A.; Martinez-Villaluenga, C.; Gutierrez, A.L.; Caballero, P.A.; Ronda, F.; Peñas, E.; Frias, J.; Martin Diana, A.B. Application of autoclave treatment for development of a natural wheat bran antioxidant ingredient. Foods 2020, 9, 781. [Google Scholar] [CrossRef]
- Sissons, M.; Sestili, F.; Botticella, E.; Masci, S.; Lafiandra, D. Can manipulation of durum wheat amylose content reduce the glycaemic index of spaghetti? Foods 2020, 9, 693. [Google Scholar] [CrossRef]
- Tacer-Caba, Z.; Boyacioglu, M.H.; Boyacioglu, D. Bioactive healthy components of bulgur. Int. J. Food Sci. Nutr. 2012, 63, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, J.; Song, Y.H.; Zhao, R.; Xia, L.; Chen, Y.; Cui, Y.-P.; Rao, Z.-Y.; Zhou, Y.; Zhuang, W.; et al. Effects of the resistant starch on glucose, insulin, insulin resistance, and lipid parameters in overweight or obese adults: A systematic review and meta-analysis. Nutr. Diabetes 2019, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Ashwar, B.A.; Gani, A.; Wani, I.A.; Shah, A.; Masoodi, F.A.; Saxena, D.C. Production of resistant starch from rice by dual autoclaving-retrogradation treatment: Invitro digestibility, thermal and structural characterization. Food Hydrocoll. 2016, 56, 108–117. [Google Scholar] [CrossRef]
- Inan-Eroglu, E.; Buyuktuncer, Z. The effect of various cooking methods on resistant starch content of foods. Nutr. Food Sci. 2017, 47, 522–533. [Google Scholar] [CrossRef]
- Scazzina, F.; Siebenhandl-Ehn, S.; Pellegrini, N. The effect of dietary fibre on reducing the glycaemic index of bread. Br. J. Nutr. 2013, 109, 1163–1174. [Google Scholar] [CrossRef]
- Cummings, J.H.; Edmond, L.M.; Magee, E.A. Dietary carbohydrates and health: Do we still need the fibre concept? Clin. Nutr. Suppl. 2004, 1, 5–17. [Google Scholar] [CrossRef]
- Zheng, Y.; Wei, Z.; Zhang, R.; Deng, Y.; Tang, X.; Zhang, Y.; Liu, G.; Liu, L.; Wang, J.; Liao, N.; et al. Optimization of the autoclave preparation process for improving resistant starch content in rice grains. Food Sci. Nutr. 2020, 8, 2383–2394. [Google Scholar] [CrossRef]
- Ma, T.; Lee, C.D. Effect of high dose resistant starch on human glycemic response. J. Nutr. Med. Diet Care 2021, 7, 48. [Google Scholar] [CrossRef]
- Behall, K.M.; Scholfield, D.J.; Hallfrisch, J.G.; Liljeberg-Elmståhl, H.G. Consumption of both resistant starch and β-glucan improves postprandial plasma glucose and insulin in women. Diabetes Care 2006, 29, 976–981. [Google Scholar] [CrossRef]


| Samples | HW (kg/hL) | TKW (g/db) | HI (%) | Diameter (mm) | Protein (Nx5.7, %) | SDS (mL) | b* |
|---|---|---|---|---|---|---|---|
| SW | 81.00 ± 0.05 a | 41.55 ± 0.50 a | 88. 00 ± 1.06 a | 3.09 ± 0.024 a | 12.71 ± 0.08 b | 29.0 ± 1.41 a | 26.17 ± 0.08 a |
| HaW | 73.07 ± 0.07 b | 31.30 ± 0.14 b | 71.05 ± 0.57 b | 2.95 ± 0.03 b | 13.07 ± 0.08 a | 34.0 ± 1.41 a | 26.82 ± 0.55 a |
| Samples | Weight Increase (%) | Volume Increase (%) | Cooking Loss (%) | L* | a* | b* |
|---|---|---|---|---|---|---|
| SB-C | 164.25 ± 0.95 c | 238.10 ± 4.76 ab | 6.45 ± 0.07 b | 52.07 ± 0.97 a | 4.42 ± 0.20 b | 25.46 ± 0.35 a |
| HaB-C | 175.71 ± 2.71 b | 206.25 ± 6.25 b | 6.90 ± 0.28 b | 53.27 ± 0.95 a | 4.79 ± 0.38 b | 24.64 ± 0.83 a |
| SB | 195.70 ± 1.20 a | 268.80 ± 31.3 a | 18.30 ± 0.28 a | 39.20 ± 0.90 b | 6.56 ± 0.30 a | 18.65 ± 0.33 b |
| HaB | 158.87 ± 6.73 c | 227.68 ± 15.18 a b | 15.75 ± 1.77 a | 39.41 ± 0.71 b | 6.84 ± 0.25 a | 15.90 ± 0.73 c |
| Samples | Hardness (g) | Adhesiveness (g × s) | Springiness | Cohesiveness | Chewiness | Resilience |
|---|---|---|---|---|---|---|
| SB-C | 588.22 ± 7.40 a | −6.49 ± 0.25 b | 0.78 ± 0.01 c | 0.45 ± 0.03 c | 265.36 ± 4.10 a | 0.25 ± 0.04 b |
| HaB-C | 517.74 ± 5.83 b | −6.65 ± 0.36 b | 0.66 ± 0.03 d | 0.46 ± 0.02 c | 233.41 ± 2.43 b | 0.27 ± 0.01 b |
| SB | 447.54 ± 5.08 c | −3.22 ± 0.16 a | 0.86 ± 0.01 b | 0.66 ± 0.01 a | 163.02 ± 3.29 c | 0.38 ± 0.01 a |
| HaB | 293.61 ± 3.56 d | −3.00 ± 0.10 a | 0.96 ± 0.03 a | 0.59 ± 0.02 b | 130.33 ± 3.07 d | 0.36 ± 0.01 a |
| Phenolic Content (mg GAE/100 g db) | |||
| Samples | Free | Bound | Total |
| SB-C | 264.22 ± 1.74 d | 285.42 ± 0.81 d | 549.64 ± 1.42 d |
| HaB-C | 280.03 ± 0.71 c | 302.81 ± 1.27 c | 582.85 ± 0.59 c |
| SB | 287.95 ± 1.74 b | 325.99 ± 2.03 b | 613.94 ± 0.29 b |
| HaB | 295.50 ± 1.44 a | 391.38 ± 2.12 a | 686.88 ± 3.20 a |
| ABTS (mg TE/100 g db) | |||
| Free | Bound | Total | |
| SB-C | 117.86 ± 0.46 d | 124.55 ± 0.47 d | 242.41 ± 0.42 d |
| HaB-C | 122.12 ± 0.48 c | 132.96 ± 0.48 c | 255.08 ± 0.84 c |
| SB | 125.16 ± 0.47 b | 184.50 ± 3.05 b | 309.67 ± 2.94 b |
| HaB | 130.74 ± 0.32 a | 190.17 ± 0.98 a | 320.91 ± 1.29 a |
| DPPH (mg TE/100 g db) | |||
| Free | Bound | Total | |
| SB-C | 27.19 ± 1.04 c | 79.45 ± 1.04 d | 106.64 ± 1.04 d |
| HaB-C | 38.87 ± 0.70 b | 85.17 ± 0.70 c | 124.03 ± 1.22 c |
| SB | 36.47 ± 0.39 b | 148.22 ± 0.68 b | 184.69 ± 1.04 b |
| HaB | 49.95 ± 1.42 a | 152.83 ± 0.71 a | 202.78 ± 1.23 a |
| FRAP (mg TE/100 g db) | |||
| Free | Bound | Total | |
| SB-C | 18.92 ± 0.58 d | 53.53 ± 0.45 c | 18.92 ± 0.58 d |
| HaB-C | 23.91 ± 0.57 c | 55.19 ± 0.81 b | 23.91 ± 0.57 c |
| SB | 26.63 ± 0.67 b | 69.68 ± 0.33 a | 26.63 ± 0.67 b |
| HaB | 28.44 ± 0.68 a | 70.19 ± 0.46 a | 28.44 ± 0.68 a |
| Samples | RS (%) | HIn | GI |
|---|---|---|---|
| SB-C | 2.35 ± 0.04 d | 59.91 ± 0.50 a | 72.60 ± 0.28 a |
| HaB-C | 3.24 ± 0.02 c | 55.71 ± 0.19 b | 70.29 ± 0.10 b |
| SB | 9.27 ± 0.03 b | 41.16 ± 0.56 c | 62.30 ± 0.31 c |
| HaB | 9.47 ± 0.02 a | 22.58 ± 1.13 d | 52.11 ± 0.62 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozbek, M.; Sanal, T.; Ozkan, K.; Sagdic, O.; Palombieri, S.; Sestili, F.; Koksel, H. An Innovative Bulgur Production Method Using Pullulanase Enzyme and Autoclaving–Cooling Cycles to Produce Bulgur with Low Glycemic Index. Foods 2025, 14, 3972. https://doi.org/10.3390/foods14223972
Ozbek M, Sanal T, Ozkan K, Sagdic O, Palombieri S, Sestili F, Koksel H. An Innovative Bulgur Production Method Using Pullulanase Enzyme and Autoclaving–Cooling Cycles to Produce Bulgur with Low Glycemic Index. Foods. 2025; 14(22):3972. https://doi.org/10.3390/foods14223972
Chicago/Turabian StyleOzbek, Muge, Turgay Sanal, Kubra Ozkan, Osman Sagdic, Samuela Palombieri, Francesco Sestili, and Hamit Koksel. 2025. "An Innovative Bulgur Production Method Using Pullulanase Enzyme and Autoclaving–Cooling Cycles to Produce Bulgur with Low Glycemic Index" Foods 14, no. 22: 3972. https://doi.org/10.3390/foods14223972
APA StyleOzbek, M., Sanal, T., Ozkan, K., Sagdic, O., Palombieri, S., Sestili, F., & Koksel, H. (2025). An Innovative Bulgur Production Method Using Pullulanase Enzyme and Autoclaving–Cooling Cycles to Produce Bulgur with Low Glycemic Index. Foods, 14(22), 3972. https://doi.org/10.3390/foods14223972

