Bibliometric Analysis of the Scientific Productivity on Functional Properties and Enzymatic Hydrolysis of Proteins from By-Products
Abstract
1. Introduction
2. Materials and Methods
- Technological processes: related to enzymatic protein hydrolysis (“enzymatic hydrolysis of proteins”, “protein enzymatic hydrolysis”).
- Functional properties: focused on bioactive compounds and protein functionality (“functional properties”, “bioactive properties”, “bioactive peptides”).
- Raw material and sustainability: focused on by-product valorization (“by-product”, “byproduct”, “waste valorization”).
3. Bibliometric Analysis
3.1. Evolution of Publications and Research Lines
3.2. Most Relevant Keywords
3.3. Thematic Map of Research Domains
- Cluster 1—functional properties
- Cluster 2—bioactive peptides
- Cluster 3—antioxidant
- Cluster 4—sustainability
- Cluster 5—protein extraction
3.4. Most Cited Articles Within the Research Theme
3.5. Scientific Productivity by Authors, Journals, Institutions, and Countries
3.6. Co-Citation Analysis of Scientific Journals
3.7. International Collaboration
3.8. Trifactor Analysis (Three-Field Plot)
3.9. Limitations and Future Work
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Udenigwe, C.C.; Aluko, R.E. Food Protein-Derived Bioactive Peptides: Production, Processing, and Potential Health Benefits. J. Food Sci. 2012, 77, R11–R24. [Google Scholar] [CrossRef]
- Korhonen, H.; Pihlanto, A. Bioactive Peptides: Production and Functionality. Int. Dairy J. 2006, 16, 945–960. [Google Scholar] [CrossRef]
- Garcia-Mora, P.; Peñas, E.; Frias, J.; Zieliński, H.; Wiczkowski, W.; Zielińska, D.; Martínez-Villaluenga, C. High-Pressure-Assisted Enzymatic Release of Peptides and Phenolics Increases Angiotensin Converting Enzyme i Inhibitory and Antioxidant Activities of Pinto Bean Hydrolysates. J. Agric. Food Chem. 2016, 64, 1730–1740. [Google Scholar] [CrossRef]
- Hernández-Ledesma, B.; Del Mar Contreras, M.; Recio, I. Antihypertensive Peptides: Production, Bioavailability and Incorporation into Foods. Adv. Colloid Interface Sci. 2011, 165, 23–35. [Google Scholar] [CrossRef]
- Wang, M.; Ettelaie, R.; Sarkar, A. Enzymatic Hydrolysis of Legume Proteins: Lessons on Surface Property Outcomes. Curr. Opin. Food Sci. 2025, 62, 101259. [Google Scholar] [CrossRef]
- Fadimu, G.J.; Le, T.T.; Gill, H.; Farahnaky, A.; Olatunde, O.O.; Truong, T. Enhancing the Biological Activities of Food Protein-Derived Peptides Using Non-Thermal Technologies: A Review. Foods 2022, 11, 1823. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, E.; Baraniak, B.; Karaś, M. Antioxidant and Anti-Inflammatory Activities of Hydrolysates and Peptide Fractions Obtained by Enzymatic Hydrolysis of Selected Heat-Treated Edible Insects. Nutrients 2017, 9, 970. [Google Scholar] [CrossRef] [PubMed]
- Lafarga, T.; Hayes, M. Bioactive Peptides from Meat Muscle and By-Products: Generation, Functionality and Application as Functional Ingredients. Meat Sci. 2014, 98, 227–239. [Google Scholar] [CrossRef]
- Mora, L.; Reig, M.; Toldrá, F. Bioactive Peptides Generated from Meat Industry By-Products. Food Res. Int. 2014, 65, 344–349. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Nuñez, S.M.; Valencia, P.; Solís, T.; Valdivia, S.; Cárdenas, C.; Guzman, F.; Pinto, M.; Almonacid, S. Enzymatic Hydrolysis of Salmon Frame Proteins Using a Sequential Batch Operational Strategy: An Improvement in Water-Holding Capacity. Foods 2024, 13, 1378. [Google Scholar] [CrossRef]
- Gill, J.M.; Hussain, S.M.; Ali, S.; Ghafoor, A.; Adrees, M.; Nazish, N.; Naeem, A.; Naeem, E.; Alshehri, M.A.; Rashid, E. Fish Waste Biorefinery: A Novel Approach to Promote Industrial Sustainability. Bioresour. Technol. 2025, 419, 132050. [Google Scholar] [CrossRef]
- Begum, N.; Khan, Q.U.; Al-Dalali, S.; Lu, D.; Yang, F.; Li, J.; Wu, D.; Li, R.; Wang, J.; Liu, D.; et al. Process Optimization and Identification of Antioxidant Peptides from Enzymatic Hydrolysate of Bovine Bone Extract, a Potential Source in Cultured Meat. Front. Sustain. Food Syst. 2023, 7, 1345833. [Google Scholar] [CrossRef]
- Farias, T.C.; de Souza, T.S.P.; Fai, A.E.C.; Koblitz, M.G.B. Critical Review for the Production of Antidiabetic Peptides by a Bibliometric Approach. Nutrients 2022, 14, 4275. [Google Scholar] [CrossRef]
- Chi, C.F.; Wang, B. Marine Bioactive Peptides—Structure, Function and Application. Mar. Drugs 2023, 21, 275. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Sila, A.; Bougatef, A. Antioxidant Peptides from Marine By-Products: Isolation, Identification and Application in Food Systems. A Review. J. Funct. Foods 2016, 21, 10–26. [Google Scholar] [CrossRef]
- Lamboni, L.; Gauthier, M.; Yang, G.; Wang, Q. Silk Sericin: A Versatile Material for Tissue Engineering and Drug Delivery. Biotechnol. Adv. 2015, 33, 1855–1867. [Google Scholar] [CrossRef] [PubMed]
- Yadav, J.S.S.; Yan, S.; Pilli, S.; Kumar, L.; Tyagi, R.D.; Surampalli, R.Y. Cheese Whey: A Potential Resource to Transform into Bioprotein, Functional/Nutritional Proteins and Bioactive Peptides. Biotechnol. Adv. 2015, 33, 756–774. [Google Scholar] [CrossRef]
- Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. The Seed of Industrial Hemp (Cannabis sativa L.): Nutritional Quality and Potential Functionality for Human Health and Nutrition. Nutrients 2020, 12, 1935. [Google Scholar] [CrossRef]
- Coppola, D.; Lauritano, C.; Palma Esposito, F.; Riccio, G.; Rizzo, C.; De Pascale, D. Fish Waste: From Problem to Valuable Resource. Mar. Drugs 2021, 19, 116. [Google Scholar] [CrossRef]
- Moaveni, S.; Salami, M.; Khodadadi, M.; McDougall, M.; Emam-Djomeh, Z. Investigation of S.Limacinum Microalgae Digestibility and Production of Antioxidant Bioactive Peptides. LWT 2022, 154, 112468. [Google Scholar] [CrossRef]
- De Dios-Avila, N.; Tirado-Gallegos, J.M.; Rios-Velasco, C.; Luna-Esquivel, G.; Isiordia-Aquino, N.; Zamudio-Flores, P.B.; Estrada-Virgen, M.O.; Cambero-Campos, O.J. Physicochemical, Structural, Thermal and Rheological Properties of Flour and Starch Isolated from Avocado Seeds of Landrace and Hass Cultivars. Molecules 2022, 27, 910. [Google Scholar] [CrossRef]
- García, J.M.; Udenigwe, C.C.; Duitama, J.; Barrios, A.F.G. Peptidomic Analysis of Whey Protein Hydrolysates and Prediction of Their Antioxidant Peptides. Food Sci. Hum. Wellness 2022, 11, 349–355. [Google Scholar] [CrossRef]
- Karami, Z.; Akbari-adergani, B. Bioactive Food Derived Peptides: A Review on Correlation between Structure of Bioactive Peptides and Their Functional Properties. J. Food Sci. Technol. 2019, 56, 535–547. [Google Scholar] [CrossRef]
- Hartmann, R.; Meisel, H. Food-Derived Peptides with Biological Activity: From Research to Food Applications. Curr. Opin. Biotechnol. 2007, 18, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Nevara, G.A.; Muhammad, S.K.S.; Zawawi, N.; Mustapha, N.A.; Karim, R. Dietary Fiber: Fractionation, Characterization and Potential Sources from Defatted Oilseeds. Foods 2021, 10, 754. [Google Scholar] [CrossRef]
- Zhan, F.; Luo, J.; Sun, Y.; Hu, Y.; Fan, X.; Pan, D. Antioxidant Activity and Cell Protection of Glycosylated Products in Different Reducing Sugar Duck Liver Protein Systems. Foods 2023, 12, 540. [Google Scholar] [CrossRef]
- Beltrán-Borbor, K.K.; Ortega-Suasnavas, A.D.; Ordóñez-Pazmiño, M.V.; Tinoco-Caicedo, D.L. Utilization of Brewer’s Spent Grain in Extrusion Processing: A Review. Appl. Food Res. 2025, 5, 100868. [Google Scholar] [CrossRef]
- Poojary, M.M.; Hellwig, M.; Henle, T.; Lund, M.N. Covalent Bonding between Polyphenols and Proteins: Synthesis of Caffeic Acid-Cysteine and Chlorogenic Acid-Cysteine Adducts and Their Quantification in Dairy Beverages. Food Chem. 2023, 403, 134406. [Google Scholar] [CrossRef]
- Dias Bertoco Júnior, F.; Marusa Pergo Coelho, É.; Feiten, M.C.; Bolanho Barros, B.C. Ultrasound-Assisted Extraction of Phenolic Compounds and Flavonoids from Banana Inflorescence and Characterization of Its Fibrous Residue. Separations 2025, 12, 109. [Google Scholar] [CrossRef]
- Pešić, M.B.; Pešić, M.M.; Bezbradica, J.; Stanojević, A.B.; Ivković, P.; Milinčić, D.D.; Demin, M.; Kostić, A.Ž.; Dojčinović, B.; Stanojević, S.P. Okara-Enriched Gluten-Free Bread: Nutritional, Antioxidant and Sensory Properties. Molecules 2023, 28, 4098. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Mozafari, L.; Martínez-Zamora, L.; Lorca, F.; García-Gómez, P.; Artés-Hernández, F. Obtaining Carotenoid Encapsulates with Polysaccharides Carriers after Pilot Scale Accelerated Solvent Extraction and Ultrasound-Assisted Extraction from Industrial Tomato by-Product. Food Res. Int. 2025, 203, 115908. [Google Scholar] [CrossRef]
- Tian, Y.; Lu, Y.; Zhang, Y.; Hou, X.; Zhang, Y. Extraction and Characterization of Natural Colorant from Melia Azedarach Bark and Its Utilization in Dyeing and Finishing of Wool. Sustain. Chem. Pharm. 2022, 27, 100647. [Google Scholar] [CrossRef]
- De Paula, M.; Latorres, J.M.; Martins, V.G. Potential Valorization Opportunities for Brewer’s Spent Grain. Eur. Food Res. Technol. 2023, 249, 2471–2483. [Google Scholar] [CrossRef]
- Almeida, P.F.; Lannes, S.C.D.S. Effects of Chicken By-product Gelatin on the Physicochemical Properties and Texture of Chocolate Spread. J. Texture Stud. 2017, 48, 392–402. [Google Scholar] [CrossRef]
- Richards, J.; Lammert, A.; Madden, J.; Cahn, A.; Kang, I.; Amin, S. Addition of Carrot Pomace to Enhance the Physical, Sensory, and Functional Properties of Beef Patties. Foods 2024, 13, 3910. [Google Scholar] [CrossRef]
- Rahim Monfared, M.; Nouri, L.; Mohammadi Nafchi, A. The Effects of Sesame Protein Isolate and Transglutaminase Enzyme on the Quality Characteristics of Gluten-Free Batter and Cake. Food Meas. 2023, 17, 4881–4891. [Google Scholar] [CrossRef]
- Helstad, A.; Marefati, A.; Ahlström, C.; Rayner, M.; Purhagen, J.; Östbring, K. High-Pressure Pasteurization of Soy Okara. Foods 2023, 12, 3736. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Gao, J.; Kan, X. Biblioshiny-R Application on Bioinformatics Education Research (2004–2023). Curric. Teach. Methodol. 2024, 7, 192–199. [Google Scholar] [CrossRef]
- Masip Macía, Y.; Nuñez González, S.M.; Villazon Carmona, E.J.; Burgos Pezoa, M. Bibliometric Analysis of Renewable Energy Strategies for Mitigating the Impact of Severe Droughts on Electrical Systems. Appl. Sci. 2025, 15, 2060. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; He, D.; Li, S.; Xu, Y. Optimization of Enzymatic Hydrolysis of Perilla Meal Protein for Hydrolysate with High Hydrolysis Degree and Antioxidant Activity. Molecules 2022, 27, 1079. [Google Scholar] [CrossRef]
- Bonifacino, C.; Franco--Fraguas, E.; López, D.N.; Wagner, J.R.; Cabezas, D.M.; Panizzolo, L.A.; Palazolo, G.G.; Abirached, C. Emulsifying Properties of Defatted Rice Bran Concentrates Enriched in Fiber and Proteins. J. Sci. Food Agric. 2020, 100, 1336–1343. [Google Scholar] [CrossRef]
- Abd-Talib, N.; Yaji, E.L.A.; Wahab, N.S.A.; Razali, N.; Len, K.Y.T.; Roslan, J.; Saari, N.; Pa’ee, K.F. Bioactive Peptides and Its Alternative Processes: A Review. Biotechnol. Bioprocess Eng. 2022, 27, 306–335. [Google Scholar] [CrossRef]
- Peres Fabbri, L.; Cavallero, A.; Vidotto, F.; Gabriele, M. Bioactive Peptides from Fermented Foods: Production Approaches, Sources, and Potential Health Benefits. Foods 2024, 13, 3369. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Gui, R.; Li, N.; Wu, Y.; Chen, J.; Wu, X.; Qin, Z.; Yang, S.-T.; Li, X. Production of Soluble Dietary Fibers and Red Pigments from Potato Pomace in Submerged Fermentation by Monascus Purpureus. Process Biochem. 2021, 111, 159–166. [Google Scholar] [CrossRef]
- De La Peña-Armada, R.; Villanueva-Suárez, M.J.; Molina-García, A.D.; Rupérez, P.; Mateos-Aparicio, I. Novel Rich-in-Soluble Dietary Fiber Apple Ingredient Obtained from the Synergistic Effect of High Hydrostatic Pressure Aided by Celluclast®. LWT 2021, 146, 111421. [Google Scholar] [CrossRef]
- Srinivasu, S.R.; Eligar, S.M. Physico-Chemical and Techno-Functional Characterization of Quinoa Bran Protein Concentrate. J. Cereal Sci. 2024, 116, 103835. [Google Scholar] [CrossRef]
- Jiang, Y.; Qin, Y.; Chandrapala, J.; Majzoobi, M.; Brennan, C.; Sun, J.; Zeng, X.-A.; Sun, B. Investigation of Interactions between Jiuzao Glutelin with Resveratrol, Quercetin, Curcumin, and Azelaic and Potential Improvement on Physicochemical Properties and Antioxidant Activities. Food Chem. X 2024, 22, 101378. [Google Scholar] [CrossRef]
- Skenderidis, P.; Leontopoulos, S.; Petrotos, K.; Giavasis, I. Optimization of Vacuum Microwave-Assisted Extraction of Pomegranate Fruits Peels by the Evaluation of Extracts’ Phenolic Content and Antioxidant Activity. Foods 2020, 9, 1655. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Q.; Qu, Y.; Gras, S.L.; Kentish, S.E. Separation Technologies for Whey Protein Fractionation. Food Eng. Rev. 2023, 15, 438–465. [Google Scholar] [CrossRef]
- Islam, M.d.R.; Yuhi, T.; Meng, D.; Yoshioka, T.; Ogata, Y.; Ura, K.; Takagi, Y. Purity and Properties of Gelatins Extracted from the Head Tissue of the Hybrid Kalamtra Sturgeon. LWT 2021, 142, 110944. [Google Scholar] [CrossRef]
- Carrara, M.; Kelly, M.T.; Munier, S.; Paradis, C.; Belmiloudi, S.; Margout-Jantac, D. Validation of Simple UPLC-MS-UV and HPLC-Fluorescence Methods for the Determination of Oleacein in Olive Mill Wastewater. Application in the Analysis of Oleacein in French Cultivars. ACS Food Sci. Technol. 2024, 4, 578–585. [Google Scholar] [CrossRef]
- Villalón-López, D.N.; Martínez-Padilla, L.P. Ultrasound-Assisted Process to Improve Proteins Recovery from Industrial Canola and Soybean Byproducts. J. Food Sci. Technol. 2025, 62, 1350–1361. [Google Scholar] [CrossRef]
- Karabulut, G.; Yildiz, S.; Karaca, A.C.; Yemiş, O. Ultrasound and Enzyme-pretreated Extraction for the Valorization of Pea Pod Proteins. J. Food Process Eng. 2023, 46, e14452. [Google Scholar] [CrossRef]
- De Carvalho, M.D.; De Andrade, C.C.P.; Sato, A.C.K. Dynamic High-Pressure Microfluidization Reduces Aggregation and Enhances Functional Properties of Flaxseed Protein Isolates Obtained by Alkaline Extraction. Innov. Food Sci. Emerg. Technol. 2024, 96, 103793. [Google Scholar] [CrossRef]
- Jirarat, W.; Kaewsalud, T.; Yakul, K.; Rachtanapun, P.; Chaiyaso, T. Sustainable Valorization of Coffee Silverskin: Extraction of Phenolic Compounds and Proteins for Enzymatic Production of Bioactive Peptides. Foods 2024, 13, 1230. [Google Scholar] [CrossRef]
- Dang, T.T.; Vasanthan, T. Modification of Rice Bran Dietary Fiber Concentrates Using Enzyme and Extrusion Cooking. Food Hydrocoll. 2019, 89, 773–782. [Google Scholar] [CrossRef]
- Yoshida, B.Y.; Da Silva, P.R.C.; Prudencio, S.H. Extrusion or Alkaline Hydrogen Peroxide Prior to Enzymatic Hydrolysis by a Carbohydrase Mixture Improves Techno-functional Properties of Okara. Int. J. Food Sci. Technol. 2023, 58, 3752–3759. [Google Scholar] [CrossRef]
- Hayta, M.; Benli, B.; İşçimen, E.M.; Kaya, A. Optimization of Antihypertensive and Antioxidant Hydrolysate Extraction from Rice Bran Proteins Using Ultrasound Assisted Enzymatic Hydrolysis. Food Meas. 2020, 14, 2578–2589. [Google Scholar] [CrossRef]
- Toomer, O.T. A Comprehensive Review of the Value-Added Uses of Peanut (Arachis hypogaea) Skins and by-Products. Crit. Rev. Food Sci. Nutr. 2020, 60, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro Oliveira, A.; Chaves Ribeiro, A.E.; Resende Oliveira, É.; Da Silva Ana Caroline, M.; Soares Soares Júnior, M.; Caliari, M. Broken Rice Grains Pregelatinized Flours Incorporated with Lyophilized Açaí Pulp and the Effect of Extrusion on Their Physicochemical Properties. J. Food Sci. Technol. 2019, 56, 1337–1348. [Google Scholar] [CrossRef]
- Şen Arslan, H. Eco-friendly Microwave-assisted Extraction of Fruit and Vegetable Peels Demonstrates Great Biofunctional Properties. Food Sci. Nutr. 2024, 12, 8930–8938. [Google Scholar] [CrossRef]
- Asghar, A.; Afzaal, M.; Saeed, F.; Ahmed, A.; Ateeq, H.; Shah, Y.A.; Islam, F.; Hussain, M.; Akram, N.; Shah, M.A. Valorization and Food Applications of Okara (Soybean Residue): A Concurrent Review. Food Sci. Nutr. 2023, 11, 3631–3640. [Google Scholar] [CrossRef]
- Vásquez-Villanueva, R.; Marina, M.L.; García, M.C. Revalorization of a Peach (Prunus persica (L.) Batsch) Byproduct: Extraction and Characterization of ACE-Inhibitory Peptides from Peach Stones. J. Funct. Foods 2015, 18, 137–146. [Google Scholar] [CrossRef]
- Akhila, K.; Sultana, A.; Ramakanth, D.; Gaikwad, K.K. Monitoring Freshness of Chicken Using Intelligent pH Indicator Packaging Film Composed of Polyvinyl Alcohol/Guar Gum Integrated with Ipomoea Coccinea Extract. Food Biosci. 2023, 52, 102397. [Google Scholar] [CrossRef]
- Soladoye, O.P.; Fu, Y.; Manuel, J.; Bello, I.E.; Mbiriri, D.T.; Oyedeji, A.B.; Tayengwa, T.; Wu, J. Recent Advances in Protein Extraction Techniques for Meat Secondary Streams. Sustainability 2025, 17, 5110. [Google Scholar] [CrossRef]
- Toldrá, F.; Mora, L.; Reig, M. New Insights into Meat By-Product Utilization. Meat Sci. 2016, 120, 54–59. [Google Scholar] [CrossRef]
- Brandelli, A.; Daroit, D.J.; Corrêa, A.P.F. Whey as a Source of Peptides with Remarkable Biological Activities. Food Res. Int. 2015, 73, 149–161. [Google Scholar] [CrossRef]
- Chi, C.-F.; Wang, B.; Wang, Y.-M.; Zhang, B.; Deng, S.-G. Isolation and Characterization of Three Antioxidant Peptides from Protein Hydrolysate of Bluefin Leatherjacket (Navodon septentrionalis) Heads. J. Funct. Foods 2015, 12, 1–10. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Chanet, G.; Morin-Crini, N. Applications of Hemp in Textiles, Paper Industry, Insulation and Building Materials, Horticulture, Animal Nutrition, Food and Beverages, Nutraceuticals, Cosmetics and Hygiene, Medicine, Agrochemistry, Energy Production and Environment: A Review. Environ. Chem. Lett. 2020, 18, 1451–1476. [Google Scholar] [CrossRef]
- Ullah, I.; Yin, T.; Xiong, S.; Zhang, J.; Din, Z.; Zhang, M. Structural Characteristics and Physicochemical Properties of Okara (Soybean residue) Insoluble Dietary Fiber Modified by High-Energy Wet Media Milling. LWT—Food Sci. Technol. 2017, 82, 15–22. [Google Scholar] [CrossRef]
- Pires, A.F.; Marnotes, N.G.; Rubio, O.D.; Garcia, A.C.; Pereira, C.D. Dairy By-Products: A Review on the Valorization of Whey and Second Cheese Whey. Foods 2021, 10, 1067. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Kaur, K. Development, Formulation and Shelf Life Evaluation of Baby Corn Soup Mix from Industrial by-Products. J. Food Sci. Technol. 2020, 57, 1917–1925. [Google Scholar] [CrossRef]
- Cai, X.-L.; Chen, Y.; Liu, L.; Qin, L.-K.; Jia, Y.-L. Structures and Interactions of Bamboo Shoot Protein-Shellac Complexes Prepared by pH-Driven Method. Int. J. Biol. Macromol. 2025, 298, 139966. [Google Scholar] [CrossRef]
- Amoah, I.; Taarji, N.; Johnson, P.-N.T.; Barrett, J.; Cairncross, C.; Rush, E. Plant-Based Food By-Products: Prospects for Valorisation in Functional Bread Development. Sustainability 2020, 12, 7785. [Google Scholar] [CrossRef]
- Dai, Y.; Zhao, J.; Liang, H.; Deng, Q.; Wan, C.; Li, B.; Zhou, B. Desalination of Salted Duck Egg White Assisted by Gelatin: Foaming and Interface Properties of the Mixed System. Food Hydrocoll. 2022, 124, 107260. [Google Scholar] [CrossRef]
- Liutyi, R.V.; Solonenko, L.I.; Osipenko, I.O.; Fedorov, M.M.; Moroz, B.I. Physicochemical Structure Features of Refractory Compositions with Inorganic Binders. Phys. Chem. Solid State 2022, 23, 612–619. [Google Scholar] [CrossRef]
- Naghdi, S.; Lorenzo, J.M.; Mirnejad, R.; Ahmadvand, M.; Moosazadeh Moghaddam, M. Bioactivity Evaluation of Peptide Fractions from Bighead Carp (Hypophthalmichthys nobilis) Using Alcalase and Hydrolytic Enzymes Extracted from Oncorhynchus Mykiss and Their Potential to Develop the Edible Coats. Food Bioprocess Technol. 2023, 16, 1128–1148. [Google Scholar] [CrossRef]
- Osorio, L.L.D.R.; Flórez-López, E.; Grande-Tovar, C.D. The Potential of Selected Agri-Food Loss and Waste to Contribute to a Circular Economy: Applications in the Food, Cosmetic and Pharmaceutical Industries. Molecules 2021, 26, 515. [Google Scholar] [CrossRef]
- Zamora-Sillero, J.; Gharsallaoui, A.; Prentice, C. Peptides from Fish By-Product Protein Hydrolysates and Its Functional Properties: An Overview. Mar. Biotechnol. 2018, 20, 118–130. [Google Scholar] [CrossRef]
- Wen, L.; Zhang, Z.; Rai, D.; Sun, D.; Tiwari, B.K. Ultrasound-assisted Extraction (UAE) of Bioactive Compounds from Coffee Silverskin: Impact on Phenolic Content, Antioxidant Activity, and Morphological Characteristics. J. Food Process Eng. 2019, 42, e13191. [Google Scholar] [CrossRef]
- Marson, G.V.; De Castro, R.J.S.; Machado, M.T.D.C.; Da Silva Zandonadi, F.; Barros, H.D.D.F.Q.; Maróstica Júnior, M.R.; Sussulini, A.; Hubinger, M.D. Proteolytic Enzymes Positively Modulated the Physicochemical and Antioxidant Properties of Spent Yeast Protein Hydrolysates. Process Biochem. 2020, 91, 34–45. [Google Scholar] [CrossRef]
- Wang, J.; Tang, J.; Ruan, S.; Lv, R.; Zhou, J.; Tian, J.; Cheng, H.; Xu, E.; Liu, D. A Comprehensive Review of Cereal Germ and Its Lipids: Chemical Composition, Multi-Objective Process and Functional Application. Food Chem. 2021, 362, 130066. [Google Scholar] [CrossRef]
- Hadidi, M.; Amoli, P.I.; Jelyani, A.Z.; Hasiri, Z.; Rouhafza, A.; Ibarz, A.; Khaksar, F.B.; Tabrizi, S.T. Polysaccharides from Pineapple Core as a Canning By-Product: Extraction Optimization, Chemical Structure, Antioxidant and Functional Properties. Int. J. Biol. Macromol. 2020, 163, 2357–2364. [Google Scholar] [CrossRef] [PubMed]
- İşçimen, E.M.; Hayta, M. Optimisation of Ultrasound Assisted Extraction of Rice Bran Proteins: Effects on Antioxidant and Antiproliferative Properties. Qual. Assur. Saf. Crops Foods 2018, 10, 165–174. [Google Scholar] [CrossRef]
- Igual, M.; Moreau, F.; García-Segovia, P.; Martínez-Monzó, J. Valorization of Beetroot By-Products for Producing Value-Added Third Generation Snacks. Foods 2023, 12, 176. [Google Scholar] [CrossRef]
- Kasiwut, J.; Youravong, W.; Adulyatham, P.; Sirinupong, N. Angiotensin I-Converting Enzyme Inhibitory and Ca-Binding Activities of Peptides Prepared from Tuna Cooking Juice and Spleen Proteases. Int. J. Food Sci. Technol. 2015, 50, 389–395. [Google Scholar] [CrossRef]
- Guo, C.; Zhao, X.; Yang, Y.; Li, M.; Yu, L. Effect of Limited Enzymatic Hydrolysis on Structural and Functional Properties of Elaeagnus Mollis Oil Meal Protein. Foods 2022, 11, 3393. [Google Scholar] [CrossRef]
- Rojcewicz, K.; Dajnowiec, F.; Oksiuta, Z. Modification of Fountain Bed Dryer for Sawdust Drying for Fuel Pellets Production. Dry. Technol. 2023, 41, 1386–1396. [Google Scholar] [CrossRef]
- Sorokina, L.; Rieder, A.; Koga, S.; Afseth, N.K.; Lima, R.D.C.L.; Wilson, S.R.; Wubshet, S.G. Multivariate Correlation of Infrared Fingerprints and Molecular Weight Distributions with Bioactivity of Poultry By-Product Protein Hydrolysates. J. Funct. Foods 2022, 95, 105170. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, Y.; Yang, X.; Wang, P.; Hu, S.; Li, J. Recovery of Proteins from Squid By-Products with Enzymatic Hydrolysis and Increasing the Hydrolysate’s Bioactivity by Maillard Reaction. J. Aquat. Food Prod. Technol. 2018, 27, 900–911. [Google Scholar] [CrossRef]
- Wang, K.; Xu, Y.; Huang, H.; Peng, D.; Chen, J.; Li, P.; Du, B. Porcupine Quills Keratin Peptides Induces G0/G1 Cell Cycle Arrest and Apoptosis via P53/P21 Pathway and Caspase Cascade Reaction in MCF-7 Breast Cancer Cells. J. Sci. Food Agric. 2024, 104, 1741–1755. [Google Scholar] [CrossRef] [PubMed]
- Sorita, G.D.; De Oliveira, A.; Moreira, T.F.M.; Leimann, F.V.; Ferreira, S.R.S. Green-Based Processes Applied for Valorization of Peanut by-Product: In Vitro Evaluation of Antioxidant and Enzymatic Inhibition Capacities. J. Supercrit. Fluids 2022, 186, 105602. [Google Scholar] [CrossRef]
- Kim, D.-R.; Jung, Y.; Rho, S.-J.; Kim, Y.-R. Sonication of Sesame Meal Protein Isolates Modified Its Microstructural and Functional Properties. LWT 2023, 186, 115242. [Google Scholar] [CrossRef]
- Daba, S.D.; McGee, R.J.; Morris, C.F. Trait Associations and Genetic Variability in Field Pea (Pisum sativum L.): Implications in Variety Development Process. Cereal Chem. 2022, 99, 355–367. [Google Scholar] [CrossRef]
- Kaur, B.; Panesar, P.S.; Thakur, A. Response Surface Optimization, Kinetic Modeling, and Thermodynamic Study for Ultrasound-Assisted Extraction of Dietary Fiber from Mango Peels and Its Structural Characterization. Biomass Conv. Bioref. 2025, 15, 8137–8151. [Google Scholar] [CrossRef]
- Reggi, S.; Frazzini, S.; Pedrazzi, S.; Ghidoli, M.; Torresani, M.C.; Puglia, M.; Morselli, N.; Guagliano, M.; Cristiani, C.; Pilu, S.R.; et al. Metabolomic Insights into the Potential of Chestnut Biochar as a Functional Feed Ingredient. Appl. Sci. 2025, 15, 1084. [Google Scholar] [CrossRef]
- Alvarez, P.A.; Emond, C.; Gomaa, A.; Remondetto, G.E.; Subirade, M. Predictive Response Surface Model for Heat-Induced Rheological Changes and Aggregation of Whey Protein Concentrate. J. Food Sci. 2015, 80, E326–E333. [Google Scholar] [CrossRef]
- Borges, L.A.; Ramos, K.K.; Felisberto, M.H.F.; Franciosi, E.R.N.; Efraim, P. Babassu Mesocarp: A Sustainable Source for Obtaining Starch and New Products. Starch Stärke 2023, 75, 2200203. [Google Scholar] [CrossRef]
- Hew, M.Q.; Lim, C.; Gooi, H.H.; Lim, I.K.J.; An, H.; Chong, C.S.; Lam, M.Q.; Ee, K.Y. Integrating in Silico Analysis and Submerged Fermentation to Liberate Antioxidant Peptides from Soy Sauce Cake with Halophilic Virgibacillus Sp. CD6. Food Meas. 2024, 18, 7418–7430. [Google Scholar] [CrossRef]
- Caraballo, S.M.; Trültzsch, S.; Struck, S.; Rohm, H. Dry Fractionation of Sunflower Press Cake as Tool to Improve Its Technofunctional Properties. LWT 2024, 214, 117148. [Google Scholar] [CrossRef]
- Raikos, V.; Neacsu, M.; Duthie, G.; Nicol, F.; Reid, M.; Cantlay, L.L.; Ranawana, V. Proteomic and Glucosinolate Profiling of Rapeseed Isolates from Meals Produced by Different Oil Extraction Processes: PROFILING OF RAPESEED MEALS EXTRACTS. J. Food Process. Preserv. 2017, 41, e13060. [Google Scholar] [CrossRef]
- Zhang, Y.; Kim, E.H.-J.; Serventi, L. Evaluation of the Protein Profile and Emulsifying Properties of Legume Wastewater as Emulsifier in Circular Food Applications. LWT 2024, 202, 116320. [Google Scholar] [CrossRef]
- Peñaranda-López, A.L.; Brito-de La Fuente, E.; Torrestiana-Sánchez, B. Fractionation of Hydrolysates from Concentrated Lecithin Free Egg Yolk Protein Dispersions by Ultrafiltration. Food Bioprod. Process. 2020, 123, 209–216. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Santivarangkna, C.; Rajput, M.S.; Benjakul, S.; Maqsood, S. Valorization of Fish Byproducts: Sources to End-product Applications of Bioactive Protein Hydrolysate. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1803–1842. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.F.T.D.; Barbosa, M.A.P.; Marinho, T.A.D.F.; Lima, G.C.; Santos, W.L.D.; Espindola, M.T.A.; Soares, L.B.F.; Gomes, J.E.G.; Moreira, K.A. Ten Years of Research on Bioactive Peptides in Brazil: A Scientometric Analysis. Food Sci. Technol 2023, 43, e131022. [Google Scholar] [CrossRef]
- Pérez-San Martín, A.; Tortosa, G.; González, A.; Cayunao, S.; Curaqueo, G. Drying Treatment for Sludges of the Chilean Salmon Farming Industry and Its Potential as an Agricultural Soil Amendment. Arch. Agron. Soil Sci. 2024, 70, 1–18. [Google Scholar] [CrossRef]
- Ramakrishnan, V.V.; Hossain, A.; Dave, D.; Shahidi, F. Salmon Processing Discards: A Potential Source of Bioactive Peptides—A Review. Food Prod. Process Nutr. 2024, 6, 22. [Google Scholar] [CrossRef]
- Apud, G.R.; Kristof, I.; Ledesma, S.C.; Stivala, M.G.; Aredes Fernandez, P.A. Health-Promoting Peptides in Fermented Beverages. Rev. Argent. Microbiol. 2024, 56, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Angioletti Decker, B.L.; Fonteles, T.V.; Fernandes, F.A.N.; Rodrigues, S. Green Extraction Technologies for Valorising Brazilian Agri-Food Waste. Sustain. Food Technol. 2025. [Google Scholar] [CrossRef]
- Rivero-Pino, F. Bioactive Food-Derived Peptides for Functional Nutrition: Effect of Fortification, Processing and Storage on Peptide Stability and Bioactivity within Food Matrices. Food Chem. 2023, 406, 135046. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.L.; Hogwood, J.; Guo, W.; Yates, E.A.; Turnbull, J.E. By-Products of Heparin Production Provide a Diverse Source of Heparin-like and Heparan Sulfate Glycosaminoglycans. Sci. Rep. 2019, 9, 2679. [Google Scholar] [CrossRef]
- Carvajal, A.; Slizyte, R.; Storrø, I.; Aursand, M. Production of High Quality Fish Oil by Thermal Treatment and Enzymatic Protein Hydrolysis from Fresh Norwegian Spring Spawning Herring By-Products. J. Aquat. Food Prod. Technol. 2015, 24, 807–823. [Google Scholar] [CrossRef]
- Fan, H.; Yu, W.; Liao, W.; Wu, J. Spent Hen Protein Hydrolysate with Good Gastrointestinal Stability and Permeability in Caco-2 Cells Shows Antihypertensive Activity in SHR. Foods 2020, 9, 1384. [Google Scholar] [CrossRef]
- Ramakrishnan, S.R.; Jeong, C.-R.; Park, J.-W.; Cho, S.-S.; Kim, S.-J. A Review on the Processing of Functional Proteins or Peptides Derived from Fish By-Products and Their Industrial Applications. Heliyon 2023, 9, e14188. [Google Scholar] [CrossRef] [PubMed]










| Classification | Research lines | Number | %a |
| 1 | Functional-properties | 518 | 34.58 |
| 2 | Antioxidant activity | 250 | 16.69 |
| 3 | Bioactive peptides | 215 | 14.35 |
| 4 | Extraction | 207 | 13.82 |
| 5 | Antioxidant | 177 | 11.82 |
| 6 | Dietary fiber | 166 | 11.08 |
| 7 | Physicochemical properties | 165 | 11.01 |
| 8 | Functional properties | 151 | 10.08 |
| 9 | Protein | 143 | 9.55 |
| 10 | By-product | 140 | 9.35 |
| Classification | Affiliations (Country) | Number | %a |
| 1 | Consejo Superior de Investigaciones Científicas (Spain) | 51 | 3.40 |
| 2 | Jiangnan University (China) | 49 | 3.27 |
| 3 | Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina) | 45 | 3.00 |
| 4 | Indian Council of Agricultural Research (India) | 43 | 2.87 |
| 5 | Egyptian Knowledge Bank (Egypt) | 42 | 2.80 |
| 6 | Laval University (Canada) | 40 | 2.67 |
| 7 | Universidade do Porto (Portugal) | 38 | 2.54 |
| 8 | Kasetsart University (Thailand) | 32 | 2.14 |
| 9 | Ministry Of Education (China) | 31 | 2.07 |
| 10 | Universidade Estadual de Maringa (Brazil) | 26 | 1.74 |
| Classification | Country | Number | %a |
| 1 | China | 717 | 47.86 |
| 2 | Brazil | 354 | 23.63 |
| 3 | India | 281 | 18.76 |
| 4 | Spain | 217 | 14.49 |
| 5 | Italy | 196 | 13.08 |
| 6 | USA | 173 | 11.55 |
| 7 | Thailand | 158 | 10.55 |
| 8 | Mexico | 143 | 9.55 |
| 9 | Canada | 135 | 9.01 |
| 10 | Portugal | 134 | 8.95 |
| Classification | Journals | Number | %a |
| 1 | Foods | 110 | 7.34 |
| 2 | Lwt-Food science and technology | 65 | 4.34 |
| 3 | Food chemistry | 60 | 4.01 |
| 4 | Molecules | 44 | 2.94 |
| 5 | Food bioscience | 42 | 2.80 |
| 6 | International journal of food science and technology | 42 | 2.80 |
| 7 | Journal of the science of food and agriculture | 39 | 2.60 |
| 8 | Journal of food processing and preservation | 37 | 2.47 |
| 9 | Food hydrocolloids | 36 | 2.40 |
| 10 | Journal of food measurement and characterization | 35 | 2.34 |
| Classification | Authors | Number | %a |
| 1 | Wubshet SG | 20 | 1.34 |
| 2 | Afseth NK | 19 | 1.27 |
| 3 | Li Y | 12 | 0.80 |
| 4 | Oliveira MBPP | 11 | 0.73 |
| 5 | Zhang Y | 11 | 0.73 |
| 6 | Barros L | 9 | 0.60 |
| 7 | Lindberg D | 9 | 0.60 |
| 8 | Ma HL | 9 | 0.60 |
| 9 | Marina ML | 9 | 0.60 |
| 10 | Wang L | 9 | 0.60 |
| Cluster | Occurences | Number of Keywords | Keyword in the VOSviewer Network |
|---|---|---|---|
| 1 (Red) | 403 | 15 | Bioactive compounds, by-product, by-products, circular economy, collagen, extraction, food waste valorization, functional food, functionality, gelatin, pectin, plant proteins, polyphenols, sustainability, waste valorization |
| 2 (Green) | 413 | 12 | Antioxidants, chemical composition, dietary fiber, Dietary fibre, extrusion, food waste, functional properties, microstructure, phenolic compounds, rheology, texture, valorization |
| 3 (Blue) | 283 | 11 | Antioxidant activity, enzymatic protein hydrolysis, optimization, physicochemical properties, plant protein, protein extraction, response surface, methodology, rice bran, structure, techno-functional properties, ultrasound |
| 4 (Yellow) | 323 | 11 | Enzymatic hydrolysis, bioactive peptides, antioxidant capacity, antioxidant peptides, biological activity, fermentation, okara, protein hydrolysates, protein hydrolysis, ultrafiltration, whey |
| 5 (Purple) | 227 | 10 | Antioxidant, bioactive peptide, bioactivity, hydrolysate, hydrolysis, molecular docking, peptide, peptides, protein, protein hydrolysate |
| 6 (sky blue) | 21 | 1 | Functional foods |
| Cluster | Main Keywords | Number of Keywords | Keywords in the Bibliometrix Network |
|---|---|---|---|
| 1 | Functional properties | 17 | Functional properties, by-product, dietary fiber, bioactive compounds, circular economy, phenolic compounds, functional foods, polyphenols, antioxidants, rheology, texture, waste valorization, gelatin, rice bran, structure, dietary fibre, physicochemical properties. |
| 2 | Bioactive peptides | 13 | Bioactive peptides, antioxidant activity, enzymatic hydrolysis, protein hydrolysates, enzymatic protein hydrolysis, antioxidant peptides, biological activity, response surface methodology, optimization, ultrasound, functional food, fermentation, whey |
| 3 | Antioxidant | 10 | Antioxidant, protein, protein hydrolysate, okara, peptides, peptide, hydrolysis, bioactivity, molecular docking, bioactive peptide |
| 4 | Sustainability | 4 | Sustainability, plant protein, food waste valorization, protein extraction |
| 5 | Protein extraction | 1 | Protein extraction |
| Classification | Keywords | Occurrence | Total Bond Strength |
|---|---|---|---|
| 1 | functional properties | 151 | 271 |
| 2 | bioactive peptides | 104 | 201 |
| 3 | antioxidant activity | 84 | 122 |
| 4 | by-product | 79 | 240 |
| 5 | enzymatic hydrolysis | 72 | 98 |
| 6 | antioxidant | 66 | 156 |
| 7 | dietary fiber | 50 | 72 |
| 8 | bioactive compounds | 41 | 27 |
| 9 | circular economy | 41 | 32 |
| 10 | phenolic compounds | 35 | 8 |
| 11 | protein | 33 | 55 |
| 12 | by-products | 32 | 56 |
| 13 | sustainability | 32 | 16 |
| 14 | extrusion | 31 | 3 |
| 15 | valorization | 31 | 19 |
| 16 | physicochemical properties | 30 | 2 |
| 17 | antioxidants | 29 | 10 |
| 18 | waste valorization | 29 | 3 |
| 19 | extraction | 27 | 3 |
| 20 | response surface methodology | 27 | 2 |
| Raking | Title | Source | Year of Publication | Citations | Citations per Year |
|---|---|---|---|---|---|
| 1 | Antioxidant peptides from marine by-products: Isolate, identification and application in food systems [17] | Funct Foods (https://www.sciencedirect.com/journal/journal-of-functional-foods) (accessed on 16 June 2025) | 2016 | 409 | 40.9 |
| 2 | Silk sericin: A versatile material for tissue engineering and drug delivery [18] | Biotechnol ADV (https://www.sciencedirect.com/journal/biotechnology-advances) (accessed on 16 June 2025) | 2015 | 348 | 31.63 |
| 3 | Cheese Whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides [19] | Biotechnol ADV (https://www.sciencedirect.com/journal/biotechnology-advances) (accessed on 16 June 2025) | 2015 | 277 | 25.18 |
| 4 | The seed of industrial hemp (cannabis sativa L.): Nutritional quality and potential functionality for human health and nutrition [20] | Nutrients (https://www.mdpi.com/journal/nutrients) (accessed on 16 June 2025) | 2020 | 271 | 45.16 |
| 5 | Fish waste: From problem to valuable resource [21] | Mar Drugs (https://www.mdpi.com/journal/marinedrugs) (accessed on 16 June 2025) | 2021 | 261 | 52.2 |
| 6 | Whey as a source of peptides with remarkable biological activities [69] | Food Res Int (https://www.sciencedirect.com/journal/food-research-international) (accessed on 16 June 2025) | 2015 | 241 | 21.90 |
| 7 | Applications of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment [71] | Environ Che Lett (https://link.springer.com/journal/10311) (accessed on 16 June 2025) | 2020 | 219 | 36.5 |
| 8 | Isolate and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads [70] | Funct Foods (https://www.sciencedirect.com/journal/journal-of-functional-foods) (accessed on 16 June 2025) | 2015 | 213 | 19.36 |
| 9 | The potential of selected Agri-Food loss and waste to contribute to a circular economy: Applications in the food, cosmetic and pharmaceutical industries [80] | Molecules (https://www.mdpi.com/journal/molecules) (accessed on 16 June 2025) | 2021 | 203 | 40.6 |
| 10 | Peptides from fish by-product protein hydrolysates and its functional properties [81] | Mar Biotechnol (https://link.springer.com/journal/10126) (accessed on 16 June 2025) | 2018 | 181 | 22.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plaza, S.; Nuñez, S.M.; Masip, Y.; Valencia, P. Bibliometric Analysis of the Scientific Productivity on Functional Properties and Enzymatic Hydrolysis of Proteins from By-Products. Foods 2025, 14, 3693. https://doi.org/10.3390/foods14213693
Plaza S, Nuñez SM, Masip Y, Valencia P. Bibliometric Analysis of the Scientific Productivity on Functional Properties and Enzymatic Hydrolysis of Proteins from By-Products. Foods. 2025; 14(21):3693. https://doi.org/10.3390/foods14213693
Chicago/Turabian StylePlaza, Sebastián, Suleivys M. Nuñez, Yunesky Masip, and Pedro Valencia. 2025. "Bibliometric Analysis of the Scientific Productivity on Functional Properties and Enzymatic Hydrolysis of Proteins from By-Products" Foods 14, no. 21: 3693. https://doi.org/10.3390/foods14213693
APA StylePlaza, S., Nuñez, S. M., Masip, Y., & Valencia, P. (2025). Bibliometric Analysis of the Scientific Productivity on Functional Properties and Enzymatic Hydrolysis of Proteins from By-Products. Foods, 14(21), 3693. https://doi.org/10.3390/foods14213693

