Physicochemical and Flavor Characteristics of Maillard Reaction Products from Nile Tilapia Fish Skin Collagen Peptides Induced by Four Reducing Sugars
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of FSCPs and MRPs
2.2.1. Preparation of FSCPs
2.2.2. Preparation of MRPs from Different Reducing Sugars
2.3. Determination of Free Amino Group
2.4. Determination of Molecular Weight (MW) Distribution
2.5. Color Difference Analysis
2.6. Spectral Analysis by UV and Fluorescence Scanning Spectroscopy
2.7. Sensory Evaluation of MRPs
2.7.1. Panelist Selection and Training
2.7.2. Taste Profile Analysis by Quantitative Descriptive Analysis (QDA)
2.8. Volatile Compound Analysis of MRPs by GC–MS
2.9. Statistical Analysis
3. Results and Discussion
3.1. Changes in Free Amino Group Content of MRPs
3.2. Changes in MW Distribution of MRPs
3.3. Color Difference Data of MRPs
3.4. Spectral Analysis of MRPs
3.4.1. UV Scanning Spectra of MRPs
3.4.2. Fluorescence Scanning Spectra of MRPs
3.5. Quantitative Sensory Evaluation of MRPs
3.6. Volatile Compound Analysis of MRPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.; Zhang, Y.; Dai, H.; Zhang, Y.; Fu, Y. The potential of undenatured type II collagen against arthritis: A review. Collagen Leather 2024, 6, 17. [Google Scholar] [CrossRef]
- Felician, F.F.; Xia, C.; Qi, W.; Xu, H. Collagen from Marine Biological Sources and Medical Applications. Chem. Biodivers. 2018, 15, e1700557. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Verma, A.K.; Patel, R. Collagen extraction and recent biological activities of collagen peptides derived from sea-food waste: A review. Sustain. Chem. Pharm. 2020, 18, 100315. [Google Scholar] [CrossRef]
- Grand View, R. Collagen Market Size, Share & Growth|Industry Report 2030; Grand View Research. 2024. Available online: https://www.grandviewresearch.com/industry-analysis/collagen-market (accessed on 6 September 2025).
- Future Market, I. Collagen Peptide Market Size, Trends & Forecast 2025–2035; Future Market Insights: Pimpri-Chinchwad, India, 2025. [Google Scholar]
- Nurilmala, M.; Hizbullah, H.H.; Karnia, E.; Kusumaningtyas, E.; Ochiai, Y. Characterization and Antioxidant Activity of Collagen, Gelatin, and the Derived Peptides from Yellowfin Tuna (Thunnus albacares) Skin. Mar. Drugs 2020, 18, 98. [Google Scholar] [CrossRef]
- Nurilmala, M.; Suryamarevita, H.; Husein Hizbullah, H.; Jacoeb, A.M.; Ochiai, Y. Fish skin as a biomaterial for halal collagen and gelatin. Saudi J. Biol. Sci. 2022, 29, 1100–1110. [Google Scholar] [CrossRef]
- Ge, B.; Wang, H.; Li, J.; Liu, H.; Yin, Y.; Zhang, N.; Qin, S. Comprehensive Assessment of Nile Tilapia Skin (Oreochromis niloticus) Collagen Hydrogels for Wound Dressings. Mar. Drugs 2020, 18, 178. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, Z.; Yao, X.; Fu, Y. Mineral-chelating peptides derived from fish collagen: Preparation, bioactivity and bioavailability. LWT 2020, 134, 110209. [Google Scholar] [CrossRef]
- Thirukumaran, R.; Anu Priya, V.K.; Krishnamoorthy, S.; Ramakrishnan, P.; Moses, J.A.; Anandharamakrishnan, C. Resource recovery from fish waste: Prospects and the usage of intensified extraction technologies. Chemosphere 2022, 299, 134361. [Google Scholar] [CrossRef]
- Lee, J.K.; Jeon, J.-K.; Byun, H.-G. Antihypertensive effect of novel angiotensin I converting enzyme inhibitory peptide from chum salmon (Oncorhynchus keta) skin in spontaneously hypertensive rats. J. Funct. Foods 2014, 7, 381–389. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Wang, Y.; Wang, J.; Xu, Y.; Yi, S.; Zhu, W.; Mi, H.; Li, T.; Li, J. Combined ultrasound and heat pretreatment improve the enzymatic hydrolysis of clam (Aloididae aloidi) and the flavor of hydrolysates. Innov. Food Sci. Emerg. Technol. 2021, 67, 102596. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Y.; Wang, Z.; Cai, S.; Zhu, B.; Dong, X. Recent advances in fishy odour in aquatic fish products, from formation to control. Int. J. Food Sci. Technol. 2021, 56, 4959–4969. [Google Scholar] [CrossRef]
- Mohammadi, M.; Mirza Alizadeh, A.; Mollakhalili, N. Off-Flavors in Fish: A Review of Potential Development Mechanisms, Identification and Prevention Methods. J. Hum. Environ. Health Promot. 2021, 7, 120–128. [Google Scholar] [CrossRef]
- Lindholm-Lehto, P.C.; Vielma, J.; Pakkanen, H.; Alén, R. Depuration of geosmin- and 2-methylisoborneol-induced off-flavors in recirculating aquaculture system (RAS) farmed European whitefish Coregonus lavaretus. J. Food Sci. Technol. 2019, 56, 4585–4594. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Q.; An, Y.; Chen, Z.; You, J.; Xiong, S. Effect of short time micro water treatment on fish flavor quality of grass carp. J. Food Sci. Technol. 2021, 39, 30–42+51. [Google Scholar]
- Liu, Y.; Duan, Z.; Cai, Y.; Hu, B. Study on the defishment process of oyster enzymatic hydrolysate. Food Res. Dev. 2015, 36, 95–99. [Google Scholar]
- Xiong, H.; Cao, L.; Yan, Q.; Ma, Y. Study on optimization of the Maillard reaction process of Tilapia fish platoon protease hydrolysate. Chin. Agric. Sci. Bull. 2013, 29, 58–67. [Google Scholar]
- Li, Y.; Zhou, W.; Cao, Y.; Gong, X.; Li, J.; Lu, X.; Dai, Y. Analysis of volatile components of Tilapia enzymolysis solution after different deodorization treatments. IOP Conf. Ser. Earth Environ. Sci. 2020, 571, 012121. [Google Scholar] [CrossRef]
- Hu, Y.; Shi, W.; Lu, Y. Research progress of fish odor removal technology. Food Ferment. Ind. 2021, 47, 282–287. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, L.; Wang, Z.; Wang, X.; Liu, Y. Physicochemical and sensory variables of Maillard reaction products obtained from Takifugu obscurus muscle hydrolysates. Food Chem. 2019, 290, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X.; Xue, Y.; Ruan, S.; Zhou, A.; Huang, S.; Ma, H. The Preparation and Identification of Characteristic Flavour Compounds of Maillard Reaction Products of Protein Hydrolysate from Grass Carp (Ctenopharyngodon idella) Bone. J. Food Qual. 2021, 2021, 8394152. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, Y.; Soladoye, O.P.; Aluko, R.E. Maillard reaction products derived from food protein-derived peptides: Insights into flavor and bioactivity. Crit. Rev. Food Sci. Nutr. 2020, 60, 3429–3442. [Google Scholar] [CrossRef]
- Kouakou, C.; Bergé, J.-P.; Baron, R.; Lethuaut, L.; Prost, C.; Cardinal, M. Odor Modification in Salmon Hydrolysates Using the Maillard Reaction. J. Aquat. Food Prod. Technol. 2014, 23, 453–467. [Google Scholar] [CrossRef]
- Vhangani, L.N.; Van Wyk, J. Antioxidant activity of Maillard reaction products (MRPs) derived from fructose–lysine and ribose–lysine model systems. Food Chem. 2013, 137, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Khadidja, L.; Asma, C.; Mahmoud, B.; Meriem, E. Alginate/gelatin crosslinked system through Maillard reaction: Preparation, characterization and biological properties. Polym. Bull. 2017, 74, 4899–4919. [Google Scholar] [CrossRef]
- Maillard, M.N.; Billaud, C.; Chow, Y.N.; Ordonaud, C.; Nicolas, J. Free radical scavenging, inhibition of polyphenoloxidase activity and copper chelating properties of model Maillard systems. LWT—Food Sci. Technol. 2007, 40, 1434–1444. [Google Scholar] [CrossRef]
- Karbasi, M.; Madadlou, A. Interface-related attributes of the Maillard reaction-born glycoproteins. Crit. Rev. Food Sci. Nutr. 2018, 58, 1595–1603. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, J.; Zhang, W.; Wæhrens, S.S.; Tøstesen, M.; Hansen, E.T.; Bredie, W.L.P.; Lametsch, R. Exopeptidase treatment combined with Maillard reaction modification of protein hydrolysates derived from porcine muscle and plasma: Structure–taste relationship. Food Chem. 2020, 306, 125613. [Google Scholar] [CrossRef]
- Hemmler, D.; Roullier-Gall, C.; Marshall, J.W.; Rychlik, M.; Taylor, A.J.; Schmitt-Kopplin, P. Insights into the Chemistry of Non-Enzymatic Browning Reactions in Different Ribose-Amino Acid Model Systems. Sci. Rep. 2018, 8, 16879. [Google Scholar] [CrossRef]
- Song, C.; Yang, Y.; Zhao, Z.; Tan, M.; Chen, Z.; Zheng, H.; Gao, J.; Lin, H.; Zhu, G.; Cao, W. Insight into the correlation of taste substances and salty-umami taste from Monetaria moneta hydrolysates prepared using different proteases. Food Chem. X 2024, 24, 102056. [Google Scholar] [CrossRef]
- Adler-Nissen, J.; Olsen, H.S. The Influence of Peptide Chain Length on Taste and Functional Properties of Enzymatically Modified Soy Protein; ACS Publications: Washington, DC, USA, 1979. [Google Scholar]
- Fu, Y.; Liu, J.; Hansen, E.T.; Bredie, W.L.P.; Lametsch, R. Structural characteristics of low bitter and high umami protein hydrolysates prepared from bovine muscle and porcine plasma. Food Chem. 2018, 257, 163–171. [Google Scholar] [CrossRef]
- Fu, Y.; Bak, K.H.; Liu, J.; De Gobba, C.; Tøstesen, M.; Hansen, E.T.; Petersen, M.A.; Ruiz-Carrascal, J.; Bredie, W.L.P.; Lametsch, R. Protein hydrolysates of porcine hemoglobin and blood: Peptide characteristics in relation to taste attributes and formation of volatile compounds. Food Res. Int. 2019, 121, 28–38. [Google Scholar] [CrossRef]
- Gomide, A.I.; Silva, R.; Nascimento, M.; Minim, L.A.; Minim, V.P.R. Study of the influence of line scale length (9 and 15 cm) on the sensory evaluations of two descriptive methods. J. Food Sci. Technol. 2021, 58, 2815–2824. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, B.; Fu, Y.; Shi, Y.-G.; Chen, F.-L.; Guan, H.-N.; Liu, L.-L.; Zhang, C.-Y.; Zhu, P.-Y.; Liu, Y.; et al. HS-GC-IMS with PCA to analyze volatile flavor compounds across different production stages of fermented soybean whey tofu. Food Chem. 2021, 346, 128880. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.H.; Eyres, G.T.; Silcock, P.J.; Hardacre, A.K.; Parker, M.E. Changes in the physicochemical properties and flavour compounds of beef bone hydrolysates after Maillard reaction. Food Res. Int. 2019, 123, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.; Chen, L.; Wu, W.; Soladoye, O.P.; Zhang, Y.; Fu, Y. The potential meat flavoring generated from Maillard reaction products of wheat gluten protein hydrolysates-xylose: Impacts of different thermal treatment temperatures on flavor. Food Res. Int. 2023, 165, 112512. [Google Scholar] [CrossRef]
- Qin, Z.; Han, Y.-F.; Wang, N.-N.; Liu, H.-M.; Zheng, Y.-Z.; Wang, X.-D. Improvement of the oxidative stability of cold-pressed sesame oil using products from the Maillard reaction of sesame enzymatically hydrolyzed protein and reducing sugars. J. Sci. Food Agric. 2020, 100, 1524–1531. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Gong, X.; Zhang, N.; Benjakul, S.; Zhang, Y.; Fu, Y. Glycation modification of protein hydrolysate from channel catfish (Ictalurus Punetaus) viscera to mitigate undesirable flavor: Unraveling structure and flavor characteristics. Food Chem. X 2024, 24, 101993. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Fu, Y.; Gao, Y.; Guo, W.; Hu, R.; Liu, X. Effects of different ph on properties of heat-induced Auricularia auricula-judae polysaccharide-whey protein isolate composite gels. Food Struct. 2023, 36, 100317. [Google Scholar] [CrossRef]
- YU, A.-N.; TANG, L.-P. Kinetics of non-enzymatic browning reaction from the l-ascorbic acid/l-cysteine model system. Czech J. Food Sci. 2016, 34, 503–510. [Google Scholar] [CrossRef]
- Hong, P.K.; Ndagijimana, M.; Betti, M. Glucosamine-induced glycation of hydrolysed meat proteins in the presence or absence of transglutaminase: Chemical modifications and taste-enhancing activity. Food Chem. 2016, 197, 1143–1152. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, M.; Mujumdar, A.S.; Liu, Y. Combination of epigallocatechin gallate with l-cysteine in inhibiting Maillard browning of concentrated orange juice during storage. LWT 2022, 154, 112604. [Google Scholar] [CrossRef]
- Shen, Y.; Hu, L.T.; Xia, B.; Ni, Z.J.; Elam, E.; Thakur, K.; Zhang, J.G.; Wei, Z.J. Effects of different sulfur-containing substances on the structural and flavor properties of defatted sesame seed meal derived Maillard reaction products. Food Chem. 2021, 365, 130463. [Google Scholar] [CrossRef]
- Ogutu, B.; Kim, Y.J.; Kim, D.W.; Oh, S.C.; Hong, D.L.; Lee, Y.B. Optimization of Maillard Reaction between Glucosamine and Other Precursors by Measuring Browning with a Spectrophotometer. Prev. Nutr. Food Sci. 2017, 22, 211–215. [Google Scholar] [CrossRef]
- Wei, C.-K.; Ni, Z.-J.; Thakur, K.; Liao, A.-M.; Huang, J.-H.; Wei, Z.-J. Color and flavor of flaxseed protein hydrolysates Maillard reaction products: Effect of cysteine, initial pH, and thermal treatment. Int. J. Food Prop. 2019, 22, 84–99. [Google Scholar] [CrossRef]
- Giovanelli, G.; Cappa, C. 5-Hydroxymethylfurfural Formation in Bread as a Function of Heat Treatment Intensity: Correlations with Browning Indices. Foods 2021, 10, 417. [Google Scholar] [CrossRef]
- Cao, C.; Xie, J.; Hou, L.; Zhao, J.; Chen, F.; Xiao, Q.; Zhao, M.; Fan, M. Effect of glycine on reaction of cysteine-xylose: Insights on initial Maillard stage intermediates to develop meat flavor. Food Res. Int. 2017, 99, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Xu, X.; Zhang, X.; Cheng, S.; El-Seedi, H.R.; Du, M. Identification and characterisation of taste-enhancing peptides from oysters (Crassostrea gigas) via the Maillard reaction. Food Chem. 2023, 424, 136412. [Google Scholar] [CrossRef]
- Sun, L.; Zhuang, Y. Characterization of the Maillard Reaction of Enzyme-Hydrolyzed Wheat Protein Producing Meaty Aromas. Food Bioprocess Technol. 2012, 5, 1287–1294. [Google Scholar] [CrossRef]
- Hrynets, Y.; Ndagijimana, M.; Betti, M. Studies on the Formation of Maillard and Caramelization Products from Glucosamine Incubated at 37 °C. J. Agric. Food Chem. 2015, 63, 6249–6261. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Wu, W.; Wang, B.; Zhang, N.; Bak, K.H.; Soladoye, O.P.; Aluko, R.E.; Zhang, Y.; Fu, Y. Maillard-reacted peptides from glucosamine-induced glycation exhibit a pronounced salt taste-enhancing effect. Food Chem. 2022, 374, 131776. [Google Scholar] [CrossRef]
- Li, X.; Yao, Y.; Xia, X.; Zhang, F.; Yu, J.; Cui, H.; Niu, Y.; Hayat, K.; Zhang, X.; Ho, C.-T. Maillard Reaction Process and Characteristic Volatile Compounds Formed During Secondary Thermal Degradation Monitored via the Change of Fluorescent Compounds in the Reaction of Xylose–Corn Protein Hydrolysate. J. Agric. Food Chem. 2024, 72, 647–656. [Google Scholar] [CrossRef]
- Qiu, J.; Li, H.; Liu, Y.; Li, C.; Fang, Z.; Hu, B.; Li, X.; Zeng, Z.; Liu, Y. Changes in flavor and biological activities of Lentinula edodes hydrolysates after Maillard reaction. Food Chem. 2024, 431, 137138. [Google Scholar] [CrossRef] [PubMed]
- Bak, K.H.; Waehrens, S.S.; Fu, Y.; Chow, C.Y.; Petersen, M.A.; Ruiz-Carrascal, J.; Bredie, W.L.P.; Lametsch, R. Flavor Characterization of Animal Hydrolysates and Potential of Glucosamine in Flavor Modulation. Foods 2021, 10, 3008. [Google Scholar] [CrossRef]
- Zhou, X.; Cui, H.; Zhang, Q.; Hayat, K.; Yu, J.; Hussain, S.; Tahir, M.U.; Zhang, X.; Ho, C.-T. Taste improvement of Maillard reaction intermediates derived from enzymatic hydrolysates of pea protein. Food Res. Int. 2021, 140, 109985. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ji, W.; Peng, Y.; Ji, H.; Gao, J. Evaluation of Flavor Improvement in Antarctic Krill Defluoridated Hydrolysate by Maillard Reaction Using Sensory Analysis, E-nose, and GC-MS. J. Aquat. Food Prod. Technol. 2020, 29, 279–292. [Google Scholar] [CrossRef]
- Karangwa, E.; Murekatete, N.; Habimana Jde, D.; Masamba, K.; Duhoranimana, E.; Muhoza, B.; Zhang, X. Contribution of crosslinking products in the flavour enhancer processing: The new concept of Maillard peptide in sensory characteristics of Maillard reaction systems. J. Food Sci. Technol. 2016, 53, 2863–2875. [Google Scholar] [CrossRef]
- Zhang, T. Effects of four reducing sugars on physicochemical properties and saltiness-enhancing ability of Maillard reaction products derived from fish skin collagen peptides. Food Ferment. Ind. 2021, 47, 161–166. [Google Scholar]
- Cui, W.; Liu, P.; Liu, H.; Sun, Y.; Wang, W. Flavor changes in Lentinus Edodes enzymatic hydrolysate maillard reaction products with different sugars by gas chromatography-ion mobility spectrometry. J. Future Foods 2023, 3, 43–48. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, G.; Zhang, X. Analysis of a Gas Chromatography/Mass Spectrometry Thermal Desorption System with Simultaneous Sniffing for Determination of Off-Odor Compounds and Volatile Organic Compounds in Polypropylene Composites. Sci. Adv. Mater. 2019, 11, 1594–1603. [Google Scholar] [CrossRef]
- Liu, H.; Hui, T.; Fang, F.; Ma, Q.; Li, S.; Zhang, D.; Wang, Z. Characterization and Discrimination of Key Aroma Compounds in Pre- and Postrigor Roasted Mutton by GC-O-MS, GC E-Nose and Aroma Recombination Experiments. Foods 2021, 10, 2387. [Google Scholar] [CrossRef]
- Tian, L.L.; Han, F.; Fodjo, E.K.; Zhai, W.; Huang, X.Y.; Kong, C.; Shi, Y.F.; Cai, Y.Q. An Effective and Efficient Sample Preparation Method for 2-Methyl-Isoborneol and Geosmin in Fish and Their Analysis by Gas Chromatography-Mass Spectrometry. Int. J. Anal. Chem. 2021, 2021, 9980212. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Lao, F.; Bi, S.; Pan, X.; Pang, X.; Hu, X.; Liao, X.; Wu, J. Insights into the major aroma-active compounds in clear red raspberry juice (Rubus idaeus L. cv. Heritage) by molecular sensory science approaches. Food Chem. 2021, 336, 127721. [Google Scholar] [CrossRef]
- Cai, L.; Cao, M.; Cao, A.; Zhang, W. The Effect of Magnetic Nanoparticles Plus Microwave Thawing on the Volatile Flavor Characteristics of Largemouth Bass (Micropterus salmoides) Fillets. Food Bioprocess Technol. 2019, 12, 1340–1351. [Google Scholar] [CrossRef]
- Munir, M.; Nadeem, M.; Ali, B.; Sultan, M.; Kanwal, R.; Al-Jumayi, H.A.; Algarni, E.H.A.; Alnofeai, M.B.; Mahmoud, S.F. Investigating the Impact of Ultrasound, Microwave, and High-Pressure Processing of Milk on the Volatile Compounds and Sensory Properties of Cheddar Cheese. Agriculture 2022, 12, 577. [Google Scholar] [CrossRef]
- Buyukada, M. Removal, potential reaction pathways, and overall cost analysis of various pollution parameters and toxic odor compounds from the effluents of turkey processing plant using TiO2–assisted UV/O3 process. J. Environ. Manag. 2019, 248, 109298. [Google Scholar] [CrossRef] [PubMed]
- Qian, M.; Zheng, M.; Zhao, W.; Liu, Q.; Zeng, X.; Bai, W. Effect of marinating and frying on the flavor of braised pigeon. J. Food Process. Preserv. 2021, 45, e15219. [Google Scholar] [CrossRef]
Sample | L* | a* | b* | ΔE |
---|---|---|---|---|
Control | 95.25 ± 0.57 a | 0.33 ± 0.04 c | 6.51 ± 0.08 d | - |
Glucosamine | 85.70 ± 0.83 c | 2.55 ± 0.11 b | 36.74 ± 0.49 b | 31.78 ± 0.02 b |
Ribose | 84.50 ± 0.57 c | 5.79 ± 0.07 a | 49.39 ± 0.53 a | 45.54 ± 0.08 a |
Glucose | 95.23 ± 0.50 a | 0.34 ± 0.05 c | 6.68 ± 0.42 d | 0.17 ± 0.01 d |
Xylose | 94.02 ± 0.62 ab | 0.02 ± 0.01 d | 13.19 ± 0.41 c | 6.80 ± 0.07 c |
SI | Compounds | Control (%) | Glucosamine | Ribose (%) | Glucose (%) | Xylose (%) | |
---|---|---|---|---|---|---|---|
Carbonyl compounds | 95 | 3,5-Dimethylbenzaldehyde | 4.87 ± 0.11 d | 28.291 ± 0.21 a | 8.92 ± 0.20 b | 11.251 ± 0.26 b | 11.115 ± 0.24 b |
88 | 7,9-Di-tert-butyl-1-oxaspiro [4.5]decane-6,9-diene-2,8-dione | 0.903 ± 0.03 a | 0.849 ± 0.08 a | 0.57 ± 0.01 b | 0.718 ± 0.03 ab | 0.751 ± 0.05 ab | |
96 | Benzaldehyde | - | 1.221±0.05 a | 1.33±0.05 a | - | - | |
90 | Isovaleraldehyde | - | - | 3.41±0.06 a | - | - | |
95 | Furfural | - | - | 13.33±0.07 a | - | - | |
Alcohols | 93 | 2-Ethylhexanol | 1.533 ± 0.03 a | 1.752 ± 0.02 a | 2.08 ± 0.06 a | 1.376 ± 0.05 a | 1.753 ± 0.08 a |
95 | Menthol | - | - | - | - | 0.25 ± 0.04 a | |
Hydrocarbons | 83 | Durene | 0.393 ± 0.02a | - | - | - | - |
90 | 2,5-Dimethyl-Nonane | - | - | - | 0.269 ± 0.02 a | - | |
95 | 2,6-Dimethylnonane | 0.589 ± 0.04 b | - | - | 0.928 ± 0.05 a | 0.188 ± 0.01 c | |
93 | 4,6-Dimethylundecane | 1.728 ± 0.12 a | - | - | - | - | |
87 | 2,3,5,8-Tetramyldecane | 0.943 ± 0.05 a | - | - | - | - | |
96 | Dodecane | 0.275 ± 0.02 b | 0.372 ± 0.04 a | - | 0.18 ± 0.01 c | 0.157 ± 0.02 c | |
90 | 2,3,6-Trimethyldecane | 0.118 ± 0.01 a | - | - | - | - | |
88 | 2,6,11-Trimethyl dodecane | 0.860 ± 0.06 ab | 0.531 ± 0.02 c | 1.18 ± 0.02 a | 0.898 ± 0.04 ab | 0.877 ± 0.05 ab | |
93 | Pentadecane | 1.41 ± 0.03 a | 0.265 ± 0.03 b | 0.18 ± 0.02 b | 0.269 ± 0.07 b | 0.282 ± 0.06 b | |
88 | Nonadecane | 2.95 ± 0.04 a | 0.478 ± 0.03 b | 0.39 ± 0.03 b | - | 0.407 ± 0.05 b | |
91 | 2,7-Dimethylundecane | 0.786 ± 0.07 a | - | - | - | - | |
92 | Eicosane | 12.22 ± 0.14 a | 1.592 ± 0.03 b | 0.54 ± 0.01 c | 1.346 ± 0.02 b | 1.659 ± 0.08 b | |
88 | Heptadecane | 0.314 ± 0.03 a | - | - | - | - | |
85 | 11-Methyltritadecane | 0.314 ± 0.04 a | - | - | - | - | |
94 | 3-Methylpentadecane | 0.353 ± 0.06 a | - | - | - | - | |
90 | 2,6,10,15-Tetracontane | 2.99 ± 0.09 a | 0.584 ± 0.07 c | 0.50 ± 0.04 c | 1.197 ± 0.11 b | 0.595 ± 0.16 c | |
93 | 2,6,10-Trimethylpentadecane | 0.471 ± 0.08 a | - | - | - | - | |
93 | Hexadecane | 0.825 ± 0.09 a | 0.69 ± 0.03a | - | 0.509 ± 0.02 ab | - | |
91 | 2,6,10,14-Tetramethylpentadecane | 1.65 ± 0.04 a | - | - | 0.269 ± 0.02 b | - | |
94 | 3-Methylheptadecane | 0.196 ± 0.02 a | 0.053 ± 0.01 b | - | 0.09 ± 0.01 b | - | |
97 | 9-Docosene | 3.692 ± 0.02 a | 2.07 ± 0.08 b | 0.61 ± 0.06 c | 0.868 ± 0.05 c | 1.19 ± 0.07 c | |
96 | 1,2,3-Trimethylbenzene | - | - | - | - | 0.501 ± 0.01 a | |
92 | 3,7-Dimethyldecane | - | - | - | 2.304 ± 0.06 a | 1.096 ± 0.05 a | |
92 | 2-Methyl octadecane | - | - | - | - | 0.094 ± 0.01 a | |
90 | 3-Ethyl toluene | - | - | 0.25 ± 0.02 b | 1.257 ± 0.05 a | - | |
92 | 5-Methyl tetradecane | - | - | 0.11 ± 0.01 a | 0.15 ± 0.01 a | - | |
92 | 5-Ethyl-2-methyl octane | - | 0.796 ± 0.02 a | 0.93 ± 0.03 a | - | - | |
92 | 5-(2-Methylpropyl) nonane | - | 0.212 ± 0.03 a | - | - | - | |
Esters | 87 | Isobutyric acid 3-hydroxy-2,2,4-trimethylpentyl ester | 0.118 ± 0.02 a | 0.159 ± 0.01 a | - | - | - |
90 | 2,2,4-Trimethyl-1,3-pentanediol di-isobutyrate | 1.453 ± 0.03 a | 0.265 ± 0.03 b | 0.14 ± 0.01 b | 0.299 ± 0.02 b | 0.188 ± 0.01 b | |
94 | Di-isobutyl phthalate | 2.435 ± 0.01 a | 1.327 ± 0.01 b | 1.29 ± 0.01 b | 1.227 ± 0.01 b | 1.127 ± 0.01 b | |
90 | Methyl silicate (petroleum-based) | 0.746 ± 0.02 a | - | - | - | - | |
89 | Methyl conjugated linoleic acid (9-cis,11-trans) | - | - | - | - | 0.188 ± 0.01 a | |
90 | Methyl oleate | - | - | 0.39 ± 0.03 a | - | 0.344 ± 0.02 a | |
91 | Methyl 10-octadecenoate | - | - | - | 0.449 ± 0.03 a | - | |
88 | Methyl 8-octadecenoate | - | 0.212 ± 0.01 a | - | - | - | |
90 | Methyl linoleate | - | - | 0.18 ± 0.01 a | - | - | |
Acidic compounds | 82 | 2-Amino-5-methylbenzoic acid | 2.396 ± 0.01 c | 3.875 ± 0.06 b | 4.37 ± 0.02 b | 2.573 ± 0.02 c | 5.917 ± 0.05 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Wang, X.; Chen, J.; Tan, J.; Fu, Y. Physicochemical and Flavor Characteristics of Maillard Reaction Products from Nile Tilapia Fish Skin Collagen Peptides Induced by Four Reducing Sugars. Foods 2025, 14, 3453. https://doi.org/10.3390/foods14193453
Wu W, Wang X, Chen J, Tan J, Fu Y. Physicochemical and Flavor Characteristics of Maillard Reaction Products from Nile Tilapia Fish Skin Collagen Peptides Induced by Four Reducing Sugars. Foods. 2025; 14(19):3453. https://doi.org/10.3390/foods14193453
Chicago/Turabian StyleWu, Wei, Xilong Wang, Jiayuan Chen, Jingjie Tan, and Yu Fu. 2025. "Physicochemical and Flavor Characteristics of Maillard Reaction Products from Nile Tilapia Fish Skin Collagen Peptides Induced by Four Reducing Sugars" Foods 14, no. 19: 3453. https://doi.org/10.3390/foods14193453
APA StyleWu, W., Wang, X., Chen, J., Tan, J., & Fu, Y. (2025). Physicochemical and Flavor Characteristics of Maillard Reaction Products from Nile Tilapia Fish Skin Collagen Peptides Induced by Four Reducing Sugars. Foods, 14(19), 3453. https://doi.org/10.3390/foods14193453