Chitosan-Encapsulated Coriandrum sativum Essential Oil Nanoemulsion to Protect Stored Rice Samples Against Fumonisins Contamination and Nutritional Deterioration
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Solvents
2.2. Collection of Rice Samples
2.3. Moisture Content and pH Determination of Rice Samples
2.4. Mycobiota Analysis of Rice Samples
2.5. Detection of Toxigenic Strain of F. proliferatum
2.6. Extraction and Chemical Profiling of Coriandrum sativum Essential Oil (CEO)
2.7. Synthesis of CEO-Loaded Chitosan Nanoemulsion (Ne-CEO)
2.8. Encapsulation Potency (EP), Loading Potency (LP), and Encapsulation Yield (EY) of Ne-CEO
2.9. Characterization of Ne-CEO
2.9.1. Analysis of Particle Size, Polydispersity Index (PDI), and Zeta Potential
2.9.2. Analysis Through Scanning Electron Microscopy (SEM)
2.9.3. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.9.4. X-Ray Diffractometry (XRD) Analysis
2.10. Release of CEO
2.11. Antifungal and Anti-Fumonisin Effectiveness of CEO and Ne-CEO: In Vitro Study
2.12. The Mechanisms Related to Antifungal and Anti-Fumonisin Activity
2.12.1. Effect on Ergosterol Synthesis
2.12.2. Effect on Leakage of Ions, 260 nm, and 280 nm Absorbing Materials
2.12.3. Integrity of Plasma Membrane
2.12.4. Molecular Modeling: In Silico Anti-Fumonisin Potency
2.13. Antioxidant Activity of CEO and Ne-CEO
2.13.1. DPPH (2,2-Diphenyl-1-Picrylhydrazyl) Assay
2.13.2. ABTS (2,2′-Azinobis-3-Ethylbenzothiazoline-6-Sulfonic Acid) Assay
2.14. Evaluation of In Situ Antifungal and Anti-Fumonisin Activity of CEO and Ne-CEO in Stored Rice
- (i)
- Uninoculated control (UIC).
- (ii)
- Inoculated control (IC).
- (iii)
- Uninoculated treatment with CEO (UI-t-CEO).
- (iv)
- Inoculated treatment with CEO (I-t-CEO).
- (v)
- Uninoculated treatment with Ne-CEO (UI-t-Ne-CEO).
- (vi)
- Inoculated treatment with Ne-CEO (I-t-Ne-CEO).
2.15. Effect of CEO and Ne-CEO on Carbohydrate, Protein Content, and Lipid Peroxidation in Rice
2.16. Effect of CEO and Ne-CEO on Organoleptic Properties of Rice
2.17. Phytotoxicity Assay of Rice Seeds
2.18. Statistical Analysis
3. Results and Discussions
3.1. Moisture Content, pH, and Mycobiota Analysis of Rice Samples
3.2. Extraction and Chemical Profiling of CEO

3.3. Synthesis and EP, LP, and EY of Ne-CEO
3.4. Physico-Chemical Characterization of Ne-CEO
3.4.1. Particle Size, Zeta Potential, and Polydispersity Index
3.4.2. SEM Observation
3.4.3. FTIR Analysis
3.4.4. XRD Analysis
3.5. In Vitro Release of Ne-CEO
3.6. Antifungal and Anti-Fumonisin Effectiveness of CEO and Ne-CEO: In Vitro Study
3.7. Mechanisms Related to Antifungal and Anti-Fumonisin Activity
3.8. Radical Neutralizing Capacity of CEO and Ne-CEO
3.9. In Situ Antifungal and Anti-Fumonisin Efficacy of CEO and Ne-CEO in Stored Rice
3.10. Effect of CEO and Ne-CEO on Carbohydrate, Protein Content, and Lipid Peroxidation in Rice
3.11. Effect of CEO and Ne-CEO on Organoleptic Properties of Rice
3.12. Phytotoxicity Assay in Rice Seeds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bin Rahman, A.R.; Zhang, J. Trends in rice research: 2030 and beyond. Food Energy Secur. 2023, 12, e390. [Google Scholar] [CrossRef]
- Bagchi, B.D.; Roy, S.B.; Jaim, W.M.H.; Hossain, M. Diversity, spatial distribution, and the process of adoption of improved rice varieties in West Bengal. In Adoption and Diffusion of Modern Rice Varieties in Bangladesh and Eastern India; International Rice Research Institute: Los Baños, Philippines, 2012; pp. 31–44. [Google Scholar]
- Tang, E.N.; Ndindeng, S.A.; Bigoga, J.; Traore, K.; Silue, D.; Futakuchi, K. Mycotoxin concentrations in rice from three climatic locations in Africa as affected by grain quality, production site, and storage duration. Int. J. Food Sci. Nutr. 2019, 7, 1274–1287. [Google Scholar] [CrossRef]
- da Silva Bomfim, N.; Nakassugi, L.P.; Oliveira, J.F.P.; Kohiyama, C.Y.; Mossini, S.A.G.; Grespan, R.; Machinski, M., Jr. Antifungal activity and inhibition of fumonisin production by Rosmarinus officinalis L. essential oil in Fusarium verticillioides (Sacc.) Nirenberg. Food Chem. 2015, 166, 330–336. [Google Scholar] [CrossRef]
- (IARC) International Agency for Research on Cancer. IARC Monograph on the Evaluation of Carcinogenic Risks to Human: Traditional Herbal Medicines, Some Mycotoxins, Naphthalene, and Styrene; IARC Scientific Publications: Lyon, France, 2002; pp. 1–584.
- da Cruz Cabral, L.; Pinto, V.F.; Patriarca, A. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int. J. Food Microbiol. 2013, 166, 1–14. [Google Scholar] [CrossRef]
- Das, S.; Singh, V.K.; Dwivedy, A.K.; Chaudhari, A.K.; Upadhyay, N.; Singh, P.; Dubey, N.K. Encapsulation in chitosan-based nanomatrix as an efficient green technology to boost the antimicrobial, antioxidant and in situ efficacy of Coriandrum sativum essential oil. Int. J. Biol. Macromol. 2019, 133, 294–305. [Google Scholar] [CrossRef]
- Das, S.; Chaudhari, A.K. A review on the efficacy of essential oils and their nanoencapsulated formulations against aflatoxins contamination of major cereals with emphasis on mode of action. Biocatal. Agric. Biotechnol. 2023, 53, 102861. [Google Scholar] [CrossRef]
- Thambiliyagodage, C.; Jayanetti, M.; Mendis, A.; Ekanayake, G.; Liyanaarachchi, H.; Vigneswaran, S. Recent advances in chitosan-based applications—A review. Mater. 2023, 16, 2073. [Google Scholar] [CrossRef]
- Das, S.; Chaudhari, A.K.; Singh, V.K.; Dwivedy, A.K.; Dubey, N.K. Encapsulation of carvone in chitosan nanoemulsion as edible film for preservation of slice breads against Aspergillus flavus contamination and aflatoxin B1 production. Food Chem. 2024, 430, 137038. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Banadka, A.; Nandhini, M.; Nagella, P.; Al-Mssallem, M.Q.; Alessa, F.M. Essential oil from Coriandrum sativum: A review on its phytochemistry and biological activity. Molecules 2023, 28, 696. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A. Coriander (Coriandrum sativum) oils. In Essential Oils in Food Preservation, Flavor and Safety; Academic Press: Cambridge, MA, USA, 2016; pp. 359–364. [Google Scholar]
- Mandeel, Q.A. Fungal contamination of some imported spices. Mycopathologia 2005, 159, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Aziz, N.H.; Youssef, Y.A.; El-Fouly, M.Z.; Moussa, L.A. Contamination of some common medicinal plant samples and spices by fungi and their mycotoxins. Bot. Bull. Acad. Sin. 1998, 39, 279–285. [Google Scholar]
- Singh, P.; Dasgupta, N.; Singh, V.; Mishra, N.C.; Singh, H.; Purohit, S.D.; Mishra, B.N. Inhibitory effect of clove oil nanoemulsion on fumonisin isolated from maize kernels. LWT—Food Sci. Technol. 2020, 134, 110237. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/mass Spectrometry; Texensis Publishing: Gruver, TX, USA, 2017; Volume 5, pp. 6–809. [Google Scholar]
- Hosseini, S.F.; Zandi, M.; Rezaei, M.; Farahmandghavi, F. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydr. Polym. 2013, 95, 50–56. [Google Scholar] [CrossRef]
- Amiri, A.; Mousakhani-Ganjeh, A.; Amiri, Z.; Guo, Y.G.; Singh, A.P.; Kenari, R.E. Fabrication of cumin loaded-chitosan particles: Characterized by molecular, morphological, thermal, antioxidant and anticancer properties as well as its utilization in food system. Food Chem. 2020, 310, 125821. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Chaudhari, A.K.; Singh, V.K.; Singh, B.K.; Dubey, N.K. High speed homogenization assisted encapsulation of synergistic essential oils formulation: Characterization, in vitro release study, safety profile, and efficacy towards mitigation of aflatoxin B1 induced deterioration in rice samples. Food Chem. Toxicol. 2022, 169, 113443. [Google Scholar] [CrossRef]
- Sun, L.M.; Liao, K.; Liang, S.; Yu, P.H.; Wang, D.Y. Synergistic activity of magnolol with azoles and its possible antifungal mechanism against Candida albicans. J. Appl. Microbiol. 2015, 118, 826–838. [Google Scholar] [CrossRef]
- Prasad, J.; Das, S.; Maurya, A.; Jain, S.K.; Dwivedy, A.K. Synthesis, characterization and in situ bioefficacy evaluation of Cymbopogon nardus essential oil impregnated chitosan nanoemulsion against fungal infestation and aflatoxin B1 contamination in food system. Int. J. Biol. Macromol. 2022, 205, 240–252. [Google Scholar] [CrossRef]
- Liu, J.; Zong, Y.; Qin, G.; Li, B.; Tian, S. Plasma membrane damage contributes to antifungal activity of silicon against Penicillium digitatum. Curr. Microbiol. 2010, 61, 274–279. [Google Scholar] [CrossRef]
- Das, S.; Singh, V.K.; Dwivedy, A.K.; Chaudhari, A.K.; Dubey, N.K. Myristica fragrans essential oil nanoemulsion as novel green preservative against fungal and aflatoxin contamination of food commodities with emphasis on biochemical mode of action and molecular docking of major components. LWT—Food Sci. Technol. 2020, 130, 109495. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Singh, V.K.; Das, S.; Prasad, J.; Dwivedy, A.K.; Dubey, N.K. Improvement of in vitro and in situ antifungal, AFB1 inhibitory and antioxidant activity of Origanum majorana L. essential oil through nanoemulsion and recommending as novel food preservative. Food Chem. Toxicol. 2020, 143, 111536. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Kedia, A.; Prakash, B.; Mishra, P.K.; Dubey, N.K. Antifungal and antiaflatoxigenic properties of Cuminum cyminum (L.) seed essential oil and its efficacy as a preservative in stored commodities. Int. J. Food Microbiol. 2014, 168, 1–7. [Google Scholar] [CrossRef]
- Albalasmeh, A.A.; Berhe, A.A.; Ghezzehei, T.A. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohyd. Polym. 2013, 97, 253–261. [Google Scholar] [CrossRef]
- Barbano, D.M.; Clark, J.L.; Dunham, C.E.; Flemin, R.J. Kjeldahl method for determination of total nitrogen content of milk: Collaborative study. J. Assoc. Off. Anal. Chem. 1990, 73, 849–859. [Google Scholar] [CrossRef]
- Prasad, J.; Soni, M.; Yadav, A.; Paul, K.K.; Jha, M.K.; Banjare, U.; Dwivedy, A.K. Efficacy of Cymbopogon khasianus essential oil infused chitosan nanoemulsion for mitigation of Aspergillus flavus and aflatoxin B1 contamination in stored Syzygium cumini seeds. Plant Nano Biol. 2024, 9, 100085. [Google Scholar] [CrossRef]
- Shukla, R.; Singh, P.; Prakash, B.; Dubey, N.K. Antifungal, aflatoxin inhibition and antioxidant activity of Callistemon lanceolatus (Sm). Sweet essential oil and its major component 1, 8-cineole against fungal isolates from chickpea seeds. Food Control 2012, 25, 27–33. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organisation). On-farm maize drying and storage in the humid tropics. FAO Agric. Serv. Bull. 1980, 40, 1e54. [Google Scholar]
- Kana, J.R.; Gnonlonfin, B.G.J.; Harvey, J.; Wainaina, J.; Wanjuki, I.; Skilton, R.A.; Teguia, A. Assessment of aflatoxin contamination of maize, peanut meal and poultry feed mixtures from different agroecological zones in Cameroon. Toxins 2013, 5, 884–894. [Google Scholar] [CrossRef]
- Nouioura, G.; El Fadili, M.; El Hachlafi, N.; Maache, S.; Mssillou, I.; Abuelizz, H.A.; Derwich, E. Coriandrum sativum L., essential oil as a promising source of bioactive compounds with GC/MS, antioxidant, antimicrobial activities: In vitro and in silico predictions. Front. Chem. 2024, 12, 1369745. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Mohamady, M.A.; Fernández-López, J.; Abd ElRazik, K.A.; Omer, E.A.; Pérez-Alvarez, J.A.; Sendra, E. In vitro antioxidant and antibacterial activities of essentials oils obtained from Egyptian aromatic plants. Food Control 2011, 22, 1715–1722. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. A review on chemical constituents and pharmacological activities of Coriandrum sativum. IOSR J. Pharm. 2016, 6, 17–42. [Google Scholar] [CrossRef]
- Barra, A. Factors affecting chemical variability of essential oils: A review of recent developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Demir, S.; Korukluoglu, M. A comparative study about antioxidant activity and phenolic composition of cumin (Cuminum cyminum L.) and coriander (Coriandrum sativum L.). Indian J. Tradit. Knowl. 2020, 19, 383–393. [Google Scholar] [CrossRef]
- Keawchaoon, L.; Yoksan, R. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf. B Biointerfaces 2011, 84, 163–171. [Google Scholar] [CrossRef]
- Hasheminejad, N.; Khodaiyan, F.; Safari, M. Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food. Chem. 2019, 275, 113–122. [Google Scholar] [CrossRef]
- Hadad, S.; Goli, S.A.H. Improving oxidative stability of flaxseed oil by encapsulation in electrospun flaxseed mucilage nanofiber. Food Bioprocess. Technol. 2019, 12, 829–838. [Google Scholar] [CrossRef]
- Hussain, M.R.; Maji, T.K. Preparation of genipin cross-linked chitosan-gelatin microcapsules for encapsulation of Zanthoxylum limonella oil (ZLO) using salting-out method. J. Microencapsul. 2008, 25, 414–420. [Google Scholar] [CrossRef]
- Das, S.; Singh, V.K.; Dwivedy, A.K.; Chaudhari, A.K.; Dubey, N.K. Nanostructured Pimpinella anisum essential oil as novel green food preservative against fungal infestation, aflatoxin B1 contamination and deterioration of nutritional qualities. Food. Chem. 2021, 344, 128574. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Tiwari, S.; Maurya, A.; Das, S.; Singh, V.K.; Dubey, N.K. Chitosan-based nanoencapsulation of Ocimum americanum essential oil as safe green preservative against fungi infesting stored millets, aflatoxin B1 contamination, and lipid peroxidation. Food Bioprocess. Technol. 2023, 16, 1851–1872. [Google Scholar] [CrossRef]
- Jiang, X.; Yu, Y.; Ma, S.; Li, L.; Yu, M.; Han, M.; Zhang, J. Chitosan nanoparticles loaded with Eucommia ulmoides seed essential oil: Preparation, characterization, antioxidant and antibacterial properties. Int. J. Biol. Macromol. 2024, 257, 128820. [Google Scholar] [CrossRef] [PubMed]
- Arya, G.; Vandana, M.; Acharya, S.; Sahoo, S.K. Enhanced antiproliferative activity of Herceptin (HER2)-conjugated gemcitabine-loaded chitosan nanoparticle in pancreatic cancer therapy. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 859–870. [Google Scholar] [CrossRef]
- Mohammadi, A.; Hosseini, S.M.; Hashemi, M. Emerging chitosan nanoparticles loading-system boosted the antibacterial activity of Cinnamomum zeylanicum essential oil. Ind. Crops Prod. 2020, 155, 112824. [Google Scholar] [CrossRef]
- Samling, B.A.; Assim, Z.; Tong, W.Y.; Leong, C.R.; Ab Rashid, S.; Kamal, N.N.S.N.M.; Tan, W.N. Cynometra cauliflora essential oils loaded-chitosan nanoparticles: Evaluations of their antioxidant, antimicrobial and cytotoxic activities. Int. J. Biol. Macromol. 2022, 210, 742–751. [Google Scholar] [CrossRef]
- Feyzioglu, G.C.; Tornuk, F. Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. LWT—Food Sci. Technol. 2016, 70, 104–110. [Google Scholar] [CrossRef]
- Cai, M.; Wang, Y.; Wang, R.; Li, M.; Zhang, W.; Yu, J.; Hua, R. Antibacterial and antibiofilm activities of chitosan nanoparticles loaded with Ocimum basilicum L. essential oil. Int. J. Biol. Macromol. 2022, 202, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahed, A.A.; Pinijsuwan, S.; Tongdeesoontorn, W. Clove essential oil-loaded chitosan nanoparticles: Development, characterization and antifungal activity. Microb. Biosyst. 2025, 10, 1–17. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of Infrared Spectra, a Practical Approach. In Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation; John Wiley and Sons Ltd.: Chichester, UK, 2006; pp. 1–24. [Google Scholar]
- Mondéjar-López, M.; Rubio-Moraga, A.; López-Jimenez, A.J.; Martínez, J.C.G.; Ahrazem, O.; Gómez-Gómez, L.; Niza, E. Chitosan nanoparticles loaded with garlic essential oil: A new alternative to tebuconazole as seed dressing agent. Carbohyd. Polym. 2022, 277, 118815. [Google Scholar] [CrossRef]
- Song, X.; Wang, L.; Liu, T.; Liu, Y.; Wu, X.; Liu, L. Mandarin (Citrus reticulata L.) essential oil incorporated into chitosan nanoparticles: Characterization, anti-biofilm properties and application in pork preservation. Int. J. Biol. Macromol. 2021, 185, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Soltanzadeh, M.; Peighambardoust, S.H.; Ghanbarzadeh, B.; Mohammadi, M.; Lorenzo, J.M. Chitosan nanoparticles encapsulating lemongrass (Cymbopogon commutatus) essential oil: Physicochemical, structural, antimicrobial and in-vitro release properties. Int. J. Biol. Macromol. 2021, 192, 1084–1097. [Google Scholar] [CrossRef] [PubMed]
- Velluti, A.; Sanchis, V.; Ramos, A.J.; Egido, J.; Marın, S. Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B1 production by Fusarium proliferatum in maize grain. Int. J. Food Microbiol. 2003, 89, 145–154. [Google Scholar] [CrossRef]
- Kalagatur, N.K.; Nirmal Ghosh, O.S.; Sundararaj, N.; Mudili, V. Antifungal activity of chitosan nanoparticles encapsulated with Cymbopogon martinii essential oil on plant pathogenic fungi Fusarium graminearum. Front. Pharmacol. 2018, 9, 610. [Google Scholar] [CrossRef]
- Yu, L.; Zhou, Y.; Chen, Y.; Wang, Y.; Gu, Q.; Song, D. Antifungal activity and mechanism of Litsea cubeba (Lour). Persoon essential oil against the waxberry spoilage fungi Penicillium oxalicum and its potential application. Int. J. Food Microbiol. 2024, 411, 110512. [Google Scholar] [CrossRef]
- Castillo-Castañeda, A.; Cañas-Duarte, S.J.; Guevara-Suarez, M.; Guarro, J.; Restrepo, S.; Celis Ramírez, A.M. Transcriptional response of Fusarium oxysporum and Neocosmospora solani challenged with amphotericin B or posaconazole. Microbiology 2020, 166, 936–946. [Google Scholar] [CrossRef]
- Wan, J.; Zhong, S.; Schwarz, P.; Chen, B.; Rao, J. Physical properties, antifungal and mycotoxin inhibitory activities of five essential oil nanoemulsions: Impact of oil compositions and processing parameters. Food Chem. 2019, 291, 199–206. [Google Scholar] [CrossRef]
- Wei, J.; Bi, Y.; Xue, H.; Wang, Y.; Zong, Y.; Prusky, D. Antifungal activity of cinnamaldehyde against Fusarium sambucinum involves inhibition of ergosterol biosynthesis. J. Appl. Microbiol. 2020, 129, 256–265. [Google Scholar] [CrossRef]
- Mani-López, E.; Cortés-Zavaleta, O.; López-Malo, A. A review of the methods used to determine the target site or the mechanism of action of essential oils and their components against fungi. SN Appl. Sci. 2021, 3, 44. [Google Scholar] [CrossRef]
- Kong, J.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Synergistic antifungal mechanism of thymol and salicylic acid on Fusarium solani. LWT—Food Sci. Technol. 2021, 140, 110787. [Google Scholar] [CrossRef]
- Rani, P.; Nidhin, P.T.; Ali, S.M.; Bera, A.; Katoch, M. The antifungal mechanism of Monarda citriodora essential oil, hexanal and their combined vapours on Aspergillus foetidus. Biocatal. Agric. Biotechnol. 2023, 54, 102894. [Google Scholar] [CrossRef]
- Yu, F.; Zhu, X.; Du, L. Developing a genetic system for functional manipulations of FUM1, a polyketide synthase gene for the biosynthesis of fumonisins in Fusarium verticillioides. FEMS Microbiol. Lett. 2005, 248, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Murugan, K.; Anandaraj, K.; Al-Sohaibani, S. Antiaflatoxigenic food additive potential of Murraya koenigii: An in vitro and molecular interaction study. Food Res Int. 2013, 52, 8–16. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.P.P. Nutrients and oxidative stress: Friend or foe? Oxidative Med. Cell. Longev. 2018, 2018, 9719584. [Google Scholar] [CrossRef]
- Arumugam, T.; Ghazi, T.; Abdul, N.S.; Chuturgoon, A.A. A review on the oxidative effects of the fusariotoxins: Fumonisin B1 and fusaric acid. In Toxicology; Academic Press: Cambridge, MA, USA, 2021; pp. 181–190. [Google Scholar]
- Hidalgo, M.E.; De la Rosa, C.; Carrasco, H.; Cardona, W.; Gallardo, C.; Espinoza, L. Antioxidant capacity of eugenol derivatives. Quim. Nova 2009, 32, 1467–1470. [Google Scholar] [CrossRef]
- Damasceno, E.T.S.; Almeida, R.R.; de Carvalho, S.Y.B.; de Carvalho, G.S.G.; Mano, V.; Pereira, A.C.; de Lima Guimaraes, L.G. Lippia origanoides Kunth. essential oil loaded in nanogel based on the chitosan and ρ-coumaric acid: Encapsulation efficiency and antioxidant activity. Ind. Crops Prod. 2018, 125, 85–94. [Google Scholar] [CrossRef]
- Tian, J.; Huang, B.; Luo, X.; Zeng, H.; Ban, X.; He, J.; Wang, Y. The control of Aspergillus flavus with Cinnamomum jensenianum Hand.-Mazz essential oil and its potential use as a food preservative. Food Chem. 2012, 130, 520–527. [Google Scholar] [CrossRef]
- Arab-Tehrany, E.; Jacquot, M.; Gaiani, C.; Imran, M.; Desobry, S.; Linder, M. Beneficial effects and oxidative stability of omega-3 long-chain polyunsaturated fatty acids. Trends Food Sci. Technol. 2012, 25, 24–33. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef]
- Deepika; Chaudhari, A.K.; Singh, A.; Das, S.; Dubey, N.K. Nanoencapsulated Petroselinum crispum essential oil: Characterization and practical efficacy against fungal and aflatoxin contamination of stored chia seeds. Food Biosci. 2021, 42, 101117. [Google Scholar] [CrossRef]









| Rice Varieties | Moisture Content (%) | pH |
|---|---|---|
| Gobindobhog | 11.96 ± 0.18 a | 6.46 ± 0.13 ab |
| Boro-minikit | 10.52 ± 0.20 c | 6.23 ± 0.20 bc |
| Boro-1153-jath | 10.89 ± 0.11 bc | 6.87 ± 0.18 a |
| Barshar-CM | 9.85 ± 0.17 d | 6.08 ± 0.92 c |
| Swarna dhan | 11.26 ± 0.25 ab | 6.37 ± 0.11 bc |
| Radhunipagol | 10.57 ± 0.30 c | 6.22 ± 0.68 bc |
| ANOVA test parameters | ||
| p value | <0.05 | <0.05 |
| F value | 19.91 | 7.23 |
| df | 5, 12 | 5, 12 |
| Rice Varieties | Fungal Species | Total No. of Species | Occurrence Frequency (%) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| F.p | F.v | A.f | A.n | A.r | P.i | A.a | C.l | A.h | |||
| Gobindobhog | 21 | 20 | 12 | 8 | 9 | 4 | 3 | 2 | 1 | 9 | 22.59 |
| Boro-minikit | 18 | 24 | 16 | 5 | 7 | 2 | - | - | - | 6 | 20.33 |
| Boro-1153-jath | 14 | 20 | 6 | 9 | - | - | 2 | 1 | 2 | 7 | 15.25 |
| Barshar-CM | 10 | 8 | 5 | - | - | 2 | 1 | 4 | 1 | 7 | 8.75 |
| Swarna dhan | 29 | 23 | 6 | 3 | 4 | - | 3 | - | - | 6 | 19.20 |
| Radhunipagol | 16 | 19 | - | - | 5 | 4 | - | 2 | 3 | 6 | 13.84 |
| Total colony of each fungus | 108 | 114 | 45 | 25 | 25 | 12 | 9 | 9 | 7 | ||
| Relative density (%) | 30.50 | 32.20 | 12.71 | 7.06 | 7.06 | 3.38 | 2.54 | 2.54 | 1.97 | ||
| Rice Samples | Isolates of F. proliferatum | FB1 Content (µg/L) | FB2 Content (µg/L) |
|---|---|---|---|
| Gobindobhog | FP-BRC-R1 | 87.63 | 80.34 |
| FP-BRC-R2 | 142.20 | 135.22 | |
| FP-BRC-R3 | - | - | |
| FP-BRC-R4 | 102.49 | 95.62 | |
| FP-BRC-R5 | 84.25 | 80.19 | |
| FP-BRC-R6 | 62.11 | 57.21 | |
| FP-BRC-R7 | 47.52 | 40.88 | |
| Boro-minikit | FP-BRC-R8 | 95.03 | 90.32 |
| FP-BRC-R9 | 87.22 | 82.43 | |
| FP-BRC-R10 | 110.54 | 96.85 | |
| FP-BRC-R11 | 50.74 | 47.20 | |
| FP-BRC-R12 | 23.14 | 19.85 | |
| FP-BRC-R13 | 43.97 | 36.55 | |
| FP-BRC-R14 | 76.31 | 68.26 | |
| Boro-1153-jath | FP-BRC-R15 | - | - |
| FP-BRC-R16 | - | - | |
| FP-BRC-R17 | 49.86 | 45.23 | |
| FP-BRC-R18 | 130.64 | 124.95 | |
| FP-BRC-R19 | 46.20 | 42.29 | |
| FP-BRC-R20 | 84.77 | 80.64 | |
| FP-BRC-R21 | 29.36 | 25.41 | |
| Barshar-CM | FP-BRC-R22 | 59.53 | 52.34 |
| FP-BRC-R23 | 73.01 | 70.19 | |
| FP-BRC-R24 | 89.56 | 82.43 | |
| FP-BRC-R25 | 39.54 | 30.99 | |
| FP-BRC-R26 | 73.06 | 70.54 | |
| FP-BRC-R27 | 85.46 | 82.06 | |
| FP-BRC-R28 | 76.21 | 72.31 | |
| Swarna dhan | FP-BRC-R29 | 58.19 | 50.46 |
| FP-BRC-R30 | 72.03 | 70.22 | |
| FP-BRC-R31 | 54.22 | 48.62 | |
| FP-BRC-R32 | 61.97 | 57.22 | |
| FP-BRC-R34 | 138.02 | 130.89 | |
| FP-BRC-R35 | 49.20 | 45.20 | |
| FP-BRC-R36 | 65.88 | 62.41 | |
| Radhunipagol | FP-BRC-R41 | 79.06 | 74.65 |
| FP-BRC-R42 | 43.06 | 41.33 | |
| FP-BRC-R43 | 86.34 | 82.09 | |
| FP-BRC-R44 | 95.20 | 92.43 | |
| FP-BRC-R45 | 124.62 | 120.85 | |
| FP-BRC-R47 | 72.16 | 70.31 | |
| FP-BRC-R48 | 34.92 | 31.64 |
| S No. | Component | Retention Time (min) | % Availability | Retention Index |
|---|---|---|---|---|
| 1. | α-pinene | 5.02 | 2.87 | 932 |
| 2. | 1-octanal (n-octanal) | 6.31 | 0.84 | 998 |
| 3. | O-cymene | 7.09 | 0.38 | 1022 |
| 4. | Limonene | 7.85 | 0.49 | 1024 |
| 5. | Terpinolene | 8.27 | 0.97 | 1086 |
| 6. | Linalool | 8.85 | 66.46 | 1095 |
| 7. | Citronellal | 10.67 | 1.06 | 1148 |
| 8. | α-terpineol | 11.15 | 1.22 | 1186 |
| 9. | Methyl chavicol | 12.21 | 0.94 | 1195 |
| 10. | Z-anethole | 12.79 | 2.01 | 1249 |
| 11. | Undecanal | 16.56 | 1.85 | 1305 |
| 12. | Geranyl acetate | 19.81 | 14.22 | 1379 |
| 13. | Dodecanal | 22.77 | 0.17 | 1408 |
| 14. | 2E-dodecanal | 27.89 | 0.21 | 1464 |
| 15. | γ-Asarone | 29.40 | 1.03 | 1572 |
| Total | 94.72 |
| Chitosan/CEO Ratio (w/v) | LP (%) | EP (%) |
|---|---|---|
| 1:0.0 | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
| 1:0.2 | 0.82 ± 0.18 b | 29.63 ± 2.06 b |
| 1:0.4 | 1.63 ± 0.52 c | 52.87 ± 1.98 c |
| 1:0.6 | 3.89 ± 0.46 d | 72.19 ± 2.96 d |
| 1:0.8 | 5.04 ± 0.26 d | 92.11 ± 3.72 d |
| 1:1 | 4.10 ± 0.34 e | 80.63 ± 4.63 e |
| ANOVA test parameters | ||
| p value | <0.05 | <0.05 |
| F value | 137.37 | 39.75 |
| df | 5, 12 | 5, 12 |
| (A) | |||||
| Duration of Exposure (h) | Mean Length of Seedling (cm) | Duration of Exposure (h) | Mean Length of Seedling (cm) | ||
| UIC | IC | ||||
| Plumule | Radicle | Plumule | Radicle | ||
| 24 | 0.11 ± 0.02 a | 0.59 ± 0.07 a | 24 | 0.08 ± 0.02 a | 0.46 ± 0.04 a |
| 48 | 0.21 ± 0.04 a | 0.84 ± 0.06 a | 48 | 0.12 ± 0.06 a | 0.72 ± 0.05 b |
| 72 | 0.43 ± 0.05 b | 1.25 ± 0.12 b | 72 | 0.35 ± 0.04 b | 0.81 ± 0.06 b |
| 96 | 0.62 ± 0.04 c | 1.69 ± 0.06 c | 96 | 0.50 ± 0.04 b | 1.20 ± 0.12 c |
| 120 | 0.86 ± 0.05 d | 1.89 ± 0.09 c | 120 | 0.65 ± 0.05 e | 1.54 ± 0.18 d |
| ANOVA test parameters | ANOVA test parameters | ||||
| p value | <0.05 | <0.05 | p value | <0.05 | <0.05 |
| F value | 47.79 | 47.31 | F value | 35.34 | 35.85 |
| df | 4, 10 | 4, 10 | 4, 10 | 4, 10 | |
| (B) | |||||
| Duration of Exposure (h) | Mean Length of Seedling (cm) | Duration of Exposure (h) | Mean Length of Seedling (cm) | ||
| UI-t-CEO | I-t-CEO | ||||
| Plumule | Radicle | Plumule | Radicle | ||
| 24 | 0.19 ± 0.06 a | 0.61 ± 0.07 a | 24 | 0.15 ± 0.03 a | 0.58 ± 0.07 a |
| 48 | 0.40 ± 0.05 a | 0.97 ± 0.07 ab | 48 | 0.37 ± 0.05 b | 0.89 ± 0.05 b |
| 72 | 0.68 ± 0.06 b | 1.35 ± 0.19 b | 72 | 0.63 ± 0.06 c | 1.28 ± 0.15 c |
| 96 | 0.96 ± 0.06 c | 2.27 ± 0.15 c | 96 | 0.89 ± 0.04 d | 2.09 ± 0.13 d |
| 120 | 1.11 ± 0.04 c | 2.51 ± 0.31 c | 120 | 1.02 ± 0.05 d | 2.55 ± 0.07 e |
| ANOVA test parameters | ANOVA test parameters | ||||
| p value | <0.05 | <0.05 | p value | <0.05 | <0.05 |
| F value | 47.56 | 32.81 | F value | 51.95 | 64.51 |
| df | 4, 10 | 4, 10 | df | 4, 10 | 4, 10 |
| (C) | |||||
| Duration of Exposure (h) | Mean Length of Seedling (cm) | Duration of Exposure (h) | Mean Length of Seedling (cm) | ||
| UI-t-Ne-CEO | I-t-Ne-CEO | ||||
| Plumule | Radicle | Plumule | Radicle | ||
| 24 | 0.23 ± 0.06 a | 0.69 ± 0.11 a | 24 | 0.20 ± 0.05 a | 0.65 ± 0.08 a |
| 48 | 0.51 ± 0.07 b | 1.23 ± 0.13 b | 48 | 0.45 ± 0.06 b | 1.15 ± 0.06 ab |
| 72 | 0.88 ± 0.05 c | 1.65 ± 0.09 b | 72 | 0.80 ± 0.05 c | 1.39 ± 0.17 b |
| 96 | 1.06 ± 0.04 cd | 2.52 ± 0.21 c | 96 | 0.95 ± 0.05 cd | 2.23 ± 0.14 c |
| 120 | 1.21 ± 0.03 d | 2.95 ± 0.06 c | 120 | 1.16 ± 0.08 d | 2.87 ± 0.12 d |
| ANOVA test parameters | ANOVA test parameters | ||||
| p value | <0.05 | <0.05 | p value | <0.05 | <0.05 |
| F value | 47.48 | 49.63 | F value | 49.67 | 46.33 |
| df | 4, 10 | 4, 10 | df | 4, 10 | 4, 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, S.; Som, S. Chitosan-Encapsulated Coriandrum sativum Essential Oil Nanoemulsion to Protect Stored Rice Samples Against Fumonisins Contamination and Nutritional Deterioration. Foods 2025, 14, 3834. https://doi.org/10.3390/foods14223834
Das S, Som S. Chitosan-Encapsulated Coriandrum sativum Essential Oil Nanoemulsion to Protect Stored Rice Samples Against Fumonisins Contamination and Nutritional Deterioration. Foods. 2025; 14(22):3834. https://doi.org/10.3390/foods14223834
Chicago/Turabian StyleDas, Somenath, and Sagarika Som. 2025. "Chitosan-Encapsulated Coriandrum sativum Essential Oil Nanoemulsion to Protect Stored Rice Samples Against Fumonisins Contamination and Nutritional Deterioration" Foods 14, no. 22: 3834. https://doi.org/10.3390/foods14223834
APA StyleDas, S., & Som, S. (2025). Chitosan-Encapsulated Coriandrum sativum Essential Oil Nanoemulsion to Protect Stored Rice Samples Against Fumonisins Contamination and Nutritional Deterioration. Foods, 14(22), 3834. https://doi.org/10.3390/foods14223834

