Analysis and Risk Assessment of Pesticide Residues in Strawberry Using the PRIMo Model: Detection, Public Health and Safety Implications
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Preparation
2.3. Instrumental Analysis
2.4. Quality Assurance and Control (QA/QC)
2.5. Dietary Exposure Risk Assessment Using the PRIMo Model Version 3.1
- -
- Acute exposure, estimated through the IESTI (International Estimated Short-Term Intake) and compared to the ARfD (Acute Reference Dose), defined as the amount of a substance that can be ingested over a short period (e.g., one meal or one day) without appreciable health risk.
- -
- Chronic exposure, estimated through the NEDI (National Estimated Daily Intake) and compared to the ADI (Acceptable Daily Intake), which represents the amount of a chemical substance that can be ingested daily over a lifetime without appreciable health risk.
2.5.1. Acute Exposure Assessment Based on IESTI Estimation
- Case 1: unit weight <25 g (e.g., strawberries, cherries),
- Case 2a: unit weight >25 g but smaller than the portion consumed (e.g., mandarins, peaches),
- Case 2b: unit weight >25 g and larger than the portion consumed (e.g., melons, cabbages).
- LP = Large Portion, the high-end daily consumption (kg) for the target population subgroup;
- HR = Highest Residue level detected in the commodity (mg kg−1);
- PF = Processing factor, accounting for changes in residue levels due to food preparation or peeling;
- CF = Conversion factor (applied if relevant, otherwise =1);
- BW = Body weight (kg) of the target population subgroup.
2.5.2. Chronic Exposure Assessment Based on NEDI Estimation
- -
- APR (Average Pesticide Residue) = mean concentration of pesticide residues (mg kg−1) detected in analyzed samples;
- -
- Average Daily Consumption = average intake of the food commodity (g/kg bw/day); for the NL toddler population group (8–20 months), this value was 0.344 g/kg bw/day;
- -
- 1000 = conversion factor to harmonize units (from grams to kilograms).
3. Results
3.1. Results of Multiresidue Pesticide Analysis in Strawberries
3.2. Health Risk Assessment Results Related to Pesticide Exposure
- Sample A5: Presence of 5 residues, including Flupyradifurone with an MRL exceedance of 170%;
- Sample S2: Presence of 3 residues, including Cyflumetofen with an MRL exceedance of 105%;
- Sample V1: Presence of 5 residues, including Cyflumetofen with an MRL exceedance of 123%;
- Sample I4: Presence of 6 residues, including Spirotetramat with an MRL exceedance of 113%.
3.2.1. Results of the Acute Exposure Assessment
- -
- HR: 0.68 mg kg−1 (Highest Residue found in the sample)
- -
- LP: 166.70 g/day (high consumption level for children aged 8–20 months, calculated by multiplying the standard value of 0.48 g/kg bw)
- -
- PF: 1 (Processing Factor, equal to 1 for strawberries, which are consumed raw)
- -
- CF: 1 (Conversion Factor, equal to 1 for flupyradifurone)
- -
- BW: 10.20 kg (average body weight for children aged 8–20 months)
3.2.2. Results of the Chronic Exposure Assessment
- (1)
- APR (Average Pesticide Residue): 0.112 mg kg−1
- (2)
- Average strawberry consumption (NL toddler): 0.344 g/kg bw/day
- (3)
- BW (Body Weight): 10.20 kg, average body weight for children aged 8–20 months
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QI (accessed on 19 August 2025).
- Pergola, M.; Maffia, A.; Carlucci, G.; Persiani, A.; Palese, A.M.; Zaccardelli, M.; Celano, G. An Environmental and Economic Analysis of Strawberry Production in Southern Italy. Agriculture 2023, 13, 1705. [Google Scholar] [CrossRef]
- Bosi, T.; Lodi, D.; Brunello, B. Strawberries and Berries: Growing Cultivation Areas and Expanding Markets. Fruit J. 2022, 3, 10–17. [Google Scholar]
- ISTAT. Censimento Agricoltura. 2020. Available online: https://www.istat.it/it/censimenti/agricoltura/7-censimento-generale (accessed on 19 August 2025).
- Zeneli, F.; Ventura, V.; Frisio, D.G. Sustainable Fresh Strawberry Consumption: Environmental, Genetically Modified Food, and Climate Concerns in Europe and North Africa. Front. Sustain. Food Syst. 2024, 8, 1442074. [Google Scholar] [CrossRef]
- Sparacino, A.; Ollani, S.; Baima, L.; Oliviero, M.; Borra, D.; Rui, M.; Mastromonaco, G. Analyzing Strawberry Preferences: Best–Worst Scaling Methodology and Purchase Styles. Foods 2024, 13, 1474. [Google Scholar] [CrossRef]
- Ipsos. Bearing Good Fruits—Italians and the “New” Fruit Consumption Habits; Research Conducted for the Orsero Group, April 2024. Available online: https://www.italiafruit.net (accessed on 18 August 2025).
- Unnikrishnan, P.; Ponnambalam, K.; Karray, F. Influence of Regional Temperature Anomalies on Strawberry Yield: A Study Using Multivariate Copula Analysis. Sustainability 2024, 16, 3523. [Google Scholar] [CrossRef]
- Rao, M.S.; Mani, M.; Prasad, Y.G.; Prabhakar, M.; Sridhar, V.; Vennila, S.; Singh, V.K. Climate Change and Pest Management Strategies in Horticultural and Agricultural Ecosystems. In Trends in Horticultural Entomology; Springer: Singapore, 2022; pp. 81–122. [Google Scholar]
- Duarte Hospital, C.; Tête, A.; Debizet, K.; Imler, J.; Tomkiewicz-Raulet, C.; Blanc, E.B.; Barouki, R.; Coumoul, X.; Bortoli, S. SDHi Fungicides: An Example of Mitotoxic Pesticides Targeting the Succinate Dehydrogenase Complex. Environ. Int. 2023, 180, 108219. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.; Sanchez, C.L.; Brammer-Robbins, E.; Pena-Delgado, C.; Kroyter, N.; El Ahmadie, N.; Watkins, J.M.; Aristizabal-Henao, J.J.; Bowden, J.A.; Souders, C.L.; et al. Neurotoxicity Assessment of QoI Strobilurin Fungicides Azoxystrobin and Trifloxystrobin in Human SH-SY5Y Neuroblastoma Cells: Insights from Lipidomics and Mitochondrial Bioenergetics. Neurotoxicology 2022, 91, 290–304. [Google Scholar] [CrossRef]
- Cai, D.; Wang, H.; Mou, C.; Hu, S.; Hu, Z.; Wang, Y.; Tang, T.; Zhang, Q. Characteristics, Trends and Integrated Health Risk of Five Triazole Fungicides in Vegetables in Zhejiang Province (2021–2023). Environ. Chem. Ecotoxicol. 2025, 7, 565–572. [Google Scholar] [CrossRef]
- Rieke, S.; Koehn, S.; Hirsch-Ernst, K.; Pfeil, R.; Kneuer, C.; Marx-Stoelting, P. Combination Effects of (Tri)azole Fungicides on Hormone Production and Xenobiotic Metabolism in a Human Placental Cell Line. Int. J. Environ. Res. Public Health 2014, 11, 9660–9679. [Google Scholar] [CrossRef]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef]
- Heinzen, H.; Cesio, M.V. Carbamate Pesticides. In Encyclopedia of Toxicology, 4th ed.; Wexler, P., Ed.; Academic Press: Cambridge, MA, USA, 2024; pp. 485–491. [Google Scholar] [CrossRef]
- Holynska-Iwan, I.; Szewczyk-Golec, K. Pyrethroids: How They Affect Human and Animal Health? Medicina 2020, 56, 582. [Google Scholar] [CrossRef] [PubMed]
- Chrustek, A.; Holynska-Iwan, I.; Dziembowska, I.; Bogusiewicz, J.; Wróblewski, M.; Cwynar, A.; Olszewska-Słonina, D. Current Research on the Safety of Pyrethroids Used as Insecticides. Medicina 2018, 54, 61. [Google Scholar] [CrossRef]
- El-Sheikh, E.-S.A.; Li, D.; Hamed, I.; Ashour, M.-B.; Hammock, B.D. Residue Analysis and Risk Exposure Assessment of Multiple Pesticides in Tomato and Strawberry and Their Products from Markets. Foods 2023, 12, 1936. [Google Scholar] [CrossRef]
- Caron-Beaudoin, É.; Denison, M.S.; Sanderson, J.T. Effects of Neonicotinoids on Promoter-Specific Expression and Activity of Aromatase (CYP19) in Human Adrenocortical Carcinoma (H295R) and Primary Umbilical Vein Endothelial (HUVEC) Cells. Toxicol. Sci. 2016, 149, 134–144. [Google Scholar] [CrossRef]
- Matich, E.K.; Laryea, J.A.; Seely, K.A.; Stahr, S.; Su, L.J.; Hsu, P.C. Association between Pesticide Exposure and Colorectal Cancer Risk and Incidence: A Systematic Review. Ecotoxicol. Environ. Saf. 2021, 219, 112327. [Google Scholar] [CrossRef]
- Angioni, A.; Schirra, M.; Garau, V.L.; Melis, M.; Tuberoso, C.I.G.; Cabras, P. Residues of Azoxystrobin, Fenhexamid and Pyrimethanil in Strawberry following Field Treatments and the Effect of Domestic Washing. Food Addit. Contam. 2004, 21, 1065–1070. [Google Scholar] [CrossRef]
- Wang, W.; Song, J.W.; Jeong, S.H.; Jung, J.H.; Seo, J.S.; Kim, J.H. Dissipation of Four Typical Insecticides on Strawberries and Effects of Different Household Washing Methods. Foods 2023, 12, 1248. [Google Scholar] [CrossRef]
- Italianberry. I Risultati del Consumer Test sulle Fragole Condotto da CNR-IBE e Università Politecnica delle Marche. Available online: https://italianberry.it/news/i-risultati-del-consumer-test-sulle-fragole-condotto-da-cnr-ibe-e-universita-politecnica-delle-marche (accessed on 19 August 2025).
- Miller, K.; Feucht, W.; Schmid, M. Bioactive Compounds of Strawberry and Blueberry and Their Potential Health Effects Based on Human Intervention Studies: A Brief Overview. Nutrients 2019, 11, 1510. [Google Scholar] [CrossRef] [PubMed]
- Giampieri, F.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Alvarez-Suarez, J.M.; Afrin, S.; Bompadre, S.; Quiles, J.; Mezzetti, B.; Battino, M. Strawberry as a Health Promoter: An Evidence-Based Review. Food Funct. 2015, 6, 1386–1398. [Google Scholar] [CrossRef]
- Basu, A.; Fu, D.X.; Wilkinson, M.; Simmons, B.; Wu, M.; Betts, N.M.; Du, M.; Lyons, T.J. Strawberries Decrease Atherosclerotic Markers in Subjects with Metabolic Syndrome. Nutr. Res. 2010, 30, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Moazen, S.; Amani, R.; Homayouni Rad, A.; Shahbazian, H.; Ahmadi, K.; Jalali, M.T. Effects of Freeze-Dried Strawberry Supplementation on Metabolic Biomarkers of Atherosclerosis in Subjects with Type 2 Diabetes: A Randomized Double-Blind Controlled Trial. Ann. Nutr. Metab. 2013, 63, 256–264. [Google Scholar] [CrossRef]
- Montuori, P.; De Rosa, E.; Cerino, P.; Pizzolante, A.; Nicodemo, F.; Gallo, A.; Triassi, M. Estimation of Polycyclic Aromatic Hydrocarbons in Groundwater from Campania Plain: Spatial Distribution, Source Attribution and Health Cancer Risk Evaluation. Toxics 2023, 11, 435. [Google Scholar] [CrossRef]
- EFSA. Pesticide Residues Intake Model—PRIMo Revision 3.1; EN-1397; EFSA Supporting Publication: Hoboken, NJ, USA, 2018. [Google Scholar]
- UNI EN 15662:2018; Food of Plant Origin—Determination of Pesticide Residues by GC-MS and/or LC-MS/MS after Extraction with Acetoni-trile/Partitioning and Cleanup with Dispersive Salts (QuEChERS Method). Italian National Standardization Body: Milan, Italy, 2018.
- Sante, D.G. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed; Document No. SANTE, 11312; EU Reference Laboratories for Residues of Pesticides: Brussels, Belgium, 2021; Available online: https://food.ec.europa.eu/system/files/2023-11/pesticides_mrl_guidelines_wrkdoc_2021-11312.pdf (accessed on 8 July 2025).
- van Rossum, C.; Nelis, K.; Wilson, C.; Ocké, M. National Dietary Survey in 2012–2016 on the General Population Aged 1–79 Years in The Netherlands; EN-1488; EFSA Supporting Publication: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Makri, A.; Goveia, M.; Balbus, J.; Parkin, R. Children’s Susceptibility to Chemicals: A Review by Developmental Stage. J. Toxicol. Environ. Health B 2004, 7, 417–435. [Google Scholar] [CrossRef]
- FAO/WHO. Principles and Methods for the Risk Assessment of Chemicals in Food (Environmental Health Criteria 240); WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Cleveland, C.B.; Fleming, C.R.; Johnston, J.E.; Klemens, A.S.; Young, B.M. Benchmarking the Current Codex Alimentarius International Estimated Short-Term Intake Equations and the Proposed New Equations. J. Agric. Food Chem. 2019, 67, 3432–3447. [Google Scholar] [CrossRef]
- Keklik, M.; Odabas, E.; Golge, O.; Kabak, B. Pesticide Residue Levels in Strawberries and Human Health Risk Assessment. J. Food Compos. Anal. 2025, 137, 106943. [Google Scholar] [CrossRef]
- Zhang, Y.; Si, W.; Chen, L.; Shen, G.; Bai, B.; Zhou, C. Determination and Dietary Risk Assessment of 284 Pesticide Residues in Local Fruit Cultivars in Shanghai, China. Sci. Rep. 2021, 11, 9681. [Google Scholar] [CrossRef] [PubMed]
- Renwick, A.G. Pesticide Residue Analysis and Its Relationship to Hazard Characterisation (ADI/ARfD) and Intake Estimations (NEDI/NESTI). Pest Manag. Sci. 2002, 58, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Jeger, M.; Beresford, R.; Bock, C.; Brown, N.; Fox, A.; Newton, A.; Yuen, J. Global Challenges Facing Plant Pathology: Multidisciplinary Approaches to Meet the Food Security and Environmental Challenges in the Mid-Twenty-First Century. CABI Agric. Biosci. 2021, 2, 42. [Google Scholar] [CrossRef]
- European Union. Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides; European Union: Brussels, Belgium, 2009; pp. 71–86. [Google Scholar]
- European Union. Regulation (EC) No. 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC; European Union: Brussels, Belgium, 2005; pp. 1–16. [Google Scholar]
- European Union. Regulation (EC) No. 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC; European Union: Brussels, Belgium, 2009; pp. 1–50. [Google Scholar]
- Tomizawa, M.; Casida, J.E. Neonicotinoid Insecticide Toxicology: Mechanisms of Selective Action. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 247–268. [Google Scholar] [CrossRef]
- Soderlund, D.M. Molecular Mechanisms of Pyrethroid Insecticide Neurotoxicity: Recent Advances. Arch. Toxicol. 2012, 86, 165–181. [Google Scholar] [CrossRef]
- Costa, L.G. Current Issues in Organophosphate Toxicology. Clin. Chim. Acta 2006, 366, 1–13. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Flavourings (FAF); Younes, M.; Aquilina, G.; Castle, L.; Engel, K.H.; Fowler, P.; Moldeus, P. Peer Review of the Pesticide Risk Assessment of the Active Substance Cyflumetofen. EFSA J. 2020, 18, e06107. [Google Scholar] [CrossRef]
- EFSA. Conclusion on the Peer Review of the Pesticide Risk Assessment of the Active Substance Flupyradifurone. EFSA J. 2015, 13, 4215. [Google Scholar] [CrossRef]
- EFSA. Conclusion on the Peer Review of the Pesticide Risk Assessment of the Active Substance Pyrimethanil. EFSA J. 2011, 9, 2089. [Google Scholar] [CrossRef]
- Chu, Y.; Tong, Z.; Dong, X.; Sun, M.; Gao, T.; Duan, J.; Wang, M. Simultaneous determination of 98 pesticide residues in strawberries using UPLC-MS/MS and GC-MS/MS. Microchem. J. 2020, 156, 104975. [Google Scholar] [CrossRef]
Compound | Pesticides | Mean (mg kg−1) | Min (mg kg−1) | Max (mg kg−1) | Total (mg kg−1) |
---|---|---|---|---|---|
Acaricides | Hexithiazox | 0.039 | 0.010 | 0.075 | 0.310 |
Cyflumetofen | 0.112 | 0.011 | 0.735 | 2.803 | |
Tebufenaprid | 0.073 | 0.023 | 0.133 | 0.291 | |
Bifenazato | 0.040 | 0.010 | 0.083 | 0.357 | |
Fenpyroximate | 0.079 | 0.079 | 0.079 | 0.079 | |
Fungicides | Bupirimato | 0.126 | 0.012 | 0.350 | 1.508 |
Fluxapyroxad | 0.267 | 0.018 | 0.650 | 2.138 | |
Difenconazolo | 0.115 | 0.010 | 0.250 | 0.576 | |
Cyflufenamid | 0.015 | 0.015 | 0.015 | 0.030 | |
Penconazolo | 0.035 | 0.018 | 0.052 | 0.139 | |
Cyprodinil | 0.260 | 0.260 | 0.260 | 0.260 | |
Fludioxonil | 0.125 | 0.030 | 0.220 | 0.250 | |
Etirimol | 0.025 | 0.010 | 0.054 | 0.151 | |
Pirimentanil | 0.634 | 0.011 | 2.000 | 3.806 | |
Fluopyram | 0.065 | 0.012 | 0.200 | 0.720 | |
Trifloxystrobin | 0.052 | 0.010 | 0.140 | 0.464 | |
Tetraconazolo | 0.034 | 0.012 | 0.118 | 0.437 | |
Boscalid | 0.059 | 0.012 | 0.130 | 0.296 | |
Fenhexamid | 0.099 | 0.015 | 0.170 | 0.497 | |
Captano | 0.030 | 0.030 | 0.030 | 0.030 | |
Penthiopyrad | 0.124 | 0.021 | 0.226 | 0.247 | |
Azoxystrobin | 0.012 | 0.012 | 0.012 | 0.012 | |
Insecticides | Spinosad | 0.030 | 0.011 | 0.095 | 0.273 |
Clorantraniliprolo | 0.011 | 0.010 | 0.012 | 0.034 | |
Flupyradifurone | 0.195 | 0.020 | 0.680 | 0.780 | |
Lambda cialotrina | 0.015 | 0.015 | 0.015 | 0.015 | |
Spirotetrammato | 0.196 | 0.052 | 0.340 | 0.392 | |
Spinetoram | 0.032 | 0.016 | 0.051 | 0.162 | |
Pirimicarb | 0.092 | 0.012 | 0.220 | 0.369 | |
Emamectina | 0.022 | 0.010 | 0.035 | 0.133 | |
Acetamiprid | 0.019 | 0.012 | 0.033 | 0.058 |
Pesticides | Results | MRL (mg kg−1) | MRL% | ARfD (mg kg−1-bw) | ADI (mg kg−1 bw/Day) |
---|---|---|---|---|---|
Bupirimate | 0.054 | 1.5 | 4% | - | 0.05 |
0.130 | 9% | ||||
0.170 | 11% | ||||
0.270 | 18% | ||||
0.055 | 4% | ||||
0.062 | 4% | ||||
0.350 | 23% | ||||
0.012 | 1% | ||||
0.220 | 15% | ||||
0.075 | 5% | ||||
0.096 | 6% | ||||
0.014 | 1% | ||||
Spinosad | 0.095 | 0.3 | 32% | - | 0.024 |
0.012 | 4% | ||||
0.086 | 29% | ||||
0.015 | 5% | ||||
0.011 | 4% | ||||
0.018 | 6% | ||||
Chlorantraniliprole | 0.010 | 1 | 1% | - | 1.56 |
0.012 | 1% | ||||
Flupyradifurone | 0.680 | 0.4 | 170% | 0.15 | 0.064 |
0.020 | 5% | ||||
0.060 | 15% | ||||
Fluxapyroxad | 0.018 | 4 | 0% | 0.25 | 0.02 |
0.030 | 1% | ||||
0.200 | 5% | ||||
0.480 | 12% | ||||
0.500 | 13% | ||||
0.650 | 16% | ||||
0.110 | 3% | ||||
0.150 | 4% | ||||
Difenoconazole | 0.010 | 2 | 1% | 0.16 | 0.01 |
0.250 | 13% | ||||
0.220 | 11% | ||||
0.026 | 1% | ||||
0.070 | 4% | ||||
Hexythiazox | 0.037 | 6 | 1% | - | 0.03 |
0.075 | 1% | ||||
0.050 | 1% | ||||
0.020 | 0% | ||||
0.010 | 0% | ||||
0.072 | 1% | ||||
0.034 | 1% | ||||
0.012 | 0% | ||||
Lambda-cyhalothrin | 0.015 | 0.2 | 8% | 0.005 | 0.0025 |
Cyflumetofen | 0.023 | 0.6 | 4% | - | 0.17 |
0.012 | 2% | ||||
0.013 | 2% | ||||
0.130 | 22% | ||||
0.100 | 17% | ||||
0.011 | 2% | ||||
0.627 | 105% | ||||
0.735 | 123% | ||||
0.063 | 11% | ||||
0.224 | 37% | ||||
0.070 | 12% | ||||
0.024 | 4% | ||||
0.034 | 6% | ||||
0.256 | 43% | ||||
0.014 | 2% | ||||
Cyflufenamid | 0.015 | 0.04 | 38% | 0.05 | 0.04 |
Penconazole | 0.047 | 0.5 | 9% | 0.5 | 0.03 |
0.022 | 4% | ||||
0.052 | 10% | ||||
0.018 | 4% | ||||
Cyprodinil | 0.260 | 5 | 5% | - | 0.03 |
Fludioxonil | 0.220 | 4 | 6% | - | 0.37 |
0.030 | 1% | ||||
Ethirimol | 0.017 | 0.3 | 6% | Not applicable | Not applicable |
0.020 | 7% | ||||
0.010 | 3% | ||||
0.054 | 18% | ||||
0.040 | 13% | ||||
Pyrimethanil | 0.160 | 5 | 3% | - | 0.17 |
2.000 | 40% | ||||
1.200 | 24% | ||||
0.350 | 7% | ||||
0.085 | 2% | ||||
0.011 | 0% | ||||
Fluopyram | 0.100 | 2 | 5% | 0.5 | 0.012 |
0.013 | 1% | ||||
0.031 | 2% | ||||
0.035 | 2% | ||||
0.077 | 4% | ||||
0.116 | 6% | ||||
0.200 | 10% | ||||
0.012 | 1% | ||||
0.110 | 6% | ||||
0.014 | 1% | ||||
Tebufenpyrad | 0.023 | 1 | 2% | 0.02 | 0.01 |
0.030 | 3% | ||||
0.133 | 13% | ||||
0.105 | 11% | ||||
Trifloxystrobin | 0.065 | 1 | 7% | 0.5 | 0.1 |
0.010 | 1% | ||||
0.025 | 3% | ||||
0.035 | 4% | ||||
0.066 | 7% | ||||
0.140 | 14% | ||||
0.100 | 10% | ||||
0.013 | 1% | ||||
Bifenazate | 0.083 | 3 | 3% | 0.1 | 0.01 |
0.080 | 3% | ||||
0.072 | 2% | ||||
0.012 | 0% | ||||
0.050 | 2% | ||||
0.026 | 1% | ||||
0.010 | 0% | ||||
Spirotetramat | 0.340 | 0.3 | 113% | 1 | 0.05 |
0.052 | 17% | ||||
Fenpyroximate | 0.079 | 0.3 | 26% | - | 0.2 |
Tetraconazole | 0.060 | 0.15 | 40% | 0.05 | 0.004 |
0.016 | 11% | ||||
0.012 | 8% | ||||
0.118 | 79% | ||||
0.100 | 67% | ||||
0.025 | 17% | ||||
0.016 | 11% | ||||
0.018 | 12% | ||||
0.013 | 9% | ||||
Boscalid | 0.012 | 6 | 0% | - | 0.04 |
0.080 | 1% | ||||
0.130 | 2% | ||||
0.054 | 1% | ||||
0.020 | 0% | ||||
Fenhexamid | 0.015 | 10 | 0% | - | 0.2 |
0.170 | 2% | ||||
0.051 | 1% | ||||
0.100 | 1% | ||||
0.161 | 2% | ||||
Spinetoram | 0.051 | 0.2 | 26% | 0.1 | 0.025 |
0.017 | 9% | ||||
0.016 | 8% | ||||
0.039 | 20% | ||||
Captan | 0.030 | 1.5 | 2% | 0.9 | 0.25 |
Penthiopyrad | 0.226 | 3 | 8% | 0.75 | 0.1 |
0.021 | 1% | ||||
Pirimicarb | 0.220 | 1.5 | 15% | 0.1 | 0.035 |
0.090 | 6% | ||||
0.047 | 3% | ||||
0.012 | 1% | ||||
Azoxystrobin | 0.012 | 10 | 0% | - | 0.2 |
Emamectin | 0.013 | 0.05 | 26% | 0.01 | 0.0005 |
0.010 | 20% | ||||
0.035 | 70% | ||||
0.031 | 62% | ||||
Acetamiprid | 0.012 | 0.5 | 2% | 0.005 | 0.005 |
0.033 | 7% | ||||
0.013 | 3% |
Pesticides | Results | ARfD (mg kg−1-bw) | ARfD% |
---|---|---|---|
Flupyradifurone | 0.68 | 0.15 mg kg−1 | 7.40 |
Fluxapyroxad | 0.65 | 0.25 mg kg−1 | 4.25 |
Difenoconazole | 0.25 | 0.16 mg kg−1 | 2.55 |
Lambda-cyhalothrin | 0.015 | 0.005 mg kg−1 | 4.90 |
Cyflufenamid | 0.015 | 0.05 mg kg−1 | 0.49 |
Penconazole | 0.052 | 0.5 mg kg−1 | 0.17 |
Fluopyram | 0.2 | 0.5 mg kg−1 | 0.65 |
Tebufenpyrad | 0.133 | 0.02 mg kg−1 | 10.87 |
Trifloxystrobin | 0.14 | 0.5 mg kg−1 | 0.46 |
Bifenazate | 0.083 | 0.1 mg kg−1 | 1.36 |
Spirotetramat | 0.34 | 1 mg kg−1 | 0.56 |
Fenpyroximate | 0.079 | 0.02 mg kg−1 | 6.46 |
Tetraconazole | 0.118 | 0.05 mg kg−1 | 3.86 |
Spinetoram | 0.051 | 0.1 mg kg−1 | 0.83 |
Captan | 0.03 | 0.9 mg kg−1 | 0.05 |
Penthiopyrad | 0.226 | 0.75 mg kg−1 | 0.49 |
Pirimicarb | 0.22 | 0.1 mg kg−1 | 3.60 |
Emamectin | 0.035 | 0.01 mg kg−1 | 5.72 |
Acetamiprid | 0.013 | 0.005 mg kg−1 | 4.25 |
Principi Attivi | Risultato Medio (mg kg−1) | ADI (mg kg−1-bw/Die) | ADI% |
---|---|---|---|
Cyflumetofen | 0.112 | 0.17 | 0.023 |
Tebufenpyrad | 0.073 | 0.010 | 0.25 |
Bifenazate | 0.040 | 0.010 | 0.14 |
Fenpyroximate | 0.079 | 0.010 | 0.27 |
Bupirimato | 0.126 | 0.050 | 0.087 |
Fluxapyroxad | 0.267 | 0.020 | 0.46 |
Difenoconazole | 0.115 | 0.010 | 0.40 |
Cyflufenamid | 0.015 | 0.040 | 0.013 |
Penconazole | 0.035 | 0.030 | 0.04 |
Cyprodinil | 0.260 | 0.030 | 0.30 |
Fludioxonil | 0.125 | 0.370 | 0.012 |
Etirimol | 0.025 | 0.035 | 0.025 |
Pyrimethanil | 0.634 | 0.170 | 0.13 |
Fluopyram | 0.065 | 0.012 | 0.19 |
Trifloxystrobin | 0.052 | 0.1 | 0.018 |
Tetraconazole | 0.034 | 0.004 | 0.30 |
Boscalid | 0.059 | 0.040 | 0.051 |
Fenhexamid | 0.099 | 0.200 | 0.017 |
Captan | 0.030 | 0.25 | 0.004 |
Penthiopyrad | 0.124 | 0.1 | 0.04 |
Azoxystrobin | 0.012 | 0.200 | 0.0021 |
Spinosad | 0.030 | 0.025 | 0.041 |
Clorantraniliprolo | 0.011 | 1.565 | 0.00025 |
Flupyradifurone | 0.195 | 0.064 | 0.10 |
Lambda-cyhalothrin | 0.015 | 0.0025 | 0.21 |
Spirotetramat | 0.196 | 0.050 | 0.13 |
Spinetoram | 0.032 | 0.025 | 0.04 |
Pirimicarb | 0.092 | 0.035 | 0.09 |
Emamectin | 0.022 | 0.0005 | 15.136 |
Acetamiprid | 0.019 | 0.005 | 0.13 |
Hexithiazox | 0.039 | 0.030 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Rosa, E.; Di Lillo, M.; Triassi, M.; Di Duca, F.; Russo, I.; Graziano, V.; Mazzei, G.; Gentile, I.; Shojaeian, S.Z.; Montuori, P. Analysis and Risk Assessment of Pesticide Residues in Strawberry Using the PRIMo Model: Detection, Public Health and Safety Implications. Foods 2025, 14, 3470. https://doi.org/10.3390/foods14203470
De Rosa E, Di Lillo M, Triassi M, Di Duca F, Russo I, Graziano V, Mazzei G, Gentile I, Shojaeian SZ, Montuori P. Analysis and Risk Assessment of Pesticide Residues in Strawberry Using the PRIMo Model: Detection, Public Health and Safety Implications. Foods. 2025; 14(20):3470. https://doi.org/10.3390/foods14203470
Chicago/Turabian StyleDe Rosa, Elvira, Maddalena Di Lillo, Maria Triassi, Fabiana Di Duca, Immacolata Russo, Vito Graziano, Giovanni Mazzei, Immanuela Gentile, Seyedeh Zahra Shojaeian, and Paolo Montuori. 2025. "Analysis and Risk Assessment of Pesticide Residues in Strawberry Using the PRIMo Model: Detection, Public Health and Safety Implications" Foods 14, no. 20: 3470. https://doi.org/10.3390/foods14203470
APA StyleDe Rosa, E., Di Lillo, M., Triassi, M., Di Duca, F., Russo, I., Graziano, V., Mazzei, G., Gentile, I., Shojaeian, S. Z., & Montuori, P. (2025). Analysis and Risk Assessment of Pesticide Residues in Strawberry Using the PRIMo Model: Detection, Public Health and Safety Implications. Foods, 14(20), 3470. https://doi.org/10.3390/foods14203470