Long-Term Saline Water Adaptation Alters the Meat Quality of Micropterus salmoides from a New Salt-Tolerant Population
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish and Sampling
2.2. Biochemical Analysis
2.3. Fatty Acid Profile Analysis
2.4. Flesh Color and Texture Determination
2.5. Volatile Compound Analysis
2.6. Collagen Content Analysis
2.7. Hematoxylin and Eosin (H&E) Staining
2.8. Free Amino Acids Profile Analysis
2.9. Flavor Nucleotide Detection
2.10. Electronic Tongue Evaluation
2.11. RNA Isolation and Gene Expression Analysis
2.12. Enzyme Activity Analysis
2.13. Data Calculation and Statistical Analysis
2.13.1. Data Calculation
2.13.2. Statistical Analysis
3. Results
3.1. Nutritional Quality
3.1.1. Proximate Composition
3.1.2. Fatty Acid Profile
3.2. Sensory Value Parameters
3.2.1. Color Parameters
3.2.2. Odor Substance
3.3. Flesh Texture
3.4. Flesh Flavor Index
3.4.1. Free Amino Acids
3.4.2. Flavor Nucleotides
3.4.3. Equivalent Umami Concentration and Electronic Tongue Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Report on Food Crises. Available online: http://www.fsinplatform.org/report/global-report-food-crises-2024/#introduction (accessed on day month year).
- Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2024. [Google Scholar]
- Li, Y.; Gao, P.; Zhou, K.; Yao, Z.; Sun, Z.; Qin, H.; Lai, Q. Effects of saline and alkaline stresses on the survival, growth, and physiological responses in juvenile mandarin fish (Siniperca chuatsi). Aquaculture 2024, 591, 741143. [Google Scholar] [CrossRef]
- Yao, Z.L.; Lai, Q.F.; Zhou, K.; Rizalita, R.E.; Wang, H. Developmental biology of medaka fish (Oryzias latipes) exposed to alkalinity stress. J. Appl. Ichthyol. 2010, 26, 397–402. [Google Scholar] [CrossRef]
- Pellegrin, L.; Nitz, L.F.; Maltez, L.C.; Copatti, C.E.; Garcia, L. Alkaline water improves the growth and antioxidant responses of pacu juveniles (Piaractus mesopotamicus). Aquaculture 2020, 519, 734713. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, C.; Zhou, H.; Song, L.; Wang, J.; Zhao, J. Transcriptome changes for Nile tilapia (Oreochromis niloticus) in response to alkalinity stress. Comp. Biochem. Phys. D 2020, 33, 100651. [Google Scholar] [CrossRef]
- Yuan, Y.B.; Zhu, Y.G.; Liang, R.Q. Techniques for tilapia saline-alkaline pond culture. China Fish. 2007, 8, 29. [Google Scholar]
- Shen, L.; Hao, Z.R.; Zhou, K.; Lai, Q.F.; Wang, H.; Yao, Z.L.; Lin, T.T. Tolerability studies of carassius auratus gibelio to salinity and carbonate alkalinity. Mar. Fish. 2014, 36, 445–452. [Google Scholar]
- Cheng, Y.; Zhao, J.; Ayisi, C.L.; Cao, X. Effects of salinity and alkalinity on fatty acids, free amino acids and related substance anabolic metabolism of nile tilapia. Aquac. Fish. 2022, 7, 389–395. [Google Scholar] [CrossRef]
- Grigorakis, K. Compositional and organoleptic quality of farmed and wild gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) and factors affecting it: A review. Aquaculture 2007, 272, 55–75. [Google Scholar] [CrossRef]
- Tu, L.; Wu, X.; Wang, X.; Shi, W. Effects of fish oil replacement by blending vegetable oils in fattening diets on nonvolatile taste substances of swimming crab (Portunus trituberculatus). J. Food Biochem. 2020, 44, e13345. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, X.; Jin, M.; Jiao, L.; Sun, P.; Betancor, M.B.; Tocher, D.R.; Zhou, Q. Modification of nutritional values and flavor qualities of muscle of swimming crab (Portunus trituberculatus): Application of a dietary lipid nutrition strategy. Food Chem. 2020, 308, 125607. [Google Scholar] [CrossRef]
- Gong, Y.; Weng, M.F.; Wang, X.N.; Zhang, W.C.; Wang, Z.; Sun, J.; Cao, X.F.; Zhang, J.M.; Zhao, M.X.; Zhang, Z.; et al. Effects of vegetable oil replacement on intramuscular fat deposition and flesh quality of large yellow croaker (Larimichthys crocea) juveniles. Aquaculture 2023, 575, 739731. [Google Scholar] [CrossRef]
- Vaishali; Mandal, A.; Holeyappa, S.A.; Khairnar, S.O.; Barik, S.; Tyagi, A.; Surasani, V.K.R. Growth performance, health status and flesh quality of striped catfish (Pangasianodon hypophthalmus) reared in variable stocking densities in biofloc system. Aquaculture 2024, 590, 741047. [Google Scholar] [CrossRef]
- Mehrim, A.I.; Mansour, A.T.; Abdelhamied, A.M.; Zenhom, O.A.; Ziada, M.W.; Refaey, M.M. Aquamimicry feeding system improved growth, physiological status, muscle and intestine histomorphology, and flesh quality of keeled mullet, Liza carinata. Aquaculture 2025, 595, 741715. [Google Scholar] [CrossRef]
- Dong, X.; Wang, J.; Ji, P.; Sun, L.; Miao, S.; Lei, Y.; Du, X. Seawater culture increases omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) levels in japanese sea bass (Lateolabrax japonicus), probably by upregulating elovl5. Animals 2020, 10, 1681. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, Z.; Qi, T.; Xi, R.; Xiao, L.; Li, L.; Tang, R.; Li, D. Slight increases in salinity improve muscle quality of grass carp (Ctenopharyngodon idellus). Fishes 2012, 6, 7. [Google Scholar] [CrossRef]
- Jia, Y.K.; Du, J.; Xi, R.J.; Zhan, Q.; Li, L.; Li, D.; Takagi, Y.; Zhang, X. Effects of different culture salinities on the growth and muscle quality of grass carp (Ctenopharyngodon idellus). J. Anim. Sci. 2024, 102, skae281. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Q.; Liu, X.M.; Leng, X.J.; Wang, X.C. Effect of salinity on growth and flesh quality of Snakehead Channa argus. Ocean. Limnol Sin Sin. 2008, 05, 505–510. [Google Scholar]
- Luo, J.; Monroig, Ó.; Zhou, Q.; Tocher, D.R.; Yuan, Y.; Zhu, T.; Lu, J.; Song, D.; Jiao, L.; Jin, M. Environmental salinity and dietary lipid nutrition strategy: Effects on flesh quality of the marine euryhaline crab Scylla paramamosain. Food Chem. 2021, 361, 130160. [Google Scholar] [CrossRef]
- Yi, H.D.; Chen, X.L.; Liu, S.; Han, L.; Liang, J.; Su, Y.; Lai, H.; Bi, S.; Liu, X.; Zhang, Y.; et al. Growth, osmoregulatory and hypothalamic-pituitary-somatotropic (HPS) axis response of the juvenile largemouth bass (Micropterus salmoides), reared under different salinities. Aquacult. Rep. 2021, 20, 100727. [Google Scholar] [CrossRef]
- Liang, P.P. Study on the Genome Structure and Transcriptome Responses to Salt Stress of Marine Medaka. Doctoral Dissertation, Xiamen University, Xiamen, China, 2021. [Google Scholar]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of Official Analytical Chemists International, 18th ed.; Association of Official and Analytical Chemists: Galesburg, MD, USA, 2006. [Google Scholar]
- Lei, C.; Fan, B.; Tian, J.; Li, M.; Li, Y. PPARγ regulates fabp4 expression to increase DHA content in golden pompano (Trachinotus ovatus) hepatocytes. Brit. J. Nutr. 2022, 127, 3–11. [Google Scholar] [CrossRef]
- Man, L.; Ren, W.; Sun, M.; Du, Y.; Chen, H.; Qin, H.; Chai, W.; Zhu, M.; Liu, G.; Wang, C.; et al. Characterization of donkey meat flavor profiles by GC–IMS and multivariate analysis. Front. Nutr. 2023, 10, 1079799. [Google Scholar] [CrossRef]
- Zhang, D.; Tian, T.; Han, L.; Du, J.; Zhu, T.; Lei, C.; Song, H.; Li, S. Expression characteristics of the cyp19a1b aromatase gene and its response to 17β-estradiol treatment in largemouth bass (Micropterus salmoides). Fish. Physiol. Biochem. 2024, 50, 575–588. [Google Scholar] [CrossRef]
- Tao, H.; Du, B.; Wang, H.; Dong, H.; Yu, D.; Ren, L.; Si, M.; Xu, S. Intestinal microbiome affects the distinctive flavor of Chinese mitten crabs in commercial farms. Aquaculture 2018, 483, 38–45. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic. Acids. Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Cheng, X.F.; Wu, H.; Gao, J.W.; Tian, X.; Xiang, J.; He, Z.J.; Zou, L.; Song, R.; Li, C.W. Influence of dietary replacement of fish meal with crayfish shell meal on the skin coloration, muscle texture, and amino acid composition of oujiang color common carp Cyprinus carpio var. color. N. Am. J. Aquacult. 2021, 83, 402–408. [Google Scholar] [CrossRef]
- Zhuo, L.Y. The Study of Volatile Flavor Compounds in the Fillet of Triploid Rainbow Trouts (Oncorhyn Chusmykiss) and Its Influencing Factors. Ph.D. Thesis, Qinghai University, Qinghai, China, 2022. [Google Scholar]
- Mai, K.S.; Li, P.; Zhao, J.M., Translators; Nutrient Requirements of Fish and Shrimp, 3rd ed.; Science Press: Beijing, China, 2015. [Google Scholar]
- Seale, A.P.; Cao, K.; Chang, R.J.A.; Goodearly, T.R.; Malintha, G.H.T.; Merlo, R.S.; Peterson, T.L.; Reighard, J. Salinity tolerance of fishes: Experimental approaches and implications for aquaculture production. Rev. Aquacult. 2024, 16, 1351–1373. [Google Scholar] [CrossRef]
- Tocher, D.R. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. Aquac. 2002, 11, 107–184. [Google Scholar] [CrossRef]
- Tocher, D.R. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 2015, 449, 94–107. [Google Scholar] [CrossRef]
- Fernandez-Lopez, E.; Panzera, Y.; Bessonart, M.; Marandino, A.; Féola, F.; Gadea, J.; Magnone, L.; Salhi, M. Effect of salinity on fads2 and elovl gene expression and fatty acid profile of the euryhaline flatfish Paralichthys orbignyanus. Aquaculture 2024, 583, 740585. [Google Scholar] [CrossRef]
- Qu, L.; Xia, T.; Du, X.; Lou, B.; Chen, X.; Xu, J.; Ding, Z.; Wei, C.; Cheng, H. Effects of salinity treatment on muscle quality and off-flavour compounds of grass carp (Ctenopharyngodon idella) and black carp (Mylopharyngodon piceus). Aquac. Res. 2022, 53, 4823–4831. [Google Scholar] [CrossRef]
- Ko, W.C.; Yang, S.Y.; Chang, C.K.; Hsieh, C.W. Effects of adjustable parallel high voltage electrostatic field on the freshness oftilapia (Orechromis niloticus) during refrigeration. LWT Food Sci. Technol. 2016, 66, 151–157. [Google Scholar] [CrossRef]
- Huang, H.; Zheng, L.H.; Li, L.H.; Yang, X.Q.; Wei, Y.; Zhai, H.L.; Wu, Y.Y.; Zhang, Y.; Hao, S.X. Effects of different precooling temperature on texture and color of Micropterus salmoides during ice storage. Sci. Technol. Food Ind. 2018, 39, 302–308. [Google Scholar]
- Aberle, E.D.; Forrest, J.C.; Cerrard, D.E. Principles of Meat Science, 4th ed.; Kendall/Hunt Publishing Company: Dubugue Iowa, IA, USA, 2001; pp. 112–113. [Google Scholar]
- Yue, J.; Zhang, Y.F.; JIN, Y.F.; Deng, Y.; Zhao, Y.Y. Impact of high hydrostatic pressure on non-volatile and volatile compounds of squid muscles. Food Chem. 2016, 194, 12–19. [Google Scholar] [CrossRef]
- Miao, X.; Li, S.; Shang, S.; Sun, N.; Dong, X.; Jiang, P. Characterization of volatile flavor compounds from fish maw soaked in five different seasonings. Food Chem. X 2023, 19, 100805. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Fu, X.; Zhuang, K.; Wu, X.; Wang, X. Effects of dietary replacement of fish oil by vegetable oil on proximate composition and odor profile of hepatopancreas and gonad of Chinese mitten crab (Eriocheir sinensis). J. Food Biochem. 2019, 43, e12646. [Google Scholar] [CrossRef]
- Feng, L.; Tang, N.C.; Liu, R.J.; Gong, M.Y.; Wang, Z.T.; Guo, Y.W.; Wang, Y.D.; Zhang, Y.; Chang, M. The relationship between flavor formation, lipid metabolism, and microorganisms in fermented fish products. Food Funct. 2021, 12, 5685–5702. [Google Scholar] [CrossRef]
- Chen, H.F.; Lin, L.; Ge, M.T.; Wu, H.R.; Li, X.C.; Gao, K.R.; Jiang, S.T.; Lu, J.F. Comparison of volatile flavor characteristics in the meat of Chinese mitten crab (Eriocheir sinensis) from three eco-environment systems. Food Ferment. Ind. 2019, 45, 247–256. [Google Scholar]
- Baek, H.H.; Cadwallader, K.R. Character-impact aroma compounds of crustaceans. In Flavor and Lipid Chemistry of Seafoods, 2nd ed.; Shahidi, F., Cadwallader, K.R., Eds.; American Chemical Society: Washington, WA, USA, 1997; Volume 674, pp. 85–94. [Google Scholar]
- Tian, J.J.; Fu, B.; Yu, E.M.; Li, Y.P.; Xia, Y.; Li, Z.F.; Zhang, K.; Gong, W.B.; Yu, D.G.; Wang, G.J.; et al. Feeding faba beans (Vicia faba) reduces myocyte metabolic activity in grass carp (Ctenopharyngodon idellus). Front. Physiol. 2020, 11, 391. [Google Scholar] [CrossRef]
- Du, X.; Zhang, W.; He, J.; Zhao, M.; Wang, J.; Dong, X.; Fu, Y.; Xie, X.; Miao, S. The Impact of Rearing Salinity on Flesh Texture, Taste, and Fatty Acid Composition in Largemouth Bass Micropterus salmoides. Foods 2022, 11, 3261. [Google Scholar] [CrossRef]
- Song, D.; Yun, Y.; Mi, J.; Luo, J.; Jin, M.; Nie, G.; Zhou, Q. Effects of faba bean on growth performance and fillet texture of Yellow River carp, Cyprinus Carpio haematopterus. Aquacult. Rep. 2020, 17, 100379. [Google Scholar]
- Schafer, A.; Rosenvold, K.; Purslow, P.P.; Andersen, H.J.; Henckel, P. Physiological and structural events post mortem of importance for drip loss in pork. Meat. Sci. 2002, 61, 355–366. [Google Scholar] [CrossRef]
- Monaco, R.D.; Cavella, S.; Masi, P. Predicting sensory cohesiveness, hardness and springiness of solid foods from instrumental measurements. J. Texture Stu. 2008, 39, 129–149. [Google Scholar] [CrossRef]
- Li, X.X.; Liu, X.M.; Leng, X.J. The influence of salinity on the growth, metabolism and meat quality of freshwater fish. Anim. Breed. Feed. 2008, 10, 47–50. [Google Scholar]
- Liyana-Pathirana, C.; Shahidi, F.; Whittick, A.; Hooper, R. Effect of season and artificial diet on amino acids and nucleic acids in gonads of green sea urchin Strongylocentrotus droebachiensis. Com. Biochem. Phys. A 2002, 133, 389–398. [Google Scholar] [CrossRef]
- Chen, D.W.; Zhang, M. Non-volatile taste active compounds in the meat of Chinese mitten crab (Eriocheir sinensis). Food Chem. 2007, 104, 1200–1205. [Google Scholar] [CrossRef]
- Schwab, W. Natural 4-Hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol®). Molecules 2013, 18, 6936–6951. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Qiu, W.; Zhang, M.; Ho Row, K.; Cheng, Y.; Jin, Y. Effects of different heating methods on the contents of nucleotides and related compounds in minced pacific white shrimp and antarctic krill. LWT Food Sci. Technol. 2018, 87, 142–150. [Google Scholar] [CrossRef]
- Gui, M.; Zhao, B.; Song, J.Y.; Zhang, Z.C.; Hui, P.Z.; Li, P.L. Biogenic amines formation, nucleotide degradation and TVB-N accumulation of vacuum-packed minced sturgeon (Acipenser schrencki) stored at 4 °C and their relation to microbiological attributes. J. Sci. Food Agr. 2014, 94, 2057–2063. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Chen, L.; Ji, Y.; Huang, Y.; Bu, X.; Zhu, J.; Li, E.; Qin, J.; Wang, X. A crucial role in osmoregulation against hyperosmotic stress: Carbohydrate and inositol metabolism in Nile tilapia (Oreochromis niloticus). Aquacult. Rep. 2023, 28, 101433. [Google Scholar] [CrossRef]
- Wu, L.; Liang, H.; Hamunjo, C.M.K.; Ge, X.; Ji, K.; Yu, H.; Huang, D.; Xu, H.; Ren, M. Culture salinity alters dietary protein requirement, whole body composition and nutrients metabolism related genes expression in juvenile genetically improved farmed Tilapia (Oreochromis niloticus). Aquaculture 2021, 531, 735961. [Google Scholar] [CrossRef]
- Chen, D.W.; Zhang, M.; Shrestha, S. Compositional characteristics and nutritional quality of Chinese mitten crab (Eriocheir sinensis). Food Chem. 2007, 103, 1343–1349. [Google Scholar] [CrossRef]
Control | Salt | Control | Salt | ||
---|---|---|---|---|---|
Crude protein | 19.55 ± 0.84 | 19.80 ± 0.98 | moisture | 77.76 ± 1.10 | 78.82 ± 0.90 |
Crude fat | 2.84 ± 0.64 a | 1.96 ± 0.50 b | ash | 1.25 ± 0.09 | 1.24 ± 0.10 |
Control | Salt | Control | Salt | ||
---|---|---|---|---|---|
C14:0 | 1.10 ± 0.18 b | 1.39 ± 0.11 a | C18:3n-3 | 1.19 ± 0.26 b | 1.55 ± 0.14 a |
C16:0 | 24.39 ± 1.83 a | 20.97 ± 1.03 b | C20:1n-9 | 0.36 ± 0.11 | 0.47 ± 0.13 |
C16:1n-7 | 3.05 ± 0.72 b | 4.40 ± 0.70 a | C20:3n-6 | 3.91 ± 0.58 a | 2.02 ± 0.24 b |
C18:1n-7 | 2.76 ± 0.61 a | 1.92 ± 0.27 b | C20:4n-6 | 0.88 ± 0.23 | 0.95 ± 0.23 |
C18:0 | 0.23 ± 0.08 | 0.27 ± 0.07 | C20:5n-3 | 6.14 ± 1.67 a | 1.86 ± 0.25 b |
C18:1n-9 | 18.81 ± 1.50 b | 32.73 ± 1.38 a | C22:4n-6 | 0.27 ± 0.11 | 0.29 ± 0.08 |
C18:2n-6 | 10.67 ± 0.94 b | 24.57 ± 0.97 a | C22:5n-3 | 2.70 ± 0.51 a | 0.95 ± 0.24 b |
C18:3n-6 | 0.00 ± 0.00 | 0.00 ± 0.00 | C22:6n-3 | 22.67 ± 1.43 a | 8.29 ± 0.80 b |
control | salt | ||||
SFA | 25.72 ± 1.85 a | 22.63 ± 1.00 b | |||
MUFA | 25.00 ± 1.92 b | 39.52 ± 1.83 a | |||
PUFA/LC-PUFA | 48.41 ± 1.08 a | 40.48 ± 1.32 b | |||
DHA + EPA | 28.81 ± 1.15 a | 10.15 ± 0.93 b |
Tissue | Control | Salt | p-Value | |
---|---|---|---|---|
Dorsal skin | L* | 30.46 ± 0.89 | 30.21 ± 1.83 | 0.773 |
a* | −2.33 ± 0.83 | −2.56 ± 0.39 | 0.543 | |
b* | 7.14 ± 1.03 | 4.29 ± 0.54 | 0.000 | |
ΔE | 4.25 ± 0.88 | |||
Dorsal muscle | L* | 41.93 ± 1.10 | 45.53 ± 1.96 | 0.003 |
a* | 2.55 ± 0.45 | −0.71 ± 0.43 | 0.000 | |
b* | 0.68 ± 0.46 | −1.51 ± 0.42 | 0.000 | |
ΔE | 8.23 ± 1.8 | |||
Abdominal skin | L* | 79.41 ± 1.38 | 82.47 ± 2.05 | 0.024 |
a* | 2.55 ± 1.01 | 0.85 ± 0.39 | 0.006 | |
b* | 10.89 ± 1.92 | 6.51 ± 1.26 | 0.003 | |
ΔE | 6.42 ± 0.82 | |||
Dorsal muscle | pH | 7.48 ± 0.28 | 7.04 ± 0.21 | 0.011 |
Category | Compound | Control | Salt | Formula | Odor Threshold |
---|---|---|---|---|---|
Aldehyde | Nonanal | 10.59 ± 0.81 | 10.19 ± 4.27 | C9H18O | 1.1 |
Octanal | 9.92 ± 0.84 | 13.51 ± 3.50 | C8H16O | 0.7 | |
Benzaldehyde-M | 10.80 ± 1.59 | 16.15 ± 3.03 | C7H6O | 350 | |
Benzaldehyde-D | 1.87 ± 0.46 | 3.25 ± 0.42 | C7H6O | 350 | |
Heptanal | 4.23 ± 1.42 | 5.11 ± 1.83 | C7H14O | 2.8 | |
(E)-2-hexenal | 2.13 ± 0.41 | 1.63 ± 0.36 | C6H10O | 19.2 | |
Hexanal-M | 20.23 ± 2.81 | 20.04 ± 2.2 | C6H12O | 4.5 | |
Hexanal-D | 8.85 ± 1.17 | 7.29 ± 0.67 | C6H12O | 4.5 | |
(E)-2-pentenal | 8.20 ± 1.35 | 6.44 ± 1.09 | C5H8O | 1500 | |
Pentanal | 22.28 ± 2.45 | 25.97 ± 4.90 | C5H10O | 9 | |
(E)-hept-2-enal | 3.43 ± 0.73 | 5.70 ± 0.89 | C7H12O | 13 | |
Alcohol | Oct-1-en-3-ol | 4.41 ± 1.03 | 5.44 ± 0.95 | C8H16O | 1.5 |
2-Octanol | 4.28 ± 1.03 | 4.21 ± 0.57 | C8H18O | 290 | |
n-Hexanol | 6.05 ± 1.87 | 4.68 ± 1.13 | C6H14O | 2500 | |
1,3-butanediol-M | 11.37 ± 0.93 | 11.00 ± 1.47 | C4H10O2 | 230 | |
1,3-butanediol-D | 5.50 ± 0.78 | 5.31 ± 0.57 | C4H10O2 | 230 | |
Pentan-1-ol | 5.21 ± 1.45 | 4.28 ± 1.12 | C5H12O | 4000 | |
1-butanol-M | 24.98 ± 1.73 | 23.98 ± 4.24 | C4H10O | 38 | |
1-butanol-D | 5.79 ± 0.56 | 4.27 ± 0.46 | C4H10O | 38 | |
3-Methyl-3-buten-1-ol | 22.29 ± 2.69 | 36.62 ± 4.85 | C5H10O | / | |
Pentan-2-ol | 13.98 ± 1.39 | 16.74 ± 1.32 | C5H12O | 290 | |
Ketone | 2-heptanone | 2.21 ± 0.86 | 2.43 ± 0.64 | C7H14O | 6.8 |
Cyclohexanone | 5.53 ± 0.98 | 3.84 ± 0.84 | C6H10O | 100 | |
2-Hexanone | 3.95 ± 0.35 | 5.06 ± 0.83 | C6H12O | 6.8 | |
3-Pentanone-M | 60.80 ± 7.10 | 72.80 ± 7.91 | C5H10O | 200,000 | |
3-Pentanone-D | 75.76 ± 11.44 | 56.18 ± 9.76 | C5H10O | 200,000 | |
2-Butanone-M | 21.13 ± 2.76 | 33.71 ± 3.87 | C4H8O | 16,000 | |
2-Butanone-D | 3.44 ± 1.04 | 14.30 ± 1.36 | C4H8O | 16,000 | |
2,3-butanedione | 10.42 ± 2.33 | 15.6 ± 1.30 | C4H6O2 | 0.05 | |
Ester | Isoamyl butyrate | 7.97 ± 1.37 | 9.26 ± 1.57 | C9H18O2 | 0.1 |
Phenol | Phenol | 4.55 ± 1.03 | 3.29 ± 0.85 | C6H6O | 5.6 |
Aromatics | Acetophenone | 7.48 ± 0.79 | 6.50 ± 1.42 | C8H8O | 65 |
Unidentified | Unidentified 1 | 4.14 ± 1.12 | 4.05 ± 0.65 | - | / |
Unidentified 2 | 4.73 ± 0.31 | 4.42 ± 0.87 | - | / | |
Unidentified 3 | 3.93 ± 0.53 | 3.91 ± 0.68 | - | / | |
Unidentified 4 | 9.80 ± 1.18 | 12.09 ± 0.90 | - | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, C.; Song, H.; Wang, P.; Song, H.; Du, J.; Zhu, T.; Tian, J.; Li, S. Long-Term Saline Water Adaptation Alters the Meat Quality of Micropterus salmoides from a New Salt-Tolerant Population. Foods 2025, 14, 3180. https://doi.org/10.3390/foods14183180
Lei C, Song H, Wang P, Song H, Du J, Zhu T, Tian J, Li S. Long-Term Saline Water Adaptation Alters the Meat Quality of Micropterus salmoides from a New Salt-Tolerant Population. Foods. 2025; 14(18):3180. https://doi.org/10.3390/foods14183180
Chicago/Turabian StyleLei, Caixia, Hanru Song, Peng Wang, Hongmei Song, Jingxin Du, Tao Zhu, Jing Tian, and Shengjie Li. 2025. "Long-Term Saline Water Adaptation Alters the Meat Quality of Micropterus salmoides from a New Salt-Tolerant Population" Foods 14, no. 18: 3180. https://doi.org/10.3390/foods14183180
APA StyleLei, C., Song, H., Wang, P., Song, H., Du, J., Zhu, T., Tian, J., & Li, S. (2025). Long-Term Saline Water Adaptation Alters the Meat Quality of Micropterus salmoides from a New Salt-Tolerant Population. Foods, 14(18), 3180. https://doi.org/10.3390/foods14183180