Structural Characterization of Polysaccharide from Flammulina velutipes and Its Impact on Hyperlipidemia Through Modulation of Hepatic Cholesterol Metabolism and Gut Microbiota
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. FVPB1 Separation and Purification
2.3. Polysaccharide and Protein Content Determination
2.4. Infrared Spectroscopy Analysis
2.5. Determination of Purity and Molecular Weight
2.6. Monosaccharide Composition Analysis
2.7. Methylation Analysis
2.8. Nuclear Magnetic Resonance (NMR)
2.9. In Vitro Experiments
2.10. Zebrafish Experiments
2.11. Mouse Experiments
2.11.1. Lipid-Lowering Model
2.11.2. Haematoxylin and Eosin (HE) Staining
2.11.3. Biochemical Analyses of Serum, Liver, and Feces Samples in Mice
2.12. Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR)
2.13. Gut Microbiota Analysis
2.14. Statistical Analysis
3. Results and Discussion
3.1. FVPB1 Structural Characteristics
3.2. FVPB1 Inhibits Lipid Accumulation in RAW264.7 Cells and HFD-Induced Zebrafish Larvae
3.3. FVPB1 Lowers Lipid Levels in HFD-Mouse Models
3.3.1. FVPB1 Inhibits Weight Gain and Repairs Liver Injury in HFD-Induced Mouse
3.3.2. FVPB1 Repairs the Levels of Lipid Correlated Indexes in the Serum and Liver of Hyperlipidemic Mice
3.3.3. FVPB1 Restores Abnormal Serum Apolipoprotein Levels Induced by HFD in Mice
3.3.4. FVPB1 Restores the Expression Disorder of Cholesterol Transport-Related Factors in Mice Induced by HFD at the mRNA and Enzymes Level
3.3.5. FVPB1 Promotes the Production of Cholesterol Metabolites in Mice
3.3.6. FVPB1 Restores the Structural Disorder of the Gut Microbiota in Mice Induced by HFD
Analysis of Venn Diagram and Beta Diversity
Structural Analysis at the Level of Phylum and Genus
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jameson, J.L.; Fauci, A.S.; Kasper, D.L.; Hauser, S.L.; Longo, D.L.; Loscalzo, J. Harrison’s Principles of Internal Medicine, 21st ed.; McGraw Hill: Columbus, OH, USA, 2022. [Google Scholar]
- Goldstein, J.L.; Brown, M.S. A century of cholesterol and coronaries: From plaques to genes to statins. Cell 2015, 161, 161–172. [Google Scholar] [CrossRef]
- World Health Organization. Global Guidelines on Diet, Physical Activity, and Cardiovascular Disease Prevention; WHO Press: Geneva, Switzerland, 2022. [Google Scholar]
- Rathore, H.; Prasad, S.; Sharma, S. Medicinal importance of mushroom mycelia: Mechanisms and applications. J. Funct. Foods 2019, 35, 382–395. [Google Scholar]
- Wasser, S.P. Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomed. J. 2014, 37, 345–356. [Google Scholar] [CrossRef]
- Ulrike, L.; Niedermeyer, T.H.J.; Jülich, W.D. The pharmacological potential of mushrooms. Evid. Based Complement. Alternat. Med. 2010, 2, 285–299. [Google Scholar]
- Sokovi, M.; Glamolija, J.; Iri, A.; Petrovi, J.; Stojkovi, D. Mushrooms as Sources of Therapeutic Foods. In Therapeutic Foods; Academic Press: Cambridge, MA, USA, 2018; pp. 141–178. [Google Scholar]
- Wieczorek, P.P.; Witkowska, D.; Jasicka-Misiak, I.; Poliwoda, A.; Oterman, M.; Zielińska, K. Bioactive alkaloids of hallucinogenic mushrooms. Stud. Nat. Prod. Chem. 2015, 46, 133–168. [Google Scholar]
- Sun, Y.J.; He, H.Q.; Wang, Q.; Yang, X.; Jiang, S.; Wang, D. A Review of Development and Utilization for Edible Fungal Polysaccharides: Extraction, Chemical Characteristics, and Bioactivities. Polymers 2022, 14, 4454. [Google Scholar] [CrossRef] [PubMed]
- Valverde, M.E.; Hernández-Pérez, T.; Paredes-López, O. Edible mushrooms: Improving human health and promoting quality life. Int. J. Microbiol. 2015, 2015, 376387. [Google Scholar] [CrossRef]
- Song, X.L.; Liu, Z.H.; Zhang, J.J.; Zhang, C.; Dong, Y.; Ren, Z.Z.; Gao, Z.; Liu, M.; Zhao, H.J.; Jia, L. Antioxidative and hepatoprotective effects of enzymatic and acidic-hydrolysis of Pleurotus geesteranus mycelium polysaccharides on alcoholic liver diseases. Carbohydr. Polym. 2018, 201, 75–86. [Google Scholar] [CrossRef]
- López-Legarda, X.; Rostro-Alanis, M.; Parra-Saldivar, R.; Villa-Pulgarín, J.A.; Segura-Sánchez, F. Submerged cultivation, characterization and in vitro antitumor activity of polysaccharides from Schizophyllum radiatum. Int. J. Biol. Macromol. 2021, 186, 919–932. [Google Scholar] [CrossRef]
- Moussa, A.Y.; Fayez, S.; Xiao, H.; Xu, B. New insights into antimicrobial and antibiofilm effects of edible mushrooms. Food Res. Int. 2022, 162, 111982. [Google Scholar] [CrossRef]
- Krishnamoorthi, R.; Srinivash, M.; Mahalingam, P.U.; Malaikozhundan, B. Dietary nutrients in edible mushroom, Agaricus bisporus and their radical scavenging, antibacterial, and antifungal effects. Process. Biochem. 2022, 121, 10–17. [Google Scholar] [CrossRef]
- Song, X.L.; Ren, Z.Z.; Wang, X.X.; Jia, L.; Zhang, C. Antioxidant, anti-inflammatory and renoprotective effects of acidic-hydrolytic polysaccharides by spent mushroom compost (Lentinula edodes) on LPS-induced kidney injury. Int. J. Biol. Macromol. 2020, 151, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Li, J.H.; Shi, H.; Li, H.; Luo, Y.Y.; Zhang, M.; Yu, R.M.; Huang, W.J.; Song, L.Y.; Zhu, J.H. Structural elucidation and immunoregulatory activity of a new polysaccharide obtained from the edible part of Scapharca subcrenata. Process. Biochem. 2023, 128, 76–93. [Google Scholar] [CrossRef]
- Jiao, J.Q.; Yong, T.Q.; Huang, L.H.; Chen, S.D.; Xiao, C.; Wu, Q.P.; Hu, H.; Xie, Y.; Li, X.; Liu, Y.; et al. A Ganoderma lucidum polysaccharide F31 alleviates hyperglycemia through kidney protection and adipocyte apoptosis. Int. J. Biol. Macromol. 2023, 226, 1178–1191. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.Z.; Qiu, H.M.; Zheng, J.X. Physicochemical characteristics and anti-hyperlipidemic effect of polysaccharide from BaChu mushroom (Helvella leucopus). Food Chem. X 2022, 15, 100443. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yin, J.Y.; Nie, S.P.; Xie, M.Y. Isolation, purification and physicochemical properties of polysaccharide from fruiting body of Hericium erinaceus and its effect on colonic health of mice. Int. J. Biol. Macromol. 2018, 107, 1310–1319. [Google Scholar] [CrossRef]
- Chang, C.J.; Lin, C.S.; Lu, C.C.; Martel, J.; Ko, Y.F.; Ojcius, D.M.; Tseng, S.F.; Wu, T.R.; Chen, Y.Y.; Young, J.D.; et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat. Commun. 2015, 6, 7489. [Google Scholar] [CrossRef]
- Liu, Q.; An, X.; Chen, Y.; Deng, Y.; Niu, H.; Ma, R.; Zhao, H.; Cao, W.; Wang, X.; Wang, M. Effects of Auricularia auricula polysaccharides on gut microbiota and metabolic phenotype in mice. Foods 2022, 11, 2700. [Google Scholar] [CrossRef]
- Li, L.; Guo, W.L.; Zhang, W.; Xu, J.X.; Qian, M.; Bai, W.D.; Zhang, Y.Y.; Rao, P.F.; Ni, L.; Lv, X.C. Grifola frondosa polysaccharides ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet fed rats. Food Funct. 2019, 10, 2560–2572. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, L.; Liu, H.; Zhang, J.J.; Hu, C.L.; Jia, L. Antioxidation, anti-hyperglycaemia and renoprotective effects of extracellular polysaccharides from Pleurotus eryngii SI-04. Int. J. Biol. Macromol. 2018, 111, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, D.; Nan, C.; Mori, K.; Hanayama, M.; Kikuchi, H.; Hirai, S.; Egashira, Y. Effect of mushroom polysaccharides from Pleurotus eryngii on obesity and gut microbiota in mice fed a high-fat diet. Eur. J. Nutr. 2020, 59, 3231–3244. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Q.; Xu, N.; Zhang, J.J.; Zhao, H.J.; Lin, L.; Jia, S.H.; Jia, L. Antihyperlipidemic and hepatoprotective activities of residue polysaccharide from Cordyceps militaris SU-12. Carbohydr. Polym. 2015, 131, 355–362. [Google Scholar] [CrossRef]
- Huang, R.; Zhu, Z.J.; Wu, S.J.; Wang, J.; Chen, M.F.; Liu, W.; Huang, A.O.; Zhang, J.M.; Wu, Q.P.; Ding, Y. Polysaccharides from Cordyceps militaris prevent obesity in association with modulating gut microbiota and metabolites in high-fat diet-fed mice. Food Res. Int. 2022, 157, 111197. [Google Scholar] [CrossRef]
- Berger, A.; Rein, D.; Kratky, E.; Monnard, I.; Hajjaj, H.; Meirim, I.; Piguet-Welsch, C.; Hauser, J.; Mace, K.; Niederberger, P. Cholesterol-lowering properties of Ganoderma lucidum in vitro, ex vivo, and in hamsters and minipigs. Lipids Health Dis. 2004, 3, 2. [Google Scholar] [CrossRef]
- Feng, T.; Jia, W.; Wang, W.H.; Lin, C.C.; Fan, H.; Zhang, J.S.; Bao, H.Y. Structural Characterization and Immunological Activities of a Novel Water-Soluble Polysaccharide from the Fruiting Bodies of Culinary-Medicinal Winter Mushroom, Flammulina velutipes (Agaricomycetes). Int. J. Med. Mushrooms 2016, 18, 807–819. [Google Scholar] [CrossRef]
- Jia, W.; Feng, J.; Zhang, J.S.; Lin, C.C.; Wang, W.H.; Chen, H. Structural characteristics of the novel polysaccharide fvpa1 from winter culinary-medicinal mushroom, Flammulina velutipes (agaricomycetes), capable of enhancing natural killer cell activity against k562 tumor cells. Int. J. Med. Mushrooms 2017, 19, 535–546. [Google Scholar] [CrossRef]
- Wang, W.H.; Zhang, J.S.; Feng, T.; Deng, J.; Lin, C.C.; Fan, H.; Yu, W.; Bao, H.Y.; Jia, W. Structural elucidation of a polysaccharide from Flammulina velutipes and its immunomodulation activities on mouse B lymphocytes. Sci. Rep. 2018, 8, 3120. [Google Scholar] [CrossRef]
- Jia, F.; Gao, Y.; Zhang, J.; Hou, F.; Shi, J.; Song, S.; Yang, S. Flammulina velutipes mycorrhizae dietary fiber attenuates the development of obesity via regulating lipid metabolism in high-fat diet-induced obese mice. Front. Nutr. 2025, 12, 1551987. [Google Scholar] [CrossRef]
- Masuko, T.; Minami, A.; Iwasaki, N.; Majima, T.; Nishimura, S.; Lee, Y.C. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 2005, 339, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Wang, W.H.; Yu, D.S.; Yu, Y.C.; Feng, Z.; Li, H.W.; Zhang, J.S.; Zhang, H.N. Structural elucidation of a polysaccharide from Flammulina velutipes and its lipid-lowering and immunomodulation activities. Polymers 2024, 16, 598. [Google Scholar] [CrossRef]
- Wei, H.; Yue, S.; Zhang, S.Z.; Lu, L. Lipid-lowering effect of the Pleurotus eryngii (king oyster mushroom) polysaccharide from solid-state fermentation on both macrophage-derived foam cells and zebrafish models. Polymers 2018, 10, 492. [Google Scholar] [CrossRef] [PubMed]
- Barker, S.A.; Bourne, E.J.; Stacey, M.; Whiffen, D.H. Infra-red spectra of carbohydrates. Part I. Some derivatives of d-glucopyranose. J. Chem. Soc. 1954, 1, 171–176. [Google Scholar] [CrossRef]
- Staaf, M.; Urbina, F.; Weintraub, A.; Widmalm, G. Structure elucidation of the o-antigenic polysaccharide from the enteroaggregative Escherichia coli strain 62d1. Eur. J. Biochem. 1999, 262, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Jansson, P.E.; Kenne, L.; Widmalm, G. Computer-assisted structural analysis of polysaccharides with an extended version of casper using 1H- and 13C-N.M.R.data. Carbohydr. Res. 1989, 188, 169–191. [Google Scholar] [CrossRef] [PubMed]
- Senchenkova, S.N.; Knirel, Y.A.; Shashkov, A.S.; Ahmed, M.; Mavridis, A.; Rudolph, K. Structure of the o-polysaccharide of Erwinia carotovora ssp. carotovora gspb 436. Carbohydr. Res. 2002, 338, 2025–2027. [Google Scholar] [CrossRef]
- Panchal, S.K.; Poudyal, H.; Arumugam, T.V.; Brown, L. Rutin attenuates metabolic changes, nonalcoholic steatohepatitis, and cardiovascular remodeling in high-carbohydrate, high-fat diet-fed rats. J. Nutr. 2011, 141, 1062–1069. [Google Scholar] [CrossRef]
- Katakami, N.; Kaneto, H.; Osonoi, T.; Saitou, M.; Takahara, M.; Sakamoto, F.; Yamamoto, K.; Yasuda, T.; Matsuoka, T.A.; Matsuhisa, M.; et al. Usefulness of lipoprotein ratios in assessing carotid atherosclerosis in Japanese type 2 diabetic patients. Atherosclerosis 2011, 214, 442–447. [Google Scholar] [CrossRef]
- Katan, M.B.; Grundy, S.M.; Jones, P.; Law, M.; Miettinen, T.; Paoletti, R.; Stresa Workshop Participants. Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin. Proc. 2003, 78, 965–978. [Google Scholar] [CrossRef]
- Olofsson, S.O.; Borèn, J. Apolipoprotein B: A clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis. J. Intern. Med. 2005, 258, 395–410. [Google Scholar] [CrossRef]
- Gotto, A.M.J.; Pownall, H.J.; Havel, R.J. Introduction to the plasma lipoproteins. Methods Enzymol. 1986, 128, 3–41. [Google Scholar] [PubMed]
- Fielding, C.J.; Fielding, P.E. Molecular physiology of reverse cholesterol transport. J. Lipid Res. 1995, 36, 211–228. [Google Scholar] [CrossRef]
- Rader, D.J. Molecular regulation of HDL metabolism and function: Implications for novel therapies. Nat. Rev. Drug Discov. 2006, 5, 193–206. [Google Scholar] [CrossRef]
- Kuivenhoven, J.A.; Pritchard, H. Reverse cholesterol transport: From classical view to new insights. Nat. Rev. Cardiol. 2014, 11, 677–678. [Google Scholar]
- Tanigawa, H.; Billheimer, J.T.; Tohyama, J.; Fuki, I.V.; Ng, D.S.; Rothblat, G.H.; Rader, D.J. Lecithin: Cholesterol acyltransferase expression has minimal effects on macrophage reverse cholesterol transport in vivo. Circulation 2009, 120, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.S.; Lei, X.; Xie, Q.; Zhang, M.J.; Zhang, Y.G.; Xi, J.X.; Duan, J.Y.; Ge, J.; Nian, F.Z. In vitro study on antioxidant and lipid-lowering activities of tobacco polysaccharides. Bioresour. Bioprocess. 2024, 11, 15. [Google Scholar] [CrossRef]
- Cheng, F.E.; Yang, Y.R.; Yun, S.J.; Cao, J.L.; Chang, M.C.; Cheng, Y.F.; Feng, C.P. Sparassis latifolia Polysaccharide Attenuates Cholesterol in Rats Maintained on a High-Fat, High-Cholesterol Diet. J. Food Biochem. 2023, 2023, 12. [Google Scholar] [CrossRef]
- Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat. Rev. Genet. 2008, 9, 102–114. [Google Scholar] [CrossRef]
- Watanabe, M.; Houten, S.M.; Mataki, C.; Christoffolete, M.A.; Kim, B.W.; Sato, H.; Messaddeq, N.; Harney, J.W.; Ezaki, O.; Kodama, T.; et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006, 439, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.D.; Chen, W.D.; Moore, D.D.; Huang, W. FXR: A metabolic regulator and cell protector. Cell Res. 2008, 18, 1087–1095. [Google Scholar] [CrossRef]
- Staley, C.; Weingarden, A.R.; Khoruts, A.; Sadowsky, M.J. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl. Microbiol. Biotechnol. 2017, 101, 47–64. [Google Scholar] [CrossRef]
- Hu, R.K.; Guo, W.L.; Huang, Z.R.; Li, L.; Liu, B.; Lv, X.C. Extracts of Ganoderma lucidum attenuate lipid metabolism and modulate gut microbiota in high-fat diet fed rats. J. Funct. Foods 2018, 46, 403–412. [Google Scholar] [CrossRef]
- Xu, X.F.; Zhang, X.W. Lentinula edodes-Derived Polysaccharide Alters the Spatial Structure of Gut Microbiota in Mice. PLoS ONE 2015, 10, e0115037. [Google Scholar] [CrossRef] [PubMed]
- Ottman, N.; Geerlings, S.Y.; Aalvink, S.; de Vos, W.M.; Belzer, C. Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Pract. Res. Clin. Gastroenterol. 2017, 31, 637–642. [Google Scholar] [CrossRef]
- Zhou, K. Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotic in the gut, evidence from dietary intervention studies. J. Funct. Foods 2017, 33, 194–201. [Google Scholar] [CrossRef]
- Chen, Y.T.; Yang, N.S.; Lin, Y.C.; Ho, S.T.; Li, K.Y.; Lin, J.S.; Liu, J.R.; Chen, M.J. A combination of Lactobacillus mali APS1 and dieting improved the efficacy of obesity treatment via manipulating gut microbiome in mice. Sci. Rep. 2018, 8, 6153. [Google Scholar] [CrossRef] [PubMed]
- An, H.M.; Park, S.Y.; Lee, D.K.; Kim, J.R.; Cha, M.K.; Lee, S.W.; Lim, H.T.; Kim, K.J.; Ha, N.J. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis. 2011, 10, 116. [Google Scholar] [CrossRef]
- Krumbeck, J.A.; Rasmussen, H.E.; Hutkins, R.W.; Clarke, J.; Shawron, K.; Keshavarzian, A.; Walter, J. Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome 2018, 6, 121. [Google Scholar] [CrossRef]
- Grossi, E.; Pace, F. The Gut Microbiota and Obesity in Humans; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; Chapter 3; pp. 27–47. [Google Scholar]
Component | Volume (μL) |
---|---|
SYBR Premix Ex Taq II (Tli RNaseH Plus) | 10 |
F Primer | 0.4 |
R Primer | 0.4 |
ROX Reference Dye (50X) | 0.4 |
ddH2O | 6.8 |
cDNA | 2 |
Gene | Primer Sequence (Forward) | Primer Sequence (Reverse) |
---|---|---|
ACTB | GTGCTATGTTGCTCTAGACTTCG | ATGCCACAGGATTCCATACC |
HMG-CoA | GGAAACTCATGAACGTGGTGTG | TCCGATCACATTCTCACAGCAA |
LCAT | GTTCCTCCGTTCAAACATTGGG | TTTCTCTGGGAGTGACATGACG |
CYP7A1 | GGCATCTCAAGCAAACACCATT | CTGGCAGGTTGTTTAGTTGCTC |
LDL-R | TCAGTCCCAGGCAGCGTATC | CTTGATCTTGGCGGGTGTTC |
Methylated Sugar | Linkage | Fractions (%) |
---|---|---|
2, 3, 4, 6-Me4-Glcp | T-Glcp | 4 |
2, 3, 4, 6-Me4-Galp | T-Galp | 19 |
2, 3, 6-Me3-Glcp | 1,4-Glcp | 15 |
2, 4-Me2-Glcp | 1,3,6-Glcp | 29 |
2, 4, 6-Me3-Glcp | 1,3-Glcp | 21 |
3, 4, 6-Me3-Fucp | 1,2-Fucp | 7 |
2, 3, 4, 6-Me4-Manp | T-Manp | 5 |
Residue | Proton or Carbon | |||||
---|---|---|---|---|---|---|
H-1/C-1 | H-2/C-2 | H-3/C-3 | H-4/C-4 | H-5/C-5 | H-6/C-6 | |
Aα-Galp (1→ | 5.17 | 3.97 | 4.04 | 3.82 | 4.13 | 3.83 a, 3.93 b |
104.05 | 69.30 | 74.34 | 76.12 | 70.96 | 63.71 | |
B→4)-α-Glcp (1→ | 5.16 | 4.14 | 3.94 | 3.83 | 3.74 | 3.93 a, 4.02 b |
105.01 | 72.65 | 72.17 | 79.21 | 69.38 | 63.78 | |
C→3,6)-α-Glcp-(1→ | 5.12 | 3.84 | 3.70 | 3.95 | 4.26 | 3.75 a, 3.84 b |
100.48 | 76.12 | 77.61 | 73.12 | 71.53 | 69.49 | |
D 3→α-Glcp-(1→ | 5.11 | 3.86 | 4.05 | 3.80 | 4.08 | 3.68 a, 3.75 b |
100.65 | 72.23 | 80.22 | 70.09 | 72.34 | 65.10 | |
E 2→α-Fucp (1→ | 5.10 | 3.88 | 4.03 | 4.13 | 4.22 | 1.28 |
100.38 | 76.04 | 71.92 | 72.66 | 69.87 | 18.39 | |
F α-Manp-(1→ | 5.06 | 3.90 | 4.27 | 3.74 | 4.08 | 3.80 a, 3.94 b |
100.63 | 76.04 | 71.50 | 69.43 | 72.40 | 63.72 | |
G→3,6)-β-Glcp-(1→ | 4.57 | 3.38 | 3.54 | 3.95 | 3.73 | 4.23 a, 4.31 b |
105.70 | 75.77 | 78.20 | 72.24 | 69.26 | 69.96 |
Residue | Proton | Proton Correlation |
---|---|---|
A α-Galp (1→ | 5.17(H-1) | 3.75(C:H-6), 3.84(C:H-6), 3.93(A:H-6), 3.97: (A:H-2) |
B →4)-α-Glcp (1→ | 5.16(H-1) | 3.70(C:H-3), 4.05:(D:H-3), 3.94(B:H-3), 4.14(B:H-2) |
3.83(H-4) | 4.57(G:H-1) | |
C →3,6)-α-Glcp (1→ | 5.12(H-1) | 3.75(C:H-6), 3.83:(B:H-4), 3.88(E:H-2), 3.95(C:H-4) |
3.70(H-3) | 5.16(B:H-1), 5.11(D:H-1) | |
3.75 (H-6) | 5.17(A:H-1) | |
D3→α-Glcp (1→ | 5.11(H-1) | 3.70(C:H-3), 4.05:(D:H-3) |
4.05(H-3) | 5.16(B:H-1) | |
E 2→α-Fucp (1→ | 5.10(H-1) | 1.28(E:H-6), 3.88(E:H-2), 4.13(E:H-4), 4.23(G:H-6), 4.31(G:H-6) |
F α-Manp (1→ | 5.06(H-1) | 3.54(G:H-3), 3.74(F:H-4), 3.90(F:H-2), 4.08(F:H-5), 4.27(F:H-3) |
G →3,6)-β-Glcp (1 → | 4.57(H-1) | 3.38(G:H-2), 3.54(G:H-3), 3.83(B:H-4) |
3.54(H-3) | 5.06(F:H-1) | |
4.23,4.31(H-6) | 5.10(E:H-1) |
Residue | Proton | Proton Correlation |
---|---|---|
A α-Galp (1→ | 5.17(H-1) | 76.12(A:C-4), 69.49(C:C-6) |
B →4)-α-Glcp (1→ | 5.16(H-1) | 72.65(B:C-2), 80.22(D:C-3) |
C →3,6)-α-Glcp-(1→ | 5.12(H-1) | 71.53(C:C-5), 76.04(E:C-2), 79.21(B:C-4) |
3.75, 3.84(H-6) | 104.05(A:C-1) | |
D 3→α-Glcp-(1→ | 5.11(H-1) | 65.10(D:C-6), 72.34(D:C-5) |
4.05(H-3) | 105.01(B:C-1) | |
E 2→α-Fucp (1→ | 5.10(H-1) | 69.96(G:C-6), 71.92(E:C-3) |
3.88(H-2) | 100.48(C:C-1) | |
F α-Manp-(1→ | 5.06(H-1) | 71.50(F:C-3), 72.40(F:C-5), 78.20(G:C-3) |
G →3,6)-β-Glcp | 4.57(H-1) | 75.77(G:C-2), 78.20(G:C-3), 79.21(B: C-4) |
4.23, 4.31(H-6) | 100.38(E:C-1) |
Group | NFD | HFD | SV | HFDL | HFDM | HFDH |
---|---|---|---|---|---|---|
Firmicutes (%) | 45.22 ± 14.14 | 84.95 ± 6.07 | 92.11 ± 1.44 | 79.13 ± 7.31 | 61.77 ± 16.55 | 68.40 ± 10.28 |
Bacteroidetes (%) | 17.54 ± 11.55 | 0.04 ± 0.05 | 0.02 ± 0.02 | 0.26 ± 0.17 | 0.97 ± 0.0.75 | 1.94 ± 2.24 |
Firmicutes/Bacteroidetes ratio | 4.07 ± 3.06 | 12,368.93 ± 13,311.48 | 10,212.24 ± 13,283.52 | 456.42 ± 283.05 | 114.8 ± 117.26 | 160.12 ± 199.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, W.; Wang, H.; Feng, T.; Liu, X.; Liu, Z.; Li, Z.; Wang, W.; Zhang, J. Structural Characterization of Polysaccharide from Flammulina velutipes and Its Impact on Hyperlipidemia Through Modulation of Hepatic Cholesterol Metabolism and Gut Microbiota. Foods 2025, 14, 3452. https://doi.org/10.3390/foods14193452
Jia W, Wang H, Feng T, Liu X, Liu Z, Li Z, Wang W, Zhang J. Structural Characterization of Polysaccharide from Flammulina velutipes and Its Impact on Hyperlipidemia Through Modulation of Hepatic Cholesterol Metabolism and Gut Microbiota. Foods. 2025; 14(19):3452. https://doi.org/10.3390/foods14193452
Chicago/Turabian StyleJia, Wei, Huimin Wang, Ting Feng, Xiaoxiao Liu, Zhendong Liu, Zhengpeng Li, Wenhan Wang, and Jingsong Zhang. 2025. "Structural Characterization of Polysaccharide from Flammulina velutipes and Its Impact on Hyperlipidemia Through Modulation of Hepatic Cholesterol Metabolism and Gut Microbiota" Foods 14, no. 19: 3452. https://doi.org/10.3390/foods14193452
APA StyleJia, W., Wang, H., Feng, T., Liu, X., Liu, Z., Li, Z., Wang, W., & Zhang, J. (2025). Structural Characterization of Polysaccharide from Flammulina velutipes and Its Impact on Hyperlipidemia Through Modulation of Hepatic Cholesterol Metabolism and Gut Microbiota. Foods, 14(19), 3452. https://doi.org/10.3390/foods14193452