Meat Quality and Fatty Acid Profile of Rams Fed Diets Enriched with Vegetable Oils of Varying Unsaturation Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations, Diets, Animals, and Experimental Design
2.2. Chemical Analysis of Ingredients and Diets
2.3. Slaughter and Collection of the Longissimus Lumborum Muscle
2.4. Physicochemical Composition and Proximate Analysis of the Longissimus Lumborum Muscle
2.5. Fatty Acid Determinations
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
a* | redness |
ADF | acid detergent fiber |
AI | atherogenic index |
b* | yellowness |
CLA | conjugated linoleic acid |
CP | crude protein |
CWL | cooking weight loss |
DHA | docosahexaenoic acid |
DFA | desirable fatty acids |
DM | dry matter |
EE | ether extract |
EPA | eicosapentaenoic acid |
FAME | fatty acid methyl esters |
FA | fatty acid |
h: H | hypocholesterolemic and hypercholesterolemic fatty acids ratio |
L* | lightness |
MCFA | medium-chain-FA |
MUFA | summed monounsaturated fatty acids |
n–3 | omega-3 |
n–6 | omega-6 |
n–9 | omega-9 |
NFC | nonfibrous carbohydrate |
NDF | neutral detergent fiber |
aNDF | Neutral detergent fiber assayed with a heat stable amylase and expressed exclusive for residual ash |
PUFA | polyunsaturated fatty acids |
SFA | saturated fatty acids |
TI | thrombogenicity index |
TDN | total digestible nutrients |
UFA | total unsaturated fatty acids |
WHC | water-holding capacity |
References
- Parente, M.O.M.; Rocha, K.S.; Bessa, R.J.B.; Parente, H.N.; Zanine, A.M.; Machado, N.A.F.; Lourenço, J.B., Jr.; Bezerra, L.R.; Landim, A.V.; Alves, S.P. Effects of the dietary inclusion of babassu oil or buriti oil on lamb performance, meat quality and fatty acid composition. Meat Sci. 2020, 160, 107971. [Google Scholar] [CrossRef]
- Diogénes, L.; Bezerra, L.; Pereira Filho, J.; Silva, J., Jr.; Oliveira, J.; Moura, J.; Barbosa, A.; Souza, M.; Sousa, S.; Pereira, E.; et al. Effects of the dietary inclusion of buriti oil on lamb performance, carcass traits, digestibility, nitrogen balance, ingestive behavior and blood metabolites. Animals 2020, 10, 1973. [Google Scholar] [CrossRef]
- Morais, J.S.; Bezerra, L.R.; Silva, A.M.A.; Araújo, M.J.; Oliveira, R.L.; Edvan, R.L.; Torreão, J.N.C.; Lanna, D.P.D. Production, composition, fatty acid profile and sensory analysis of goat milk in goats fed buriti oil. J. Anim. Sci. 2017, 95, 395–406. [Google Scholar] [CrossRef]
- Zia, M.A.; Shah, S.H.; Shoukat, S.; Hussain, Z.; Khan, S.U.; Shafqat, N. Physicochemical features, functional characteristics, and health benefits of cottonseed oil: A review. Braz. J. Biol. 2022, 82, e243511. [Google Scholar] [CrossRef]
- Sousa, S.V.; Diógenes, L.V.; Oliveira, R.L.; Souza, M.N.S.; Mazza, P.H.S.; Silva, J.M., Jr.; Pereira, E.S.; Parente, M.O.M.; Araújo, M.J.; Oliveira, J.P.F.; et al. Effect of dietary buriti oil on the quality, fatty acid profile and sensorial attributes of lamb meat. Meat Sci. 2022, 186, 108734. [Google Scholar] [CrossRef]
- Coban, F.; Ozer, H.; Lan, Y. Genetic and environmental influences on fatty acid composition in different fenugreek genotypes. Ind. Crops Prod. 2024, 222, 119774. [Google Scholar] [CrossRef]
- Bellaloui, N.; Kassem, M.A. Seed Protein, Oil, Fatty Acids, and Amino Acids: Effects of Genetic and Environmental Factors. In Soybean Seed Composition; Kassem, M.A., Ed.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Manso, T.; Bodas, R.; Castro, T.; Jimeno, V.; Mantecon, A.R. Animal performance and fatty acid composition of lambs fed with different vegetable oils. Meat Sci. 2009, 83, 511–516. [Google Scholar] [CrossRef]
- Miltko, R.; Majewska, M.P.; Bełżecki, G.; Kula, K.; Kowalik, B. Growth performance, carcass and meat quality of lambs supplemented different vegetable oils. Asian-Australas. J. Anim. Sci. 2019, 32, 767–775. [Google Scholar] [CrossRef]
- Kaseke, T.; Opara, U.L.; Fawole, O.A. Fatty acid composition, bioactive phytochemicals, antioxidant properties and oxidative stability of edible fruit seed oil: Effect of preharvest and processing factors. Heliyon 2020, 6, e04962. [Google Scholar] [CrossRef]
- Andrade, E.L.G.; Perreira Filho, J.; de Lucena, K.; Barros, L.S.; Barbosa, A.M.; Oliveira, R.L.; Gonzaga Neto, S.; Oliveira, J.P.F.; Fonseca, M.A.; Bezerra, L.R. Effects of dietary supplementation with vegetable oils of different unsaturated fatty acids composition on intake, digestibility, nitrogen balance performance, and carcass traits of sheep. Trop. Anim. Health Prod. 2025, 57, 147. [Google Scholar] [CrossRef]
- Jenkins, T.C.; Fotouhi, N. Effects of lecithin and corn oil on site of digestion, ruminal fermentation and microbial protein synthesis in sheep. J. Anim. Sci. 1990, 68, 460–466. [Google Scholar] [CrossRef]
- Gonçalves, J.S.; Ezequiel, J.M.B.; Homem, A.C., Jr.; Van Cleef, F.O.S.; Machado Neto, O.R.; Van Cleef, E.H.C.B. Different proportions of starch and neutral detergent-soluble fiber in diets for feedlot lambs. An. Acad. Bras. Cienc. 2022, 94, e20200966. [Google Scholar] [CrossRef]
- Jenkins, T.C. Lipid metabolism in the rumen. J. Dairy Sci. 1993, 79, 3851–3863. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Mattos, W.R.S. Metabolismo de Lipídeos. In Nutrição de Ruminantes, 2nd ed.; Berchielli, T.T., Pires, A.V., Oliveira, S.G., Eds.; Funep: Jaboticabal, Brazil, 2011; p. 616. [Google Scholar]
- Numrich, J.L. Predicting CLA Production in the Rumen/Duodenum by the Use of Mathematical Models. Master’s Thesis, Southern Illinois University, Carbondale, IL, USA, 2005. [Google Scholar]
- Kim, E.J.; Huws, S.A.; Lee, M.R.F.; Scollan, N.D. Dietary transformation of lipid in the rumen microbial ecosystem. Asian-Australas. J. Anim. Sci. 2009, 22, 1341–1350. [Google Scholar] [CrossRef]
- Yamamoto, S.M.; Macedo, F.A.F.; Zundt, M.; Mexia, A.A.; Sakaguti, E.S.; Rocha, G.B.L.; Macedo, R.M.G. Vegetable oil sources in feedlot lambs. Rev. Bras. Zootec. 2005, 34, 703–710. [Google Scholar] [CrossRef]
- Badee, G.; Hidaka, S. Oil and CLA concentrations in lambs. Anim. Sci. J. 2014, 85, 118–126. [Google Scholar] [CrossRef]
- Ramos, L.M.G.; Bezerra, L.R.; Oliveira, J.P.F.; Souza, M.P.; Silva, A.L.; Sales, E.P.; Mazzetto, S.E.; Pereira Filho, J.M.; Oliveira, R.L. Effects of feeding growing-finishing lambs with cashew nut shell liquid on the growth performance, physicochemical attributes, lipid peroxidation and sensorial parameters of burger. Small Rumin. Res. 2021, 202, 106468. [Google Scholar] [CrossRef]
- Araújo, D.; Araújo, M.; Silva, S.; Pereira Filho, J.; Parente, M.; Oliveira, R.; Mazzetto, S.; Oliveira, J.; Edvan, R.; Bezerra, L. Effect of Technical Cashew Nut Shell Liquid on Growth, Physicochemical and Fatty Acid Composition of Lamb Meat. Small Rumin. Res. 2023, 227, 107070. [Google Scholar] [CrossRef]
- Mazzetto, S.E.; Lomonaco, D.; Mele, G. Cashew Nut Oil: Opportunities and Challenges in the Context of Sustainable Industrial Development. Quím. Nova 2009, 32, 732–741. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
- Lubi, M.C.; Thachil, E.T. Cashew Nut Shell Liquid (CNSL)—A Versatile Monomer for Polymer Synthesis. Des. Monomers Polym. 2000, 3, 123–153. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy. Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Senger, C.C.D.; Kozloski, G.V.; Bonnecarrère Sanchez, L.M.; Mesquita, F.R.; Alves, T.P.; Castagnino, D.S. Evaluation of Autoclave Procedures for Fibre Analysis in Forage and Concentrate Feedstuffs. Anim. Feed Sci. Technol. 2008, 146, 169–174. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of Procedures for Nitrogen Fractionation of Ruminant Feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Mertens, D.R. Creating a System for Meeting the Fiber Requirements of Dairy Cows. J. Dairy Sci. 1997, 80, 1463–1481. [Google Scholar] [CrossRef]
- Weiss, W.P. Feeds, Prediction of Energy and Proteins|Feed Energy. In Reference Module in Food Science; Elsevier: Wooster, OH, USA, 2020. [Google Scholar]
- Biffin, T.E.; Smith, M.A.; Bush, R.D.; Collins, D.; Hopkins, D.L. The effect of electrical stimulation and tenderstretching on colour and oxidation traits of alpaca (Vicugna pacos) meat. Meat Sci. 2019, 156, 125–130. [Google Scholar] [CrossRef]
- Miltenburg, G.A.; Wensing, T.; Smulders, F.J.; Breukink, H.J. Relationship between Blood Hemoglobin, Plasma and Tissue Iron, Muscle Heme Pigment, and Carcass Color of Veal. J. Anim. Sci. 1992, 70, 2766–2772. [Google Scholar] [CrossRef] [PubMed]
- Hamm, R. Functional Properties of the Myofibrillar System and Their Measurement. In Muscle as Food; Bechtel, P.J., Ed.; Academic Press: Orlando, FL, USA, 1986; pp. 135–199. [Google Scholar]
- American Meat Science Association (AMSA). Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat; AMSA Educational Foundation: Champaign, IL, USA, 2016; Available online: http://www.meatscience.org (accessed on 5 January 2023).
- Shackelford, S.D.; Wheeler, T.L.; Koohmaraie, M. Evaluation of Slice Shear Force as an Objective Method of Assessing Beef Longissimus Tenderness. J. Anim. Sci. 1999, 77, 2693–2699. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Jenkins, T.C. Challenges with Fats and Fatty Acid Methods. J. Anim. Sci. 2003, 81, 3250–3254. [Google Scholar] [CrossRef]
- O’Fallon, J.V.; Busboom, J.R.; Nelson, M.L.; Gaskins, C.T. A Direct Method for Fatty Acid Methyl Ester Synthesis: Application to Wet Meat Tissues, Oils, and Feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef]
- Sukhija, P.S.; Palmquist, D.L. Rapid Method for Determination of Total Fatty Acid Content and Composition of Feedstuffs and Feces. J. Agric. Food Chem. 1988, 36, 1202–1206. [Google Scholar] [CrossRef]
- Ulbricht, T.L.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Santos-Silva, J.; Mendes, I.A.; Bessa, R.J.B. The Effect of Genotype, Feeding System and Slaughter Weight on the Quality of Light Lambs. 1. Growth, Carcass Composition and Meat Quality. Livest. Prod. Sci. 2002, 76, 17–25. [Google Scholar] [CrossRef]
- Rhee, K.S. Fatty Acids in Meats and Meat Products. In Fatty Acids in Foods and Their Health Implications; Chow, C.K., Ed.; Marcel Dekker: New York, NY, USA, 1992; pp. 65–93. [Google Scholar]
- Smet, S.; Raes, K.; Demeyer, D. Meat fatty acid composition as affected by fatness and genetic factors: A review. Anim. Res. 2004, 53, 81–98. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS User’s Guide: Statistics; SAS Institute Inc.: Cary, NC, USA, 2002. [Google Scholar]
- Mancini, R.A.; Hunt, M.C. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.M.; de Medeiros, A.N.; Oliveira, R.L.; Gonzaga Neto, S.; Queiroga, R.D.C.D.E.; Ribeiro, R.D.X.; Leão, A.G.; Bezerra, L.R. Carcass traits and meat quality of crossbred Boer goats fed peanut cake as a substitute for soybean meal. J. Anim. Sci. 2016, 94, 2992–3002. [Google Scholar] [CrossRef]
- Costa, J.B.; Oliveira, R.L.; Silva, T.M.; Barbosa, A.M.; Borja, M.S.; de Pellegrini, C.B.; Oliveira, V.D.S.; Ribeiro, R.D.X.; Bezerra, L.R. Fatty acid, physicochemical composition and sensory attributes of meat from lambs fed diets containing licuri cake. PLoS ONE 2018, 13, e0206865. [Google Scholar] [CrossRef]
- Ribeiro, R.D.X.; Medeiros, A.N.; Oliveira, R.L.; de Araújo, G.G.L.; Queiroga, R.D.C.D.E.; Ribeiro, M.D.; Silva, T.M.; Bezerra, L.R.; Oliveira, R.L. Palm kernel cake from the biodiesel industry in goat kid diets. Part 2: Physicochemical composition, fatty acid profile and sensory attributes of meat. Small Rumin. Res. 2018, 165, 102–104. [Google Scholar] [CrossRef]
- Kumar, S.; Pedersen-Wismer, J.; Caspersen, C. Effect of chemical additives on microbial quality of mechanically deboned poultry meat during frozen storage. J. Food Sci. Technol. 1986, 23, 217–220. [Google Scholar]
- Freitas, I.R.; Jorge, N. Avaliação dos Compostos Bioativos de Óleos Brutos de Soja, Canola, Milho e Girassol. In Ciência e Tecnologia de Alimentos: Pesquisa e Práticas Contemporâneas; Cordeiro, C.A.M., Silva, E.M., Evangelista-Barreto, N.S., Eds.; 2021; Volume 2, pp. 193–210. [Google Scholar]
- Malva, A.D.; Albenzio, M.; Annicchiarico, G.; Caroprese, M.; Muscio, A.; Santillo, A.; Marino, R.O. Relationship between slaughtering age, nutritional and organoleptic properties of Altamurana lamb meat. Small Rumin. Res. 2016, 135, 39–45. [Google Scholar] [CrossRef]
- Lourenço, M.; Ramos-Morales, E.; Wallace, R.J. The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal 2010, 4, 1008–1023. [Google Scholar] [CrossRef]
- Enjalbert, F.; Combes, S.; Zened, A.; Meynadier, A. Rumen microbiota and dietary fat: A mutual shaping. J. Appl. Microbiol. 2017, 123, 782–797. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.; Nälsén, C.; Tengblad, S.; Vessby, B. Fatty acid composition of skeletal muscle reflects dietary fat composition in humans. Am. J. Clin. Nutr. 2002, 76, 1222–1229. [Google Scholar] [CrossRef] [PubMed]
- Absalimova, M.; Lee, J.; Xiong, Y.L.; Song, H.; Kim, S.H.; Jo, Y.J.; Choi, M.J. Impact of solid-to-liquid lipid ratio on the gelation and emulsion properties of lamb myofibrillar protein gels. Food Res. Int. 2025, 208, 116261. [Google Scholar] [CrossRef]
- Mititelu, M.; Lupuliasa, D.; Neacșu, S.M.; Olteanu, G.; Busnatu, Ș.S.; Mihai, A.; Popovici, V.; Măru, N.; Boroghină, S.C.; Mihai, S.; et al. Polyunsaturated Fatty Acids and Human Health: A Key to Modern Nutritional Balance in Association with Polyphenolic Compounds from Food Sources. Foods 2024, 14, 46. [Google Scholar] [CrossRef]
- Girard, M.; Dohme-Meier, F.; Silacci, P.; Ampuero Kragten, S.; Kreuzer, M.; Bee, G. Forage legumes rich in condensed tannins may increase n-3 fatty acid levels and sensory quality of lamb meat. J. Sci. Food Agric. 2016, 96, 1923–1933. [Google Scholar] [CrossRef]
- Muela, E.; Monge, P.; Sañudo, C.; Campo, M.M.; Beltrán, J.A. Sensory quality of lamb following long-term frozen storage. Meat Sci. 2016, 114, 32–37. [Google Scholar] [CrossRef]
- Madruga, M.S.; Vieira, T.R.D.L.; Cunha, M.D.G.G.; Pereira Filho, J.M.; Queiroga, R.C.R.E.; Sousa, W.H.E. Efeito de Dietas Com níveis Crescentes de Caroço de Algodão Integral Sobre a Composição Química e o Perfil de Ácidos Graxos da Carne de Cordeiros Santa Inês. Rev. Bras. Zootec. 2008, 37, 1496–1502. [Google Scholar] [CrossRef]
- Bezerra, L.S.; Barbosa, A.M.; Carvalho, G.G.P.; Simionato, J.I.; Freitas, J.E., Jr.; Araújo, M.L.G.M.; Pereira, L.; Silva, R.R.; Lacerda, E.C.Q.; Carvalho, B.M.A. Meat quality of lambs fed diets with peanut cake. Meat Sci. 2016, 121, 88–95. [Google Scholar] [CrossRef]
- Kampa, J.; Frazier, R.; Rodriguez-Garcia, J. Physical and Chemical Characterisation of Conventional and Nano/Emulsions: Influence of Vegetable Oils from Different Origins. Foods 2022, 11, 681. [Google Scholar] [CrossRef]
- Khliji, S.; Van de Ven, R.; Lamb, T.A.; Lanza, M.; Hopkins, D.L. Relationship between consumer ranking of lamb colour and objective measures of colour. Meat Sci. 2010, 85, 224–229. [Google Scholar] [CrossRef]
- Priolo, A.; Micol, D.; Agabriel, J. Effects of grass feeding systems on ruminant meat colour and flavour. A review. Anim. Res. 2001, 50, 185–200. [Google Scholar] [CrossRef]
- Wasserman, D.; Dawson, C.R. The cardol component of Indian cashew nut shell liquid with reference to the liquid’s vesicant activity. J. Am. Chem. Soc. 1948, 70, 3675–3679. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.S.C.; de Morais, S.M.; Magalhães, D.V.; Batista, W.P.; Vieira, Í.G.P.; Craveiro, A.A.; de Manezes, J.E.S.A.; Carvalho, A.F.U.; de Lima, G.P.G. Antioxidant, larvicidal and antiacetylcholinesterase activities of cashew nut shell liquid constituents. Acta Trop. 2011, 117, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Zapata, J.F.F.; Nogueira, C.M.; Seabra, L.M.A.J.; Barros, N.N.; Borges, Â.S. Proximate analysis and lipidic composition of lamb meat from northeastern Brazil. Cienc. Rural 2001, 31, 691–695. [Google Scholar] [CrossRef]
- Gonzalez-Becerra, K.; Barron-Cabrera, E.; Muñoz-Valle, J.F.; Torres-Castillo, N.; Rivera-Valdes, J.J.; Rodriguez-Echevarria, R.; Martinez-Lopez, E. A Balanced Dietary Ratio of n-6:n-3 Polyunsaturated Fatty Acids Exerts an Effect on Total Fatty Acid Profile in RBCs and Inflammatory Markers in Subjects with Obesity. Healthcare 2023, 11, 2333. [Google Scholar] [CrossRef]
Item | Vegetables Oils + CNSL 1 Blend | ||||
---|---|---|---|---|---|
Soybean | Cottonseed | Sunflower | Corn | Canola | |
Ingredients proportions | |||||
Sorghum silage | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 |
Ground corn | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 |
Soybean meal | 16.5 | 16.5 | 16.5 | 16.5 | 16.5 |
CNSL 1 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Vegetables oil | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 |
Mineral mixture | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 |
Chemical composition of the diet (g/kg) | |||||
Dry matter | 694 | 694 | 694 | 694 | 694 |
Ash | 51.9 | 51.9 | 51.9 | 51.9 | 51.9 |
Crude protein | 135 | 135 | 135 | 135 | 135 |
Ether extract | 58.0 | 58.0 | 58.0 | 58.0 | 58.0 |
aNDF 2 | 371 | 371 | 371 | 371 | 371 |
Non-fiber carbohydrates | 384 | 384 | 384 | 384 | 384 |
Total digestible nutrients | 792 | 794 | 755 | 723 | 782 |
Metabolizable energy 3 | 2.86 | 2.87 | 2.73 | 2.61 | 2.83 |
Chemical composition of the effective intake diet (g/kg DM) | |||||
Crude protein | 113 | 118 | 118 | 112 | 114 |
Ash | 51.9 | 52.8 | 50.5 | 54.3 | 49.8 |
aNDF 2 | 392 | 378 | 392 | 390 | 362 |
Ether extract | 41.9 | 47.7 | 45.0 | 47.4 | 44.7 |
Non-fiber carbohydrates | 400 | 403 | 394 | 396 | 429 |
Total digestible nutrients | 760 | 767 | 764 | 764 | 768 |
Metabolizable energy 3 | 3.79 | 3.95 | 4.01 | 4.00 | 3.79 |
Fatty Acids (g/100 g FAME) | Vegetable Oils and CNSL 1 Blend | ||||||
---|---|---|---|---|---|---|---|
MUFA | PUFA | ||||||
Canola | Cottonseed | Sunflower | Corn | Soybean | CNSL 1 | ||
Myristic | C14:0 | 0.18 | 0.50 | 0.33 | 0.13 | 0.09 | 1.77 |
Palmitic | C16:0 | 2.52 | 21.7 | 8.54 | 11.7 | 12.2 | 15.9 |
Stearic | C18:0 | 2.30 | 2.10 | 7.44 | 5.17 | 3.27 | 5.76 |
Palmitoleic | C16:1 | 0.20 | 0.40 | - | 0.10 | - | 8.22 |
Oleic | C18:1 | 63.3 | 17.2 | 25.7 | 20.7 | 29.4 | 14.3 |
Linoleic | C18:2 | 23.7 | 50.3 | 54.2 | 53.9 | 45.8 | 10.8 |
Linolenic | C18:3 | 8.8 | 2.41 | 0.32 | 5.51 | 3.78 | 2.83 |
Other FA 2 | - | - | 5.40 | 3.47 | 2.70 | 5.46 | 40.4 |
Saturated | SFA | 5.00 | 24.3 | 16.23 | 17.0 | 15.6 | 23.5 |
Monounsaturated | MUFA | 63.5 | 17.6 | 25.7 | 20.8 | 29.4 | 22.5 |
Polyunsaturated | PUFA | 31.5 | 52.7 | 54.5 | 59.5 | 49.6 | 13.7 |
Unsaturated | UFA | 94.5 | 70.3 | 80.2 | 80.3 | 79.0 | 36.2 |
Variable | Vegetable Oils and CNSL 1 Blend | SEM 2 | p-Value 3 | ||||
---|---|---|---|---|---|---|---|
MUFA | PUFA | ||||||
Canola | Cottonseed | Sunflower | Corn | Soybean | |||
Initial pH (45 min) | 6.58 | 6.58 | 6.43 | 6.42 | 6.45 | 0.06 | 0.102 |
Final pH (24 h) | 5.59 a | 5.51 ab | 5.50 ab | 5.47 b | 5.55 ab | 0.02 | 0.016 |
Water-holding capacity (%) | 31.7 a | 30.5 ab | 28.8 b | 30.1 ab | 28.7 b | 1.32 | 0.047 |
Cooking loss (%) | 26.5 b | 31.0 ab | 32.1 a | 28.3 ab | 32.3 a | 1.27 | 0.006 |
Shear force (N) | 15.1 b | 17.1 a | 17.4 a | 17.8 a | 17.5 a | 0.13 | 0.036 |
Lightness (L*) | 38.8 | 39.3 | 39.3 | 38.5 | 39.1 | 0.43 | 0.418 |
Redness (a*) | 19.9 | 20.1 | 20.2 | 19.6 | 19.6 | 0.19 | 0.117 |
Yellowness (b*) | 1.72 ab | 1.86 a | 1.59 ab | 1.22 b | 2.01 a | 0.13 | 0.003 |
Item (g/100 g Meat) | Vegetable Oils and CNSL 1 Blend | SEM 2 | p-Value 3 | ||||
---|---|---|---|---|---|---|---|
MUFA | PUFA | ||||||
Canola | Cottonseed | Sunflower | Corn | Soybean | |||
Moisture | 71.6 | 71.2 | 71.1 | 72.2 | 71.3 | 0.44 | 0.110 |
Crude protein | 23.6 | 24.6 | 24.7 | 23.5 | 24.2 | 0.34 | 0.210 |
Crude fat | 3.59 | 3.01 | 2.86 | 2.86 | 3.23 | 0.16 | 0.141 |
Crude ash | 1.23 | 1.17 | 1.33 | 1.44 | 1.28 | 0.08 | 0.248 |
Fatty Acids (mg/100 g Muscle) | Vegetable Oils and CNSL 1 Blend | SEM 2 | p-Value 3 | ||||
---|---|---|---|---|---|---|---|
MUFA | PUFA | ||||||
Canola | Cottonseed | Sunflower | Corn | Soybean | |||
Saturated fatty acids (SFA) | |||||||
C4:0 | 0.69 | 0.70 | 0.53 | 0.61 | 0.58 | 0.33 | 0.9754 |
C10:0 | 2.89 | 3.05 | 2.91 | 2.61 | 2.97 | 0.31 | 0.5933 |
C12:0 | 1.89 | 2.34 | 1.99 | 1.99 | 2.15 | 0.54 | 0.7695 |
C14:0 | 46.9 a | 48.13 a | 43.65 ab | 38.9 b | 43.0 ab | 1.34 | 0.0312 |
C15:0 | 5.30 | 5.05 | 5.09 | 4.55 | 5.45 | 0.313 | 0.3367 |
C16:0 | 573.3 | 579.4 | 538.2 | 512.6 | 538.4 | 19.75 | 0.1236 |
C17:0 | 18.4 | 17.1 | 19.0 | 16.3 | 18.4 | 1.13 | 0.4834 |
C18:0 | 364.3 | 380.7 | 346.6 | 351.8 | 368.8 | 12.3 | 0.3210 |
C20:0 | 47.2 | 51.1 | 54.8 | 51.3 | 53.3 | 5.26 | 0.8777 |
Monounsaturated fatty acids (MUFA) | |||||||
C14:1 | 1.31 | 1.50 | 1.20 | 1.13 | 1.09 | 0.21 | 0.6971 |
C15:1 | 9.72 | 11.5 | 8.01 | 9.67 | 10.55 | 1.06 | 0.2250 |
C16:1 | 42.43 a | 42.1 a | 39.2 ab | 35.0 b | 37.5 ab | 1.41 | 0.0191 |
C17:1 | 11.3 | 10.7 | 9.40 | 10.2 | 11.2 | 0.80 | 0.397 |
C18:1 c–9 | 1078.3 | 1099.7 | 1027.5 | 1032.5 | 1084.7 | 41.3 | 0.652 |
Polyunsaturated fatty acids (PUFA) | |||||||
C18:2 n–6 | 100.5 | 82.25 | 92.3 | 109.1 | 105.5 | 8.20 | 0.162 |
C18:2 t–10 t–12 4 | 2.55 b | 2.88 ab | 3.06 a | 2.52 b | 3.11 a | 0.11 | 0.007 |
C18:3 n–3 | 5.74 b | 5.51 b | 6.48 ab | 5.97 b | 8.74 a | 0.59 | 0.003 |
C20:2 | 4.69 | 6.31 | 5.19 | 6.38 | 5.96 | 0.78 | 0.486 |
C20:3 n–6 | 2.15 | 3.56 | 1.29 | 1.80 | 2.132 | 0.63 | 0.156 |
C20:4 n–6 | 30.96 | 26.68 | 23.9 | 31.7 | 34.51 | 2.61 | 0.052 |
C20:5 n–3 | 3.95 b | 3.32 b | 1.91 c | 3.66 b | 5.03 a | 0.68 | 0.046 |
C22:6 n–3 | 0.97 ab | 1.43 a | 0.97 ab | 0.68 b | 0.28 c | 0.35 | 0.028 |
Fatty Acids 4 (g/100 g FAME) | Vegetable Oils and CNSL 1 Blend | SEM 2 | p-Value 3 | ||||
---|---|---|---|---|---|---|---|
MUFA | PUFA | ||||||
Canola | Cottonseed | Sunflower | Corn | Soybean | |||
Sum | |||||||
∑SFA | 45.0 | 44.2 | 44.1 | 43.9 | 43.9 | 0.525 | 0.568 |
∑MUFA | 48.2 | 48.1 | 49.2 | 48.4 | 48.8 | 0.885 | 0.912 |
∑PUFA | 6.69 | 7.56 | 6.78 | 7.63 | 7.307 | 0.701 | 0.852 |
∑n–9 | 48.2 | 48.1 | 49.2 | 48.4 | 48.8 | 0.885 | 0.912 |
∑n–6 | 1.27 | 1.54 | 1.21 | 1.47 | 1.56 | 0.145 | 0.354 |
∑n–3 | 0.45 b | 0.43 b | 0.43 b | 0.48 b | 0.64 a | 0.054 | 0.037 |
Ratio | |||||||
∑MUFA:∑SFA | 1.07 | 1.09 | 1.12 | 1.10 | 1.11 | 0.029 | 0.807 |
∑PUFA:∑SFA | 0.148 | 0.141 | 0.151 | 0.160 | 0.165 | 0.012 | 0.711 |
n–6:n–3 | 2.91 ab | 3.93 a | 2.72 ab | 2.94 ab | 2.47 b | 0.297 | 0.017 |
Health indexes | |||||||
IA | 0.64 | 0.64 | 0.64 | 0.59 | 0.59 | 0.018 | 0.102 |
IT | 1.57 | 1.58 | 1.54 | 1.50 | 1.46 | 0.040 | 0.209 |
h:H | 1.73 | 1.76 | 1.81 | 1.87 | 1.87 | 0.046 | 0.137 |
DFA | 70.4 b | 70.7 b | 71.8 a | 71.7 a | 71.7 a | 0.289 | 0.049 |
Enzymatic activity | |||||||
Δ9–desaturase C16 | 6.86 | 6.75 | 7.07 | 6.38 | 6.54 | 0.261 | 0.401 |
Δ9–desaturase C18 | 74.6 | 74.2 | 74.2 | 74.5 | 74.6 | 0.831 | 0.988 |
Elongase | 70.0 b | 70.4 b | 71.0 a | 71.6 a | 71.6 a | 0.225 | 0.043 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, E.L.G.; Lucena, K.H.d.O.S.d.; Pereira Filho, J.M.; Pereira, M.M.R.; Oliveira, R.L.; Barbosa, A.M.; Pereira, E.S.; Di Mambro, C.V.; Araújo, M.J.d.; Bezerra, L.R. Meat Quality and Fatty Acid Profile of Rams Fed Diets Enriched with Vegetable Oils of Varying Unsaturation Levels. Foods 2025, 14, 2179. https://doi.org/10.3390/foods14132179
Andrade ELG, Lucena KHdOSd, Pereira Filho JM, Pereira MMR, Oliveira RL, Barbosa AM, Pereira ES, Di Mambro CV, Araújo MJd, Bezerra LR. Meat Quality and Fatty Acid Profile of Rams Fed Diets Enriched with Vegetable Oils of Varying Unsaturation Levels. Foods. 2025; 14(13):2179. https://doi.org/10.3390/foods14132179
Chicago/Turabian StyleAndrade, Evyla Layssa Gonçalves, Kevily Henrique de Oliveira Soares de Lucena, José Morais Pereira Filho, Marcia Makaline Rodrigues Pereira, Ronaldo Lopes Oliveira, Analívia Martins Barbosa, Elzania Sales Pereira, Claudio Vaz Di Mambro, Marcos Jacome de Araújo, and Leilson Rocha Bezerra. 2025. "Meat Quality and Fatty Acid Profile of Rams Fed Diets Enriched with Vegetable Oils of Varying Unsaturation Levels" Foods 14, no. 13: 2179. https://doi.org/10.3390/foods14132179
APA StyleAndrade, E. L. G., Lucena, K. H. d. O. S. d., Pereira Filho, J. M., Pereira, M. M. R., Oliveira, R. L., Barbosa, A. M., Pereira, E. S., Di Mambro, C. V., Araújo, M. J. d., & Bezerra, L. R. (2025). Meat Quality and Fatty Acid Profile of Rams Fed Diets Enriched with Vegetable Oils of Varying Unsaturation Levels. Foods, 14(13), 2179. https://doi.org/10.3390/foods14132179