Surface Functionalization of Cellulose-Based Packaging with a New Antimicrobial Decapeptide: A Sustainable Solution to Improve the Quality of Meat Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis and In Silico Design of RKT1
2.2. Circular Dichroism Spectroscopy
2.3. Fluorescence Spectroscopy
2.4. RKT1 Adsorption on Cellulose Film Surfaces
2.5. Immobilization Yield Analysis
2.6. Stereomicroscopy
2.7. Release Test
2.8. In Vitro Antimicrobial Activities of RKT1
2.9. In Vitro Antimicrobial Activities of Functionalized Cellulose Slides
2.10. Shelf Life Studies on Packed Beef Carpaccio
2.10.1. Samples Preparation
2.10.2. Microbiological Analysis
2.10.3. Chemical and Physical Analysis
2.10.4. Changes in the Color of Packed Beef Carpaccio
2.11. Statistical Analysis
3. Results
3.1. Selection of Antimicrobial Peptides to Develop Antimicrobial Cellulose-Based Films
3.2. Structural Characterization of RKT1
3.3. Antibacterial Activity of RKT1 and RKT1 Cellulose Films
- (i)
- Immobilization can restrict the peptide’s freedom movement and flexibility, potentially forcing it into a more extended or rigid conformation compared to its solution state.
- (ii)
- A low concentration of the RKT1 is available for interaction with the bacterial membranes once immobilized. Indeed, most of the peptide could be adsorbed primarily within the porous cellulose matrix rather than on the exposed surface directly in contact with bacterial membranes, thus rendering the films ineffective in inhibiting bacterial growth.
3.4. Effect of Active Packaging Prototype on Beef Carpaccio
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jem, K.J.; Tan, B. The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv. Ind. Eng. Polym. Res. 2020, 3, 60–70. [Google Scholar] [CrossRef]
- Zhang, M.; Biesold, G.M.; Choi, W.; Yu, J.; Deng, Y.; Silvestre, C.; Lin, Z. Recent advances in polymers and polymer composites for food packaging. Mater. Today 2022, 53, 134–161. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ferreira, I.C. Natural food additives: Quo vadis? Trends Food Sci. Technol. 2015, 45, 284–295. [Google Scholar] [CrossRef]
- Becerril, R.; Nerín, C.; Silva, F. Encapsulation systems for antimicrobial food packaging components: An update. Molecules 2020, 25, 1134. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Xu, H.; McClements, D.J.; Chen, L.; Jiao, A.; Tian, Y.; Miao, M.; Jin, Z. Recent advances in intelligent food packaging materials: Principles, preparation and applications. Food Chem. 2022, 375, 131738. [Google Scholar] [CrossRef] [PubMed]
- Spokas, K. Plastics-still young but having a mature impact. Waste Manag. 2008, 28, 473–474. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Chen, C.; Rosswurm, K.; Yao, T.; Janaswamy, S. A facile route to prepare cellulose-based films. Carbohydr. Polym. 2016, 149, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Mao, J.; Peng, N.; Luo, X.; Chang, C. Chitin/clay microspheres with hierarchical architecture for highly efficient removal of organic dyes. Carbohydr. Polym. 2018, 188, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Peng, N.; Ding, X.; Wang, Z.; Cheng, Y.; Gong, Z.; Xu, X.; Gao, X.; Cai, Q.; Huang, S.; Liu, Y. Novel dual responsive alginate-based magnetic nanogels for onco-theranostics. Carbohydr. Polym. 2019, 204, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Yeo, J.C.C.; Muiruri, J.K.; Fei, X.; Wang, T.; Zhang, X.; Xiao, Y.; Thitsartarn, W.; Tanoto, H.; He, C.; Li, Z. Innovative biomaterials for food packaging: Unlocking the potential of polyhydroxyalkanoate (PHA) biopolymers. Biomater. Adv. 2024, 163, 213929. [Google Scholar] [CrossRef] [PubMed]
- Perera, K.Y.; Jaiswal, A.K.; Jaiswal, S. Biopolymer-based sustainable food packaging materials: Challenges, solutions, and applications. Foods 2023, 12, 2422. [Google Scholar] [CrossRef] [PubMed]
- González, A.; Igarzabal, C.I.A. Soy protein-poly (lactic acid) bilayer films as biodegradable material for active food packaging. Food Hydrocoll. 2013, 33, 289–296. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Q.; Zhang, X.; Lim, Y.; Li, B.; Liu, S. Cellulose-based peptidopolysaccharides as cationic antimicrobial package films. Int. J. Biol. Macromol. 2019, 128, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Romain, C.; Williams, C.K. Sustainable polymers from renewable resources. Nature 2016, 540, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Trache, D.; Hussin, M.H.; Chuin, C.T.H.; Sabar, S.; Fazita, M.R.N.; Taiwo, O.F.A.; Hassan, T.M.; Haafiz, M.K.M. Microcrystalline cellulose: Isolation, characterization and bio-composites application-a review. Int. J. Biol. Macromol. 2016, 93, 789–804. [Google Scholar] [CrossRef] [PubMed]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol. 2020, 11, 582779. [Google Scholar] [CrossRef] [PubMed]
- Boparai, J.K.; Sharma, P.K. Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept. Lett. 2020, 27, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.S.; Prodhan, Z.H.; Biswas, S.K.; Le, C.F.; Sekaran, S.D. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification. Phytochemistry 2018, 154, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Jiang, C. Antimicrobial peptides: Structure, mechanism, and modification. Eur. J. Med. Chem. 2023, 255, 115377. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 2019, 11, 3919–3931. [Google Scholar] [PubMed]
- Mihaylova-Garnizova, R.; Davidova, S.; Hodzhev, Y.; Satchanska, G. Antimicrobial peptides derived from bacteria: Classification, sources, and mechanism of action against multidrug-resistant bacteria. Int. J. Mol. Sci. 2024, 25, 10788. [Google Scholar] [CrossRef] [PubMed]
- Gratino, L.; Gogliettino, M.; Balestrieri, M.; Porritiello, A.; Dardano, P.; Miranda, B.; Ambrosio, R.L.; Ambrosio, M.; Nicolais, L.; Palmieri, G. Functional interplay between short antimicrobial peptides and model lipid membranes. Bioorg. Chem. 2024, 153, 107939. [Google Scholar] [CrossRef] [PubMed]
- Galatola, E.; Agrillo, B.; Gogliettino, M.; Palmieri, G.; Maccaroni, S.; Vicenza, T.; Proroga, Y.T.R.; Mancusi, A.; Di Pasquale, S.; Suffredini, E.; et al. A Reliable multifaceted solution against foodborne viral infections: The case of RiLK1 decapeptide. Molecules 2024, 29, 2305. [Google Scholar] [CrossRef] [PubMed]
- Agrillo, B.; Proroga, Y.T.R.; Gogliettino, M.; Balestrieri, M.; Tatè, R.; Nicolais, L.; Palmieri, G. A Safe and multitasking antimicrobial decapeptide: The road from de novo design to structural and functional characterization. Int. J. Mol. Sci. 2020, 21, 6952. [Google Scholar] [CrossRef] [PubMed]
- Mathur, D.; Singh, S.; Mehta, A.; Agrawal, P.; Raghava, G.P.S. In silico approaches for predicting the half-life of natural and modified peptides in blood. PLoS ONE 2018, 13, e0196829. [Google Scholar] [CrossRef] [PubMed]
- Mathur, D.; Prakash, S.; Anand, P.; Kaur, H.; Agrawal, P.; Mehta, A.; Kumar, R.; Singh, S.; Raghava, G.P. PEPlife: A repository of the half-life of peptides. Sci. Rep. 2016, 6, 36617. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016, 44, D1087–D1093. [Google Scholar] [CrossRef] [PubMed]
- González, I.; Oliver-Ortega, H.; Tarrés, Q.; Delgado-Aguilar, M.; Mutjé, P.; Andreu, D. Immobilization of antimicrobial peptides onto cellulose nanopaper. Int. J. Biol. Macromol. 2017, 105, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Methods for Dilution of Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard, 10th ed.; CLSI document M07-A10; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Dehnad, D.; Emam-Djomeh, Z.; Mirzaei, H.; Jafari, S.M.; Dadashi, S. Optimization of physical and mechanical properties for chitosan-nanocellulose biocomposites. Carbohydr. Polym. 2014, 105, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Jannatyha, N.; Shojaee-Aliabadi, S.; Moslehishad, M.; Moradi, E. Comparing mechanical, barrier and antimicrobial properties of nanocellulose/CMC and nanochitosan/CMC composite films. Int. J. Biol. Macromol. 2020, 164, 2323–2328. [Google Scholar] [CrossRef] [PubMed]
- Shojaee-Aliabadi, S.; Hosseini, H.; Mohammadifar, M.A.; Mohammadi, A.; Ghasemlou, M.; Ojagh, S.M.; Hosseini, S.M.; Khaksar, R. Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil. Int. J. Biol. Macromol. 2013, 52, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Vilela, C.; Moreirinha, C.; Domingues, E.M.; Figueiredo, F.M.L.; Almeida, A.; Freire, C.S.R. Antimicrobial and conductive nanocellulose-based films for active and intelligent food packaging. Nanomaterials 2019, 9, 980. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Periyasami, G.; Aldalbahi, A.; Fogliano, V. The antimicrobial activity of silver nanoparticles biocomposite films depends on the silver ions release behaviour. Food Chem. 2021, 359, 129859. [Google Scholar] [CrossRef] [PubMed]
- Ambrosio, R.L.; Gogliettino, M.; Agrillo, B.; Proroga, Y.T.R.; Balestrieri, M.; Gratino, L.; Cristiano, D.; Palmieri, G.; Anastasio, A. An active peptide-based packaging system to improve the freshness and safety of fish products: A case study. Foods 2022, 11, 338. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, G.; Balestrieri, M.; Capuano, F.; Proroga, Y.T.R.; Pomilio, F.; Centorame, P.; Riccio, A.; Marrone, R.; Anastasio, A. Bactericidal and antibiofilm activity of bactenecin-derivative peptides against the food-pathogen Listeria monocytogenes: New perspectives for food processing industry. Int. J. Food Microbiol. 2018, 279, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, G.; Balestrieri, M.; Proroga, Y.T.; Falcigno, L.; Facchiano, A.; Riccio, A.; Capuano, F.; Marrone, R.; Neglia, G.; Anastasio, A. New antimicrobial peptides against foodborne pathogens: From in silico design to experimental evidence. Food Chem. 2016, 211, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.H.; Kim, M. An overview of techniques in enzyme immobilization. Appl. Sci. Converg. Technol. 2017, 26, 157–163. [Google Scholar] [CrossRef]
- Ahmad, R.; Sardar, M. Enzyme immobilization: An overview on nanoparticles as immobilization matrix. Biochem. Anal. Biochem. 2015, 4, 178. [Google Scholar]
- Choyam, S.; Srivastava, A.K.; Shin, J.H.; Kammara, R. Ocins for food safety. Front. Microbiol. 2019, 10, 1736. [Google Scholar] [CrossRef] [PubMed]
- Aureli, V.; Scalvedi, M.L.; Rossi, L. Food waste of Italian families: Proportion in quantity and monetary value of food purchases. Foods 2021, 10, 1920. [Google Scholar] [CrossRef] [PubMed]
- Riesute, R.; Salomskiene, J.; Moreno, D.S.; Gustiene, S. Effect of yeasts on food quality and safety and possibilities of their inhibition. Trends Food Sci. Technol. 2021, 108, 1–10. [Google Scholar] [CrossRef]
- Nethra, P.V.; Sunooj, K.V.; Aaliya, B.; Navaf, M.; Akhila, P.P.; Sudheesh, C.; Mir, S.A.; Shijin, A.; George, J. Critical factors affecting the shelf life of packaged fresh red meat—A review. Meas. Food 2023, 10, 100086. [Google Scholar] [CrossRef]
- Realini, C.E.; Marcos, B. Active and intelligent packaging systems for a modern society. Meat Sci. 2014, 98, 404–419. [Google Scholar] [CrossRef] [PubMed]
- D’Almeida, A.P.; de Albuquerque, T.L. Innovations in Food Packaging: From Bio-Based Materials to Smart Packaging Systems. Processes 2024, 12, 2085. [Google Scholar] [CrossRef]
- Hussain, S.; Akhter, R.; Maktedar, S.S. Advancements in sustainable food packaging: From eco-friendly materials to innovative technologies. Sustain. Food Technol. 2024, 2, 1297–1364. [Google Scholar] [CrossRef]
Parameters | RKT1 |
---|---|
Sequence | RKTWLRIWKR-NH2 |
Molecular weight (Da) | 1442.78 |
Bomax index (kcal/mol) | 4.39 |
Net charge | +5 |
Half-life (sec) | 952.81 |
Hydrophobicity | −0.57 |
Hydropathicity | −1.55 |
Amphipathicity | 1.47 |
Hydrophilicity | 0.42 |
Pathogenic Bacteria | MBC (µM) |
---|---|
E. coli | 20 |
L. monocytogenes | 20 |
S. Typhimurium | 40 |
Pathogenic Bacteria | MIC (µM) | MBC (µM) |
---|---|---|
P. koreensis | 10.0 ± 1.6 | >50 |
Enterococcus spp. | 12.5 ± 2.5 | >50 |
Trial I | Days | Effect (p Value) | |||||
---|---|---|---|---|---|---|---|
d0 | d4 | d7 | ΔTempo | Packaging | ΔTempo × Packaging | ||
Enterobacteriaceae | cbCTR | 1.26 ± 0.07 | 1.20 ± 0.24 | 1.44 ± 0.48 | 0.4655 | 0.0730 | 0.9880 |
cbRKT1 | ni | 0.73 ± 0.23 | |||||
* | * | ||||||
Pseudomonas sp. | cbCTR | 5.66 ± 0.23 | 5.71 ± 0.04 | 8.56 ± 0.12 | 0.0002 | 0.0186 | 0.9305 |
cbRKT1 | 4.87 ± 0.43 | 7.62 ± 0.22 | |||||
* | *** | * | |||||
TMB | cbCTR | 6.10 ± 0.45 | 4.91 ± 0.05 | 7.89 ± 0.11 | <0.0001 | 0.0868 | 0.6011 |
cbRKT1 | 4.46 ± 0.20 | 7.63 ± 0.22 | |||||
**** | |||||||
Yeast | cbCTR | 2.21 ± 0.14 | 2.50 ± 0.24 | 5.09 ± 0.05 | 0.0030 | 0.0490 | 0.2053 |
cbRKT1 | 2.08 ± 0.58 | 3.73 ± 0.23 | |||||
* | ** | * | |||||
Mold | cbCTR | 4.14 ± 0.35 | 3.73 ± 0.01 | 5.59 ± 0.12 | 0.0003 | 0.2858 | 0.7121 |
cbRKT1 | 3.59 ± 0.07 | 5.32 ± 0.28 | |||||
*** | |||||||
Brochothrix sp. | cbCTR | 5.04 ± 0.20 | 4.50 ± 0.06 | 6.71 ± 0.05 | 0.0002 | 0.0289 | 0.7468 |
cbRKT1 | 3.85 ± 0.11 | 6.18 ± 0.33 | |||||
*** | * | ||||||
LAB | cbCTR | 3.97 ± 0.21 | 3.32 ± 0.36 | 5.11 ± 0.08 | 0.0025 | 0.7860 | 0.6479 |
cbRKT1 | 3.51 ± 0.02 | 5.06 ± 0.33 | |||||
** | |||||||
Coagulase-positive staphylococci | cbCTR | 2.26 ± 0.14 | 3.10 ± 0.06 | 2.91 ± 0.65 | 0.7806 | 0.8548 | 0.8548 |
cbRKT1 | 2.95 ± 0.21 | 2.91 ± 0.35 |
Trial II | Days | Effect (p Value) | |||||
---|---|---|---|---|---|---|---|
d0 | d4 | d7 | ΔTempo | Packaging | ΔTempo × Packaging | ||
Enterobacteriaceae | cbCTR | 1.44 ± 0.12 | 1.65 ± 0.21 | 1.31 ± 0.35 | 0.1766 | 0.8812 | 0.5008 |
cbRKT1 | 1.87 ± 0.43 | 0.97 ± 0.47 | |||||
Pseudomonas sp. | cbCTR | 3.04 ± 0.54 | 4.68 ± 0.42 | 7.44 ± 0.44 | 0.0025 | 0.3084 | 0.4920 |
cbRKT1 | 4.53 ± 0.27 | 6.74 ± 0.30 | |||||
* | ** | ||||||
TMB | cbCTR | 3.65 ± 0.41 | 4.53 ± 0.27 | 6.20 ± 0.36 | 0.0019 | 0.5873 | 0.8041 |
cbRKT1 | 4.61 ± 0.05 | 6.41 ± 0.15 | |||||
** | |||||||
Yeast | cbCTR | ni | 2.44 ± 0 | 4.26 ± 0.30 | 0.0018 | 0.0125 | 0.7529 |
cbRKT1 | ni | 3.17 ± 0.36 | |||||
* | ** | * | |||||
Mold | cbCTR | 2.86 ± 0.37 | 3.39 ± 0.39 | 4.83 ± 0.17 | 0.0024 | 0.0849 | 0.6826 |
cbRKT1 | 3.81 ± 0.01 | 5.44 ± 0.14 | |||||
** | |||||||
Brochothrix sp. | cbCTR | 2.56 ± 0.20 | 3.97 ± 0.26 | 5.03 ± 0.46 | 0.0160 | 0.1761 | 0.9208 |
cbRKT1 | 3.49 ± 0.09 | 4.61 ± 0.05 | |||||
* | |||||||
LAB | cbCTR | 2.26 ± 0.10 | 2.94 ± 0.20 | 2.50 ± 1.00 | 0.9036 | 0.6474 | 0.5297 |
cbRKT1 | 2.83 ± 0.27 | 3.13 ± 0.13 | |||||
Coagulase-positive staphylococci | cbCTR | ni | 2.83 ± 0.57 | 2.77 ± 0.03 | 0.7451 | 0.1920 | 0.8518 |
cbRKT1 | 2.26 ± 0.30 | 2.03 ± 0.53 |
Value | ΔTempo (ΔT) | Batch (B) | Packaging (P) | ΔT × B | ΔT × P | B × P | ΔT × B × P | |
---|---|---|---|---|---|---|---|---|
Enterobacteriaceae | F | 0.8664 | 3.2960 | 3.660 | 2.5820 | 0.4693 | 1.4550 | 0.2680 |
p | 0.4047 | 0.1436 | 0.1405 | 0.1834 | 0.5309 | 0.2942 | 0.6320 | |
Pseudomonas sp. | F | 180.90 | 13.50 | 10.75 | 0.5333 | 0.5716 | 0.8885 | 0.3040 |
p | 0.0002 a | 0.0213 | 0.0305 | 0.5057 | 0.4917 | 0.3993 | 0.6107 | |
TMB | F | 287.40 | 29.01 | 0.6031 | 21.18 | 0.2942 | 2.9740 | 0.0088 |
p | <0.0001 | 0.0057 | 0.4808 | 0.0100 | 0.6163 | 0.1597 | 0.9297 | |
Yeast | F | 73.24 | 8.0370 | 18.46 | 1.0030 | 1.6280 | 0.0860 | 0.3023 |
p | 0.0010 | 0.0471 | 0.0127 | 0.3732 | 0.2710 | 0.7840 | 0.3023 | |
Mold | F | 258.50 | 1.3400 | 2.2520 | 0.5987 | 0.0318 | 4.7500 | 0.2410 |
p | <0.0001 | 0.3115 | 0.2078 | 0.4823 | 0.8672 | 0.0948 | 0.6492 | |
Brochothrix sp. | F | 126.90 | 35.38 | 12.06 | 11.57 | 0.0908 | 0.1731 | 0.0087 |
p | 0.0004 | 0.0040 | 0.0255 | 0.0272 | 0.7781 | 0.6987 | 0.9302 | |
LAB | F | 8.7050 | 20.00 | 0.3793 | 7.6860 | 0.2018 | 0.0927 | 0.6037 |
p | 0.0419 | 0.0111 | 0.5713 | 0.0502 | 0.6765 | 0.7760 | 0.4806 | |
Coagulase-positive staphylococci | F | 0.1911 | 3.3460 | 1.5050 | 0.0033 | 0.0002 | 1.1560 | 0.0862 |
p | 0.6846 | 0.1414 | 0.2872 | 0.9570 | 0.9897 | 0.3428 | 0.7837 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agrillo, B.; Ambrosio, R.L.; Vuoso, V.; Galatola, E.; Gogliettino, M.; Ambrosio, M.; Tatè, R.; Anastasio, A.; Palmieri, G. Surface Functionalization of Cellulose-Based Packaging with a New Antimicrobial Decapeptide: A Sustainable Solution to Improve the Quality of Meat Products. Foods 2025, 14, 2607. https://doi.org/10.3390/foods14152607
Agrillo B, Ambrosio RL, Vuoso V, Galatola E, Gogliettino M, Ambrosio M, Tatè R, Anastasio A, Palmieri G. Surface Functionalization of Cellulose-Based Packaging with a New Antimicrobial Decapeptide: A Sustainable Solution to Improve the Quality of Meat Products. Foods. 2025; 14(15):2607. https://doi.org/10.3390/foods14152607
Chicago/Turabian StyleAgrillo, Bruna, Rosa Luisa Ambrosio, Valeria Vuoso, Emanuela Galatola, Marta Gogliettino, Monica Ambrosio, Rosarita Tatè, Aniello Anastasio, and Gianna Palmieri. 2025. "Surface Functionalization of Cellulose-Based Packaging with a New Antimicrobial Decapeptide: A Sustainable Solution to Improve the Quality of Meat Products" Foods 14, no. 15: 2607. https://doi.org/10.3390/foods14152607
APA StyleAgrillo, B., Ambrosio, R. L., Vuoso, V., Galatola, E., Gogliettino, M., Ambrosio, M., Tatè, R., Anastasio, A., & Palmieri, G. (2025). Surface Functionalization of Cellulose-Based Packaging with a New Antimicrobial Decapeptide: A Sustainable Solution to Improve the Quality of Meat Products. Foods, 14(15), 2607. https://doi.org/10.3390/foods14152607