Regulatory Mechanisms of Total Soluble Solids in Tomato: From QTL Mapping to Gene Editing
Abstract
1. Introduction
2. Mapping and Identification of QTLs Associated with Tomato TSS
2.1. QTL Mapping and Identification Based on Hybrid Population
2.2. QTL Mapping and Identification Based on GWAS
3. Metabolic and Transport Mechanisms of Main Sugars and Acids in Tomato TSS and Related Genes
3.1. Fruit Development and Overview of TSS Composition
3.2. Metabolic and Transport Mechanisms of Sucrose, Glucose, and Fructose and Related Genes
3.2.1. Metabolic and Transport Mechanisms of Sucrose, Glucose, and Fructose
3.2.2. Key Genes and Transcription Factors of Sucrose, Glucose, and Fructose
3.3. Metabolic and Transport Mechanisms of Malic Acid and Citric Acid and Related Genes
3.3.1. Metabolic and Transport Mechanisms of Malic Acid and Citric Acid
3.3.2. Key Genes and Transcription Factors of Malic Acid and Citric Acid
4. Effects of Environmental Factors on the TSS Content of Tomato Fruits
4.1. Temperature and Light
4.2. Water and Nutrients
4.3. CO2 and Exogenous Substances
5. Approaches to Increase TSS in Tomato Fruits
5.1. Cross Breeding
5.2. MAS and GS
5.3. Genome Editing
5.4. Model-Based Precision Cultivation
6. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACL | ATP citrate lyase |
| AI | acid invertase |
| CA | citric acid |
| CAPS | cleaved amplified polymorphic sequence |
| CIN | cytoplasmic invertase |
| CROCS | Climate-responsive optimization of carbon partitioning to sinks |
| CWIN | cell-wall invertase |
| cytACO | cytosolic aconitase |
| GABA | γ-aminobutyric acid |
| GAD | glutamate decarboxylase |
| GS | Genomic selection |
| GWAS | Genome-wide association studies |
| HSE | heat shock element |
| HY5 | ELONGATED HYPOCOTYL 5 |
| IDH | isocitrate dehydrogenase |
| INV | invertase |
| INVINH | invertase inhibitors |
| MA | malic acid |
| MAS | marker-assisted selection |
| mGWAS | metabolome-wide association studies |
| mtACO | mitochondrial aconitase |
| mtCS | mitochondrial citrate synthase |
| NAD-MDH | NAD-dependent malate dehydrogenase |
| NADP-ME | NADP-dependent malic enzyme |
| NI | neutral invertase |
| OAA | oxaloacetate |
| PEP | Phosphoenolpyruvate |
| PEPC | Phosphoenolpyruvate carboxylase |
| PEPCK | phosphoenolpyruvate carboxykinase |
| QTL | quantitative trait locus |
| SIRT | sucrose-induced translational silencing |
| SNP | single nucleotide polymorphisms |
| SPP | sucrose-6-phosphate phosphohydrolase |
| SPS | sucrose phosphate synthase |
| SSR | simple sequence repeats |
| SuSy | synthase |
| SVs | structural variations |
| TCA cycle | tricarboxylic acid cycle |
| Tre6P | trehalose 6-phosphate |
| TSS | Total soluble solids |
| TST | Tonoplast sugar transporter |
| uORF | upstream open reading frame |
| VC | vitamin C |
| VGT | Vacuolar glucose transporter |
| VIN | vacuolar invertase |
References
- Zhang, T.; Wang, Y.; Munir, S.; Wang, T.; Ye, Z.; Zhang, J.; Zhang, Y. Cyclin Gene SlCycB1 Alters Plant Architecture in Association with Histone H3.2 in Tomato. Hortic. Plant J. 2022, 8, 341–350. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Jiang, J.; Zhao, T.; Xu, X.; Yang, H.; Li, J. Virus-Induced Gene Silencing of SlPYL4 Decreases the Drought Tolerance of Tomato. Hortic. Plant J. 2022, 8, 361–368. [Google Scholar] [CrossRef]
- Parisi, M.; Pentangelo, A.; D’Alessandro, A.; Festa, G.; Francese, G.; Navarro, A.; Sanajà, V.O.; Mennella, G. Grafting Effects on Bioactive Compounds, Chemical and Agronomic Traits of ‘Corbarino’ Tomato Grown under Greenhouse Healthy Conditions. Hortic. Plant J. 2023, 9, 273–284. [Google Scholar] [CrossRef]
- Erika, C.; Ulrich, D.; Naumann, M.; Smit, I.; Horneburg, B.; Pawelzik, E. Flavor and Other Quality Traits of Tomato Cultivars Bred for Diverse Production Systems as Revealed in Organic Low-Input Management. Front. Nutr. 2022, 9, 916642. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Yuan, Y.; Wang, K.; Wang, H.; Huang, J.; Yu, H.; Cui, X. Rootstock-Scion Interactions Affect Fruit Flavor in Grafted Tomato. Hortic. Plant J. 2022, 8, 499–510. [Google Scholar] [CrossRef]
- Gur, A.; Zamir, D. Mendelizing All Components of a Pyramid of Three Yield QTL in Tomato. Front. Plant Sci. 2015, 6, 1096. [Google Scholar] [CrossRef]
- Zhang, M.; Li, X.; Zhang, Y.; Zhong, X.D.; Lu, X.; He, S.; Chen, D.; Li, Y.; Li, R.; Huang, Z. Genetic and Interaction Analysis of High Soluble Solid Content Loci in Processing Tomato. Sci. Agric. Sin. 2025, 58, 1816–1829. [Google Scholar] [CrossRef]
- Nordborg, M.; Weigel, D. Next-Generation Genetics in Plants. Nature 2008, 456, 720–723. [Google Scholar] [CrossRef]
- Beckles, D.M.; Hong, N.; Stamova, L.; Luengwilai, K. Biochemical Factors Contributing to Tomato Fruit Sugar Content: A Review. Fruits 2012, 67, 49–64. [Google Scholar] [CrossRef]
- Tieman, D.M.; Zeigler, M.; Schmelz, E.A.; Taylor, M.G.; Bliss, P.; Kirst, M.; Klee, H.J. Identification of Loci Affecting Flavour Volatile Emissions in Tomato Fruits. J. Exp. Bot. 2006, 57, 887–896. [Google Scholar] [CrossRef]
- Huber, S.C.; Huber, J.L. Role and regulation of sucrose-phosphate synthase in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Stein, O.; Granot, D. An Overview of Sucrose Synthases in Plants. Front. Plant Sci. 2019, 10, 95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-M.; Wang, W.; Du, L.-Q.; Xie, J.-H.; Yao, Y.-L.; Sun, G.-M. Expression Patterns, Activities and Carbohydrate-Metabolizing Regulation of Sucrose Phosphate Synthase, Sucrose Synthase and Neutral Invertase in Pineapple Fruit during Development and Ripening. Int. J. Mol. Sci. 2012, 13, 9460–9477. [Google Scholar] [CrossRef] [PubMed]
- Etienne, A.; Génard, M.; Lobit, P.; Mbeguié-A-Mbéguié, D.; Bugaud, C. What Controls Fleshy Fruit Acidity? A Review of Malate and Citrate Accumulation in Fruit Cells. J. Exp. Bot. 2013, 64, 1451–1469. [Google Scholar] [CrossRef]
- Sadka, A.; Dahan, E.; Cohen, L.; Marsh, K.B. Aconitase Activity and Expression During the Development of Lemon Fruit. Physiol. Plant. 2000, 108, 255–262. [Google Scholar] [CrossRef]
- Huang, S.; Weigel, D.; Beachy, R.N.; Li, J. A Proposed Regulatory Framework for Genome-Edited Crops. Nat. Genet. 2016, 48, 109–111. [Google Scholar] [CrossRef]
- Tanksley, S.D. The Genetic, Developmental, and Molecular Bases of Fruit Size and Shape Variation in Tomato. Plant Cell 2004, 16 (Suppl. S1), S181–S189. [Google Scholar] [CrossRef]
- Chagné, D.; Vanderzande, S.; Kirk, C.; Profitt, N.; Weskett, R.; Gardiner, S.E.; Peace, C.P.; Volz, R.K.; Bassil, N.V. Validation of SNP Markers for Fruit Quality and Disease Resistance Loci in Apple (Malus × Domestica Borkh.) Using the OpenArray Platform. Hortic. Res. 2019, 6, 30. [Google Scholar] [CrossRef]
- Alemu, A.; Åstrand, J.; Montesinos-López, O.A.; y Sánchez, J.I.; Fernández-Gónzalez, J.; Tadesse, W.; Vetukuri, R.R.; Carlsson, A.S.; Ceplitis, A.; Crossa, J.; et al. Genomic Selection in Plant Breeding: Key Factors Shaping Two Decades of Progress. Mol. Plant 2024, 17, 552–578. [Google Scholar] [CrossRef]
- Waltz, E. GABA-Enriched Tomato Is First CRISPR-Edited Food to Enter Market. Nat. Biotechnol. 2022, 40, 9–11. [Google Scholar] [CrossRef]
- Fulton, T.M.; Bucheli, P.; Voirol, E.; López, J.; Pétiard, V.; Tanksley, S.D. Quantitative Trait Loci (QTL) Affecting Sugars, Organic Acids and Other Biochemical Properties Possibly Contributing to Flavor, Identified in Four Advanced Backcross Populations of Tomato. Euphytica 2002, 127, 163–177. [Google Scholar] [CrossRef]
- Toubiana, D.; Semel, Y.; Tohge, T.; Beleggia, R.; Cattivelli, L.; Rosental, L.; Nikoloski, Z.; Zamir, D.; Fernie, A.R.; Fait, A. Metabolic Profiling of a Mapping Population Exposes New Insights in the Regulation of Seed Metabolism and Seed, Fruit, and Plant Relations. PLoS Genet. 2012, 8, e1002612. [Google Scholar] [CrossRef] [PubMed]
- Causse, M.; Duffe, P.; Gomez, M.C.; Buret, M.; Damidaux, R.; Zamir, D.; Gur, A.; Chevalier, C.; Lemaire-Chamley, M.; Rothan, C. A Genetic Map of Candidate Genes and QTLs Involved in Tomato Fruit Size and Composition. J. Exp. Bot. 2004, 55, 1671–1685. [Google Scholar] [CrossRef] [PubMed]
- Schauer, N.; Semel, Y.; Roessner, U.; Gur, A.; Balbo, I.; Carrari, F.; Pleban, T.; Perez-Melis, A.; Bruedigam, C.; Kopka, J.; et al. Comprehensive Metabolic Profiling and Phenotyping of Interspecific Introgression Lines for Tomato Improvement. Nat. Biotechnol. 2006, 24, 447–454. [Google Scholar] [CrossRef]
- Paterson, A.H.; Damon, S.; Hewitt, J.D.; Zamir, D.; Rabinowitch, H.D.; Lincoln, S.E.; Lander, E.S.; Tanksley, S.D. Mendelian Factors Underlying Quantitative Traits in Tomato: Comparison across Species, Generations, and Environments. Genetics 1991, 127, 181–197. [Google Scholar] [CrossRef]
- Tanksley, S.D.; Grandillo, S.; Fulton, T.M.; Zamir, D.; Eshed, Y.; Petiard, V.; Lopez, J.; Beck-Bunn, T. Advanced Backcross QTL Analysis in a Cross Between an Elite Processing Line of Tomato and Its Wild Relative, L. pimpinellifolium. Theor. Appl. Genet. 1996, 92, 213–224. [Google Scholar] [CrossRef]
- Fulton, T.M.; Nelson, J.C.; Tanksley, S.D. Introgression and DNA Marker Analysis of Lycopersicon peruvianum, a Wild Relative of the Cultivated Tomato, into Lycopersicon esculentum, Followed Through Three Successive Backcross Generations. Theor. Appl. Genet. 1997, 95, 895–902. [Google Scholar] [CrossRef]
- Goldman, I.L.; Paran, I.; Zamir, D. Quantitative Trait Locus Analysis of a Recombinant Inbred Line Population Derived from a Lycopersicon esculentum × Lycopersicon cheesmanii Cross. Theor. Appl. Genet. 1995, 90, 925–932. [Google Scholar] [CrossRef]
- Bernacchi, D.; Beck-Bunn, T.; Emmatty, D.; Eshed, Y.; Inai, S.; Lopez, J.; Petiard, V.; Sayama, H.; Uhlig, J.; Zamir, D.; et al. Advanced Backcross QTL Analysis of Tomato. II. Evaluation of near-Isogenic Lines Carrying Single-Donor Introgressions for Desirable Wild QTL-Alleles Derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor. Appl. Genet. 1998, 97, 170–180. [Google Scholar] [CrossRef]
- Bernacchi, D.; Beck-Bunn, T.; Eshed, Y.; Lopez, J.; Petiard, V.; Uhlig, J.; Zamir, D.; Tanksley, S. Advanced Backcross QTL Analysis in Tomato. I. Identification of QTLs for Traits of Agronomic Importance from Lycopersicon hirsutum. Theor. Appl. Genet. 1998, 97, 381–397. [Google Scholar] [CrossRef]
- Yelle, S.; Hewitt, J.D.; Robinson, N.L.; Damon, S.; Bennett, A.B. Sink Metabolism in Tomato Fruit: III. Analysis of Carbohydrate Assimilation in a Wild Species. Plant Physiol. 1988, 87, 737–740. [Google Scholar] [CrossRef]
- Yelle, S.; Chetelat, R.T.; Dorais, M.; Deverna, J.W.; Bennett, A.B. Sink Metabolism in Tomato Fruit: IV. Genetic and Biochemical Analysis of Sucrose Accumulation. Plant Physiol. 1991, 95, 1026–1035. [Google Scholar] [CrossRef]
- Chetelat, R.T.; Deverna, J.W.; Bennett, A.B. Introgression into Tomato (Lycopersicon esculentum) of the L. chmielewskii Sucrose Accumulator Gene (Sucr) Controlling Fruit Sugar Composition. Theor. Appl. Genet. 1995, 91, 327–333. [Google Scholar] [CrossRef]
- Levin, I.; Gilboa, N.; Yeselson, E.; Shen, S.; Schaffer, A.A. Fgr, a Major Locus That Modulates the Fructose to Glucose Ratio in Mature Tomato Fruits. Theor. Appl. Genet. 2000, 100, 256–262. [Google Scholar] [CrossRef]
- Eshed, Y.; Zamir, D. An Introgression Line Population of Lycopersicon Pennellii in the Cultivated Tomato Enables the Identification and Fine Mapping of Yield-Associated QTL. Genetics 1995, 141, 1147–1162. [Google Scholar] [CrossRef] [PubMed]
- Fridman, E.; Carrari, F.; Liu, Y.-S.; Fernie, A.R.; Zamir, D. Zooming in on a Quantitative Trait for Tomato Yield Using Interspecific Introgressions. Science 2004, 305, 1786–1789. [Google Scholar] [CrossRef] [PubMed]
- Baxter, C.J.; Carrari, F.; Bauke, A.; Overy, S.; Hill, S.A.; Quick, P.W.; Fernie, A.R.; Sweetlove, L.J. Fruit Carbohydrate Metabolism in an Introgression Line of Tomato with Increased Fruit Soluble Solids. Plant Cell Physiol. 2005, 46, 425–437. [Google Scholar] [CrossRef]
- Zanor, M.I.; Osorio, S.; Nunes-Nesi, A.; Carrari, F.; Lohse, M.; Usadel, B.; Kühn, C.; Bleiss, W.; Giavalisco, P.; Willmitzer, L.; et al. RNA Interference of LIN5 in Tomato Confirms Its Role in Controlling Brix Content, Uncovers the Influence of Sugars on the Levels of Fruit Hormones, and Demonstrates the Importance of Sucrose Cleavage for Normal Fruit Development and Fertility. Plant Physiol. 2009, 150, 1204–1218. [Google Scholar] [CrossRef]
- Wang, B.; Li, N.; Huang, S.; Hu, J.; Wang, Q.; Tang, Y.; Yang, T.; Asmutola, P.; Wang, J.; Yu, Q. Enhanced Soluble Sugar Content in Tomato Fruit Using CRISPR/Cas9-Mediated SlINVINH1 and SlVPE5 Gene Editing. PeerJ 2021, 9, e12478. [Google Scholar] [CrossRef]
- Çolak, N.G.; Eken, N.T.; Ülger, M.; Frary, A.; Doğanlar, S. Exploring Wild Alleles from Solanum pimpinellifolium with the Potential to Improve Tomato Flavor Compounds. Plant Sci. 2020, 298, 110567. [Google Scholar] [CrossRef]
- Miao, S.; Wei, X.; Zhu, L.; Ma, B.; Li, M. The Art of Tartness: The Genetics of Organic Acid Content in Fresh Fruits. Hortic. Res. 2024, 11, uhae225. [Google Scholar] [CrossRef]
- Tian, S.; Zhou, Z.; Wang, H.; Cui, X.; Sun, S. Mapping of Gene Regulating Citric Acid Content in Tomato Fruit. Acta Hortic. Sin. 2024, 51, 67–76. [Google Scholar] [CrossRef]
- Tieman, D.; Zhu, G.; Resende, M.F.R.; Lin, T.; Nguyen, C.; Bies, D.; Rambla, J.L.; Beltran, K.S.O.; Taylor, M.; Zhang, B.; et al. A Chemical Genetic Roadmap to Improved Tomato Flavor. Science 2017, 355, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Guo, J.; Pandey, M.K.; Varshney, R.K.; Huang, L.; Luo, H.; Liu, N.; Chen, W.; Lei, Y.; Liao, B.; et al. Dissection of the Genetic Basis of Yield-Related Traits in the Chinese Peanut Mini-Core Collection Through Genome-Wide Association Studies. Front. Plant Sci. 2021, 12, 637284. [Google Scholar] [CrossRef] [PubMed]
- Achnine, L.; Huhman, D.V.; Farag, M.A.; Sumner, L.W.; Blount, J.W.; Dixon, R.A. Genomics-Based Selection and Functional Characterization of Triterpene Glycosyltransferases from the Model Legume Medicago Truncatula. Plant J. 2005, 41, 875–887. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, M.; Shibata, M.; Nishiyama, Y.; Springob, K.; Kitayama, M.; Shimada, N.; Aoki, T.; Ayabe, S.-I.; Saito, K. Differential Gene Expression Profiles of Red and Green Forms of Perilla Frutescens Leading to Comprehensive Identification of Anthocyanin Biosynthetic Genes. FEBS J. 2008, 275, 3494–3502. [Google Scholar] [CrossRef]
- Widodo; Patterson, J.H.; Newbigin, E.D.; Tester, M.; Bacic, A.; Roessner, U. Metabolic Responses to Salt Stress of Barley (Hordeum vulgare L.) Cultivars, Sahara and Clipper, Which Differ in Salinity Tolerance. J. Exp. Bot. 2009, 60, 4089–4103. [Google Scholar] [CrossRef]
- Wahyuni, Y.; Ballester, A.-R.; Sudarmonowati, E.; Bino, R.J.; Bovy, A.G. Metabolite Biodiversity in Pepper (Capsicum) Fruits of Thirty-Two Diverse Accessions: Variation in Health-Related Compounds and Implications for Breeding. Phytochemistry 2011, 72, 1358–1370. [Google Scholar] [CrossRef]
- Carreno-Quintero, N.; Bouwmeester, H.J.; Keurentjes, J.J.B. Genetic Analysis of Metabolome-Phenotype Interactions: From Model to Crop Species. Trends Genet. 2013, 29, 41–50. [Google Scholar] [CrossRef]
- Luo, J. Metabolite-Based Genome-Wide Association Studies in Plants. Curr. Opin. Plant Biol. 2015, 24, 31–38. [Google Scholar] [CrossRef]
- Sauvage, C.; Segura, V.; Bauchet, G.; Stevens, R.; Do, P.T.; Nikoloski, Z.; Fernie, A.R.; Causse, M. Genome-Wide Association in Tomato Reveals 44 Candidate Loci for Fruit Metabolic Traits. Plant Physiol. 2014, 165, 1120–1132. [Google Scholar] [CrossRef]
- Ye, J.; Li, W.; Ai, G.; Li, C.; Liu, G.; Chen, W.; Wang, B.; Wang, W.; Lu, Y.; Zhang, J.; et al. Genome-Wide Association Analysis Identifies a Natural Variation in Basic Helix-Loop-Helix Transcription Factor Regulating Ascorbate Biosynthesis via D-Mannose/L-Galactose Pathway in Tomato. PLoS Genet. 2019, 15, e1008149. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, C.; Ge, P.; Li, F.; Zhu, L.; Wang, Y.; Tao, J.; Zhang, X.; Dong, H.; Gai, W.; et al. A 21-Bp InDel in the Promoter of STP1 Selected During Tomato Improvement Accounts for Soluble Solid Content in Fruits. Hortic. Res. 2023, 10, uhad009. [Google Scholar] [CrossRef]
- Davies, J.N.; Hobson, G.E. The Constituents of Tomato Fruit—The Influence of Environment, Nutrition, and Genotype. Crit. Rev. Food Sci. Nutr. 1981, 15, 205–280. [Google Scholar] [CrossRef]
- Bastías, A.; López-Climent, M.; Valcárcel, M.; Rosello, S.; Gómez-Cadenas, A.; Casaretto, J.A. Modulation of Organic Acids and Sugar Content in Tomato Fruits by an Abscisic Acid-Regulated Transcription Factor. Physiol. Plant 2011, 141, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Khefifi, H.; Dumont, D.; Costantino, G.; Doligez, A.; Brito, A.C.; Bérard, A.; Morillon, R.; Ollitrault, P.; Luro, F. Mapping of QTLs for Citrus Quality Traits Throughout the Fruit Maturation Process on Clementine (Citrus reticulata × C. sinensis) and Mandarin (C. Reticulata blanco) Genetic Maps. Tree Genet. Genomes 2022, 18, 40. [Google Scholar] [CrossRef]
- Husain, S.E.; James, C.; Shields, R.; Foyer, C.H. Manipulation of Fruit Sugar Composition but Not Content in Lycopersicon esculentum Fruit by Introgression of an Acid Invertase Gene from Lycopersicon pimpinellifolium. New Phytol. 2001, 150, 65–72. [Google Scholar] [CrossRef]
- Ruan, Y.-L. Sucrose Metabolism: Gateway to Diverse Carbon Use and Sugar Signaling. Annu. Rev. Plant Biol. 2014, 65, 33–67. [Google Scholar] [CrossRef]
- Ren, Y.; Guo, S.; Zhang, J.; He, H.; Sun, H.; Tian, S.; Gong, G.; Zhang, H.; Levi, A.; Tadmor, Y.; et al. A Tonoplast Sugar Transporter Underlies a Sugar Accumulation QTL in Watermelon. Plant Physiol. 2018, 176, 836–850. [Google Scholar] [CrossRef]
- Jinggui, F.; Xudong, Z.; Haifeng, J.; Chen, W. Research Advances on Physiological Function of Plant Sucrose Synthase. Nanjing Nongye Daxue Xuebao 2017, 40, 759–768. [Google Scholar]
- Ruan, Y.-L.; Jin, Y.; Yang, Y.-J.; Li, G.-J.; Boyer, J.S. Sugar Input, Metabolism, and Signaling Mediated by Invertase: Roles in Development, Yield Potential, and Response to Drought and Heat. Mol. Plant 2010, 3, 942–955. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.; Zhao, T.; Luo, J.; Liu, X.; Jiang, J. CYTOSOLIC INVERTASE2 regulates flowering and reactive oxygen species-triggered programmed cell death in tomato. Plant Physiol. 2024, 196, 1110–1125. [Google Scholar] [CrossRef]
- Sun, L.; Wang, J.; Lian, L.; Song, J.; Du, X.; Liu, W.; Zhao, W.; Yang, L.; Li, C.; Qin, Y.; et al. Systematic Analysis of the Sugar Accumulation Mechanism in Sucrose- and Hexose- Accumulating Cherry Tomato Fruits. BMC Plant Biol. 2022, 22, 303. [Google Scholar] [CrossRef]
- Klann, E.M.; Hall, B.; Bennett, A.B. Antisense Acid Invertase (TIV1) Gene Alters Soluble Sugar Composition and Size in Transgenic Tomato Fruit. Plant Physiol. 1996, 112, 1321–1330. [Google Scholar] [CrossRef]
- Hackel, A.; Schauer, N.; Carrari, F.; Fernie, A.R.; Grimm, B.; Kühn, C. Sucrose Transporter LeSUT1 and LeSUT2 Inhibition Affects Tomato Fruit Development in Different Ways. Plant J. 2006, 45, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Feng, C.; Wang, M.; Li, T.; Liu, X.; Jiang, J. Plasma Membrane-Localized SlSWEET7a and SlSWEET14 Regulate Sugar Transport and Storage in Tomato Fruits. Hortic. Res. 2021, 8, 186. [Google Scholar] [CrossRef] [PubMed]
- Shammai, A.; Petreikov, M.; Yeselson, Y.; Faigenboim, A.; Moy-Komemi, M.; Cohen, S.; Cohen, D.; Besaulov, E.; Efrati, A.; Houminer, N.; et al. Natural Genetic Variation for Expression of a SWEET Transporter among Wild Species of Solanum lycopersicum (Tomato) Determines the Hexose Composition of Ripening Tomato Fruit. Plant J. 2018, 96, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wei, X.; Yang, J.; Li, H.; Ma, B.; Zhang, K.; Zhang, Y.; Cheng, L.; Ma, F.; Li, M. Heterologous Expression of the Apple Hexose Transporter MdHT2.2 Altered Sugar Concentration with Increasing Cell Wall Invertase Activity in Tomato Fruit. Plant Biotechnol. J. 2020, 18, 540–552. [Google Scholar] [CrossRef]
- Jung, B.; Ludewig, F.; Schulz, A.; Meißner, G.; Wöstefeld, N.; Flügge, U.-I.; Pommerrenig, B.; Wirsching, P.; Sauer, N.; Koch, W.; et al. Identification of the Transporter Responsible for Sucrose Accumulation in Sugar Beet Taproots. Nat. Plants 2015, 1, 14001. [Google Scholar] [CrossRef]
- Zhu, L.; Li, B.; Wu, L.; Li, H.; Wang, Z.; Wei, X.; Ma, B.; Zhang, Y.; Ma, F.; Ruan, Y.-L.; et al. MdERDL6-Mediated Glucose Efflux to the Cytosol Promotes Sugar Accumulation in the Vacuole Through up-Regulating TSTs in Apple and Tomato. Proc. Natl. Acad. Sci. USA 2021, 118, e2022788118. [Google Scholar] [CrossRef]
- Petreikov, M.; Shen, S.; Yeselson, Y.; Levin, I.; Bar, M.; Schaffer, A.A. Temporally Extended Gene Expression of the ADP-Glc Pyrophosphorylase Large Subunit (AgpL1) Leads to Increased Enzyme Activity in Developing Tomato Fruit. Planta 2006, 224, 1465–1479. [Google Scholar] [CrossRef]
- Petreikov, M.; Yeselson, L.; Shen, S.; Levin, I.; Schaffer, A.A.; Efrati, A.; Bar, M. Carbohydrate Balance and Accumulation during Development of Near-Isogenic Tomato Lines Differing in the AGPase-L1 Allele. J. Am. Soc. Hortic. Sci. 2009, 134, 134–140. [Google Scholar] [CrossRef]
- Qin, G.; Zhu, Z.; Wang, W.; Cai, J.; Chen, Y.; Li, L.; Tian, S. A Tomato Vacuolar Invertase Inhibitor Mediates Sucrose Metabolism and Influences Fruit Ripening. Plant Physiol. 2016, 172, 1596–1611. [Google Scholar] [CrossRef]
- Ariizumi, T.; Higuchi, K.; Arakaki, S.; Sano, T.; Asamizu, E.; Ezura, H. Genetic Suppression Analysis in Novel Vacuolar Processing Enzymes Reveals Their Roles in Controlling Sugar Accumulation in Tomato Fruits. J. Exp. Bot. 2011, 62, 2773–2786. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, K.; Takei-Hoshi, R.; Yoshikawa, I.; Nishida, K.; Kobayashi, M.; Kusano, M.; Lu, Y.; Ariizumi, T.; Ezura, H.; Otagaki, S.; et al. Functional Disruption of Cell Wall Invertase Inhibitor by Genome Editing Increases Sugar Content of Tomato Fruit without Decrease Fruit Weight. Sci. Rep. 2021, 11, 21534. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, H.; Wu, M.; Zhou, Y.; Yu, C.; Yang, Q.; Rolland, F.; Van de Poel, B.; Bouzayen, M.; Hu, N.; et al. A Vacuolar Invertase Gene SlVI Modulates Sugar Metabolism and Postharvest Fruit Quality and Stress Resistance in Tomato. Hortic. Res. 2025, 12, uhae283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lyu, H.; Chen, J.; Cao, X.; Du, R.; Ma, L.; Wang, N.; Zhu, Z.; Rao, J.; Wang, J.; et al. Releasing a Sugar Brake Generates Sweeter Tomato Without Yield Penalty. Nature 2024, 635, 647–656. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Y.; Turečková, V.; Xue, G.-P.; Fernie, A.R.; Mueller-Roeber, B.; Balazadeh, S. The NAC Transcription Factor SlNAP2 Regulates Leaf Senescence and Fruit Yield in Tomato. Plant Physiol. 2018, 177, 1286–1302. [Google Scholar] [CrossRef]
- Yuan, Y.; Mei, L.; Wu, M.; Wei, W.; Shan, W.; Gong, Z.; Zhang, Q.; Yang, F.; Yan, F.; Zhang, Q.; et al. SlARF10, an Auxin Response Factor, Is Involved in Chlorophyll and Sugar Accumulation during Tomato Fruit Development. J. Exp. Bot. 2018, 69, 5507–5518. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Bui, T.P.; Le, N.T.; Nguyen, C.X.; Le, M.T.T.; Dao, N.T.; Phan, Q.; Van Le, T.; To, H.M.T.; Pham, N.B.; et al. Disrupting Sc-uORFs of a Transcription Factor bZIP1 Using CRISPR/Cas9 Enhances Sugar and Amino Acid Contents in Tomato (Solanum lycopersicum). Planta 2023, 257, 57. [Google Scholar] [CrossRef]
- Wu, X.; Huo, R.; Yuan, D.; Zhao, L.; Kang, X.; Gong, B.; Lü, G.; Gao, H. Exogenous GABA Improves Tomato Fruit Quality by Contributing to Regulation of the Metabolism of Amino Acids, Organic Acids and Sugars. Sci. Hortic. 2024, 338, 113750. [Google Scholar] [CrossRef]
- Li, F.; Lin, J.; Ahiakpa, J.K.; Gai, W.; Tao, J.; Ge, P.; Zhang, X.; Mu, Y.; Ye, J.; Zhang, Y. ZF Protein C2H2-71 Regulates the Soluble Solids Content in Tomato by Inhibiting LIN5. J. Integr. Agric. 2025, 24, 2190–2202. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Li, J.; Dong, H.; Hu, Z.; Xia, X.; Yu, J.; Zhou, Y. Manipulating the Light Systemic Signal HY5 Greatly Improve Fruit Quality in Tomato. Adv. Sci. 2025, 12, e2500110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xu, Y.; Luo, Z.; Lyu, L.; Wang, C.; Zhu, L.; Ma, F.; Li, M.; Han, D. Overexpression of a Transcription Factor MdWRKY126 Altered Soluble Sugar Accumulation in Apple and Tomato Fruit. Hortic. Plant J. 2025, 11, 989–998. [Google Scholar] [CrossRef]
- Ye, J.; Wang, X.; Hu, T.; Zhang, F.; Wang, B.; Li, C.; Yang, T.; Li, H.; Lu, Y.; Giovannoni, J.J.; et al. An InDel in the Promoter of Al-Activated Malate Transporter9 Selected During Tomato Domestication Determines Fruit Malate Contents and Aluminum Tolerance. Plant Cell 2017, 29, 2249–2268. [Google Scholar] [CrossRef]
- Osorio, S.; Vallarino, J.G.; Szecowka, M.; Ufaz, S.; Tzin, V.; Angelovici, R.; Galili, G.; Fernie, A.R. Alteration of the Interconversion of Pyruvate and Malate in the Plastid or Cytosol of Ripening Tomato Fruit Invokes Diverse Consequences on Sugar but Similar Effects on Cellular Organic Acid, Metabolism, and Transitory Starch Accumulation. Plant Physiol. 2013, 161, 628–643. [Google Scholar] [CrossRef]
- Sagor, G.H.M.; Berberich, T.; Tanaka, S.; Nishiyama, M.; Kanayama, Y.; Kojima, S.; Muramoto, K.; Kusano, T. A Novel Strategy to Produce Sweeter Tomato Fruits with High Sugar Contents by Fruit-Specific Expression of a Single bZIP Transcription Factor Gene. Plant Biotechnol. J. 2016, 14, 1116–1126. [Google Scholar] [CrossRef]
- Jenner, H.L.; Winning, B.M.; Millar, A.H.; Tomlinson, K.L.; Leaver, C.J.; Hill, S.A. NAD Malic Enzyme and the Control of Carbohydrate Metabolism in Potato Tubers. Plant Physiol. 2001, 126, 1139–1149. [Google Scholar] [CrossRef]
- Laval-Martin, D.; Farineau, J.; Diamond, J. Light versus Dark Carbon Metabolism in Cherry Tomato Fruits: I. Occurrence of Photosynthesis. Study of the Intermediates. Plant Physiol. 1977, 60, 872–876. [Google Scholar] [CrossRef]
- Leegood, R.C.; Walker, R.P. Regulation and Roles of Phosphoenolpyruvate Carboxykinase in Plants. Arch. Biochem. Biophys. 2003, 414, 204–210. [Google Scholar] [CrossRef]
- Famiani, F.; Cultrera, N.G.M.; Battistelli, A.; Casulli, V.; Proietti, P.; Standardi, A.; Chen, Z.-H.; Leegood, R.C.; Walker, R.P. Phosphoenolpyruvate Carboxykinase and Its Potential Role in the Catabolism of Organic Acids in the Flesh of Soft Fruit During Ripening. J. Exp. Bot. 2005, 56, 2959–2969. [Google Scholar] [CrossRef]
- Yao, Y.-X.; Li, M.; Liu, Z.; You, C.-X.; Wang, D.-M.; Zhai, H.; Hao, Y.-J. Molecular Cloning of Three Malic Acid Related Genes MdPEPC, MdVHA-A, MdcyME and Their Expression Analysis in Apple Fruits. Sci. Hortic. 2009, 122, 404–408. [Google Scholar] [CrossRef]
- Lin, Q.; Wang, C.; Dong, W.; Jiang, Q.; Wang, D.; Li, S.; Chen, M.; Liu, C.; Sun, C.; Chen, K. Transcriptome and Metabolome Analyses of Sugar and Organic Acid Metabolism in Ponkan (Citrus reticulata) Fruit During Fruit Maturation. Gene 2015, 554, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Bauchet, G.; Grenier, S.; Samson, N.; Segura, V.; Kende, A.; Beekwilder, J.; Cankar, K.; Gallois, J.-L.; Gricourt, J.; Bonnet, J.; et al. Identification of Major Loci and Genomic Regions Controlling Acid and Volatile Content in Tomato Fruit: Implications for Flavor Improvement. New Phytol. 2017, 215, 624–641. [Google Scholar] [CrossRef] [PubMed]
- Razifard, H.; Ramos, A.; Della Valle, A.L.; Bodary, C.; Goetz, E.; Manser, E.J.; Li, X.; Zhang, L.; Visa, S.; Tieman, D.; et al. Genomic Evidence for Complex Domestication History of the Cultivated Tomato in Latin America. Mol. Biol. Evol. 2020, 37, 1118–1132. [Google Scholar] [CrossRef]
- Gai, W.; Yang, F.; Yuan, L.; Ul Haq, S.; Wang, Y.; Wang, Y.; Shang, L.; Li, F.; Ge, P.; Dong, H.; et al. Multiple-Model GWAS Identifies Optimal Allelic Combinations of Quantitative Trait Loci for Malic Acid in Tomato. Hortic. Res. 2023, 10, uhad021. [Google Scholar] [CrossRef]
- Ruggieri, V.; Francese, G.; Sacco, A.; D’Alessandro, A.; Rigano, M.M.; Parisi, M.; Milone, M.; Cardi, T.; Mennella, G.; Barone, A. An Association Mapping Approach to Identify Favourable Alleles for Tomato Fruit Quality Breeding. BMC Plant Biol. 2014, 14, 337. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, Y.; Ding, Q.; Huang, X.; Zhang, Y.; Zou, Z.; Li, M.; Cui, L.; Zhang, J. Association Mapping of Main Tomato Fruit Sugars and Organic Acids. Front. Plant Sci. 2016, 7, 1286. [Google Scholar] [CrossRef]
- Gai, W.; Yuan, L.; Yang, F.; Ahiakpa, J.K.; Li, F.; Ge, P.; Zhang, X.; Tao, J.; Wang, F.; Yang, Y.; et al. Genome-Wide Variants and Optimal Allelic Combinations for Citric Acid in Tomato. Hortic. Res. 2024, 11, uhae070. [Google Scholar] [CrossRef]
- Xiaoa, F.; Yang, Z.; Zhua, L. Low Temperature and Weak Light Affect Greenhouse Tomato Growth and Fruit Quality. J. Plant Sci. 2018, 6, 16–24. [Google Scholar]
- Tewolde, F.T.; Lu, N.; Shiina, K.; Maruo, T.; Takagaki, M.; Kozai, T.; Yamori, W. Nighttime Supplemental LED Inter-Lighting Improves Growth and Yield of Single-Truss Tomatoes by Enhancing Photosynthesis in Both Winter and Summer. Front. Plant Sci. 2016, 7, 448. [Google Scholar] [CrossRef]
- Yan, J.; Liu, J.; Yang, S.; Jiang, C.; Liu, Y.; Zhang, N.; Sun, X.; Zhang, Y.; Zhu, K.; Peng, Y.; et al. Light Quality Regulates Plant Biomass and Fruit Quality Through a Photoreceptor-Dependent HY5-LHC/CYCB Module in Tomato. Hortic. Res. 2023, 10, uhad219. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, K.; Wang, X.; Yan, J.; Zhu, H.; Zhang, N.; Wang, Y.; Zhao, Q.; Liu, Y.; Bu, X.; et al. Manipulation of Artificial Light Environment Improves Plant Biomass and Fruit Nutritional Quality in Tomato. J. Adv. Res. 2025, 75, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Zuo, J.; Watkins, C.B.; Wang, Q.; Liang, H.; Zheng, Y.; Liu, M.; Ji, Y. Sugar Accumulation and Fruit Quality of Tomatoes Under Water Deficit Irrigation. Postharvest Biol. Technol. 2023, 195, 112112. [Google Scholar] [CrossRef]
- Obadi, A.; Alharbi, A.; Alomran, A.; Alghamdi, A.G.; Louki, I.; Alkhasha, A.; Alqardaeai, T. Enhancement in Tomato Yield and Quality Using Biochar Amendments in Greenhouse under Salinity and Drought Stress. Plants 2024, 13, 1634. [Google Scholar] [CrossRef]
- Wu, K.; Hu, C.; Wang, J.; Guo, J.; Sun, X.; Tan, Q.; Zhao, X.; Wu, S. Comparative Effects of Different Potassium Sources on Soluble Sugars and Organic Acids in Tomato. Sci. Hortic. 2023, 308, 111601. [Google Scholar] [CrossRef]
- Wan, X.; Zhu, C.; Li, Q.; Su, L.; Li, Y.; Wu, H.; Jiang, W.; Lu, T.; Yu, H. Chloride Modulates Carbohydrate Metabolism and Ethylene Synthesis in Tomato Fruits. Plant J. 2025, 122, e70132. [Google Scholar] [CrossRef]
- Boufeldja, L.; Brandt, D.; Guzman, C.; Vitou, M.; Boudard, F.; Morel, S.; Servent, A.; Dhuique-Mayer, C.; Ollier, L.; Duchamp, O.; et al. Effect of Elevated Carbon Dioxide Exposure on Nutrition-Health Properties of Micro-Tom Tomatoes. Molecules 2022, 27, 3592. [Google Scholar] [CrossRef]
- Karim, M.F.; Hao, P.; Nordin, N.H.B.; Qiu, C.; Zeeshan, M.; Khan, A.A.; Shamsi, I.H. Effects of CO2 Enrichment by Fermentation of CRAM on Growth, Yield and Physiological Traits of Cherry Tomato. Saudi J. Biol. Sci. 2020, 27, 1041–1048. [Google Scholar] [CrossRef]
- Hickey, L.T.; Hafeez, A.N.; Robinson, H.; Jackson, S.A.; Leal-Bertioli, S.C.M.; Tester, M.; Gao, C.; Godwin, I.D.; Hayes, B.J.; Wulff, B.B.H. Breeding Crops to Feed 10 Billion. Nat. Biotechnol. 2019, 37, 744–754. [Google Scholar] [CrossRef]
- Bai, Y.; Dougherty, L.; Li, M.; Fazio, G.; Cheng, L.; Xu, K. A Natural Mutation-Led Truncation in One of the Two Aluminum-Activated Malate Transporter-like Genes at the Ma Locus Is Associated with Low Fruit Acidity in Apple. Mol. Genet. Genom. 2012, 287, 663–678. [Google Scholar] [CrossRef] [PubMed]
- Yeon, J.; Le, N.T.; Heo, J.; Sim, S.-C. Low-Density SNP Markers with High Prediction Accuracy of Genomic Selection for Bacterial Wilt Resistance in Tomato. Front. Plant Sci. 2024, 15, 1402693. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Fu, Y.; Li, M.; Xiong, S.; Huang, L.; Zhang, S.; Zhang, W.; Liang, X.; Wang, W.; Tang, K.; et al. Biofortification of tomatoes with beta-carotene through targeted gene editing. Int. J. Biol. Macromol. 2025, 327 Pt 2, 147396. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.; Li, S.; Shi, Z.; Zou, Y.; Zhang, Y.; Huang, X.; Yang, D.; Yang, Y.; Li, Z.; Xu, C. Engineering Source-Sink Relations by Prime Editing Confers Heat-Stress Resilience in Tomato and Rice. Cell 2025, 188, 530–549.e20. [Google Scholar] [CrossRef]
- Nonaka, S.; Arai, C.; Takayama, M.; Matsukura, C.; Ezura, H. Efficient Increase of Ɣ-Aminobutyric Acid (GABA) Content in Tomato Fruits by Targeted Mutagenesis. Sci. Rep. 2017, 7, 7057. [Google Scholar] [CrossRef]
- Fishman, S.; Génard, M. A Biophysical Model of Fruit Growth: Simulation of Seasonal and Diurnal Dynamics of Mass. Plant Cell Environ. 1998, 21, 739–752. [Google Scholar] [CrossRef]
- Zhou, H.; Kang, S.; Génard, M.; Vercambre, G.; Chen, J. Integrated Model Simulates Bigger, Sweeter Tomatoes under Changing Climate Under Reduced Nitrogen and Water Input. Hortic. Res. 2023, 10, uhad045. [Google Scholar] [CrossRef]
- Beauvoit, B.P.; Colombié, S.; Monier, A.; Andrieu, M.-H.; Biais, B.; Bénard, C.; Chéniclet, C.; Dieuaide-Noubhani, M.; Nazaret, C.; Mazat, J.-P.; et al. Model-Assisted Analysis of Sugar Metabolism Throughout Tomato Fruit Development Reveals Enzyme and Carrier Properties in Relation to Vacuole Expansion. Plant Cell 2014, 26, 3224–3242. [Google Scholar] [CrossRef]
- Chen, J.; Beauvoit, B.; Génard, M.; Colombié, S.; Moing, A.; Vercambre, G.; Gomès, E.; Gibon, Y.; Dai, Z. Modelling Predicts Tomatoes Can Be Bigger and Sweeter If Biophysical Factors and Transmembrane Transports Are Fine-Tuned During Fruit Development. New Phytol. 2021, 230, 1489–1502. [Google Scholar] [CrossRef]
- Chen, K.; Wang, Y.; Zhang, R.; Zhang, H.; Gao, C. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annu. Rev. Plant Biol. 2019, 70, 667–697. [Google Scholar] [CrossRef]
- Holme, I.B.; Gregersen, P.L.; Brinch-Pedersen, H. Induced Genetic Variation in Crop Plants by Random or Targeted Mutagenesis: Convergence and Differences. Front. Plant Sci. 2019, 10, 1468. [Google Scholar] [CrossRef]
- Gao, C. Genome Engineering for Crop Improvement and Future Agriculture. Cell 2021, 184, 1621–1635. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, B.; Zhang, S.; Yao, J.; Chai, S.; Yadav, V.; Athar, H.-R.; Rahman, M.U.; Wang, L.; Wang, X. Ectopic Expression of VvFUS3, B3-Domain Transcription Factor, in Tomato Influences Seed Development via Affecting Endoreduplication and Hormones. Hortic. Plant J. 2022, 8, 351–360. [Google Scholar] [CrossRef]
- Zsögön, A.; Cermak, T.; Voytas, D.; Peres, L.E.P. Genome Editing as a Tool to Achieve the Crop Ideotype and De Novo Domestication of Wild Relatives: Case Study in Tomato. Plant Sci. 2017, 256, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yang, X.; Yu, Y.; Si, X.; Zhai, X.; Zhang, H.; Dong, W.; Gao, C.; Xu, C. Domestication of Wild Tomato Is Accelerated by Genome Editing. Nat. Biotechnol. 2018, 36, 1160–1163. [Google Scholar] [CrossRef]
- Zsögön, A.; Čermák, T.; Naves, E.R.; Notini, M.M.; Edel, K.H.; Weinl, S.; Freschi, L.; Voytas, D.F.; Kudla, J.; Peres, L.E.P. De Novo Domestication of Wild Tomato Using Genome Editing. Nat. Biotechnol. 2018, 36, 1211–1216. [Google Scholar] [CrossRef]
- Du, M.; Sun, C.; Deng, L.; Zhou, M.; Li, J.; Du, Y.; Ye, Z.; Huang, S.; Li, T.; Yu, J.; et al. Molecular Breeding of Tomato: Advances and Challenges. J. Integr. Plant Biol. 2025, 67, 669–721. [Google Scholar] [CrossRef]

| Target Traits | Target Genes | Effect | References |
|---|---|---|---|
| Sugar | TIV1 | Inhibition of gene expression increases sucrose content and reduces fructose content in fruits. | [64] |
| Sugar | SUT2 | Inhibition of gene expression decreases contents of glucose, fructose, and sucrose in tomato fruits. | [65] |
| Sugar | Lin5 | Gene silencing significantly reduces glucose and fructose contents in tomato fruit. | [38] |
| Sugar | AGPase | Upregulation of gene expression increases soluble sugar content. | [72] |
| Sugar | SlVIF | Overexpression reduces sucrose accumulation and hexose content, whereas suppression increases hexose accumulation. | [73] |
| Sugar | RIN | Regulation of the vacuolar invertase gene SlVI and its repressor SlVIF controls sucrose metabolism and fruit ripening. | [73] |
| Sugar | SlNAP2 | Suppression of gene expression increases soluble sugar and TSS levels. | [78] |
| Sugar | SlFgr | Overexpression decreases glucose content but increases fructose content. | [67] |
| Sugar | SlARF10 | Overexpression significantly increases starch, fructose, and sucrose accumulation in fruits. | [79] |
| Sugar | MdHT2.2/SlLIN5 | Allogeneic expression of MdHT2.2 reduces sucrose concentration but increases glucose and fructose. Deletion of SlLIN5 reduces glucose, fructose, and TSS contents while increasing sucrose concentration. | [68] |
| Sugar | SlINVINH1/SlVPE5 | Deletion of SlINVINH1 or SlVPE5 increases glucose, fructose, and TSS contents. Double deletion further enhances these contents. | [39] |
| Sugar | SlSWEET7a/SlSWEET14 | Gene silencing increases sugar content in ripe fruits. | [66] |
| Sugar | MdERDL6-1 | Overexpression increases glucose, fructose, and sucrose contents. | [70] |
| Sugar | SlTST1/SlTST2 | The double mutant lines of SlTST1 and SlTST2 decrease glucose by 40%, fructose by 50%, sucrose by 50%, and TSS by 40%. | [70] |
| Sugar | SlbZIP1 | Deletion of inhibitory region enhances hexose and TSS contents. | [80] |
| Sugar | STP1 | Gene knockout reduces TSS, glucose, fructose, and sucrose contents. | [53] |
| Sugar | SlVI | Gene knockout increases sucrose and TSS contents in fruits. | [81] |
| Sugar | SlCDPK27/26 | Gene knockout increases glucose and fructose levels by 30%. | [77] |
| Sugar; Organic acid | SlC2H2-71 | Gene knockout increases TSS, fructose, glucose, MA, and CA contents while decreasing sucrose content. | [82] |
| Sugar | HY5 | Overexpression increases fructose, glucose, and TSS contents. | [83] |
| Sugar | MdWRKY126 | Overexpression promotes sucrose accumulation and reduces hexose accumulation. | [84] |
| Organic acid | SlAREB1 | Overexpression increases organic acid accumulation. | [55] |
| Malic acid | SlALMT9 | Release of transcriptional repression promotes high accumulation of MA in fruits. | [85] |
| Organic acid | PEPCK | Gene silencing increases the malic acid content while reducing the glucose and fructose contents in fruits. | [86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Ji, S.; Pang, S.; Lu, Y.; Li, S.; Xu, W. Regulatory Mechanisms of Total Soluble Solids in Tomato: From QTL Mapping to Gene Editing. Foods 2025, 14, 3692. https://doi.org/10.3390/foods14213692
Xu M, Ji S, Pang S, Lu Y, Li S, Xu W. Regulatory Mechanisms of Total Soluble Solids in Tomato: From QTL Mapping to Gene Editing. Foods. 2025; 14(21):3692. https://doi.org/10.3390/foods14213692
Chicago/Turabian StyleXu, Minghua, Shujing Ji, Shengqun Pang, Yongen Lu, Shouming Li, and Wei Xu. 2025. "Regulatory Mechanisms of Total Soluble Solids in Tomato: From QTL Mapping to Gene Editing" Foods 14, no. 21: 3692. https://doi.org/10.3390/foods14213692
APA StyleXu, M., Ji, S., Pang, S., Lu, Y., Li, S., & Xu, W. (2025). Regulatory Mechanisms of Total Soluble Solids in Tomato: From QTL Mapping to Gene Editing. Foods, 14(21), 3692. https://doi.org/10.3390/foods14213692

