Exploring Texture and Biomechanics of Food Oral Processing in Fork-Mashable Dishes for Patients with Mastication or Swallowing Impairments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Texture-Modified Diets
Texture Check | Texture Characteristics | |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Texture Check | Texture Characteristics | |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.1.2. Texture-Modified Diets Preparation
2.1.3. Participants
2.1.4. Study Design
2.2. Method
2.2.1. Texture Profile Analysis
2.2.2. Assessment of Mastication by Electromyography (EMG)
2.2.3. Ready-to-Swallow Bolus
2.2.4. Assessment of the Effect of Oral Mastication—Impact Percentage
2.3. Data Management and Statistical Analysis
3. Results
3.1. Mechanical Characteristics
3.1.1. Pre-Mastication
3.1.2. Post-Mastication/Ready-to-Swallow Bolus
3.1.3. Mastication and Oral-Processing Effect
3.1.4. Mastication Process Behavior for the Different Dishes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amarya, S.; Singh, K.; Sabharwal, M.; Amarya, S.; Singh, K.; Sabharwal, M. Ageing Process and Physiological Changes; IntechOpen: London, UK, 2018; ISBN 978-1-78923-253-0. [Google Scholar]
- Mazzonna, F.; Peracchi, F. Ageing, Cognitive Abilities and Retirement. Eur. Econ. Rev. 2012, 56, 691–710. [Google Scholar] [CrossRef]
- Matsuo, K.; Fujishima, I. Textural Changes by Mastication and Proper Food Texture for Patients with Oropharyngeal Dysphagia. Nutrients 2020, 12, 1613. [Google Scholar] [CrossRef] [PubMed]
- Van Der Heul, A.M.B.; Van Eijk, R.P.A.; Wadman, R.I.; Asselman, F.; Cuppen, I.; Nievelstein, R.A.J.; Gerrits, E.; Van Der Pol, W.L.; Van Den Engel-Hoek, L. Mastication in Patients with Spinal Muscular Atrophy Types 2 and 3 Is Characterized by Abnormal Efficiency, Reduced Endurance, and Fatigue. Dysphagia 2022, 37, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Durvasula, V.S.P.B.; O’Neill, A.C.; Richter, G.T. Oropharyngeal Dysphagia in Children: Mechanism, Source, and Management. Otolaryngol. Clin. N. Am. 2014, 47, 691–720. [Google Scholar] [CrossRef] [PubMed]
- Mioche, L.; Bourdiol, P.; Peyron, M.-A. Influence of Age on Mastication: Effects on Eating Behaviour. Nutr. Res. Rev. 2004, 17, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Nazarko, L. Maintaining or Improving Nutrition and Hydration in Dysphagia. Indep. Nurse 2018, 2018, 17–20. [Google Scholar] [CrossRef]
- Vesey, S. Dysphagia and Quality of Life. Br. J. Community Nurs. 2013, 18 (Suppl. S5), S14–S19. [Google Scholar] [CrossRef] [PubMed]
- Dias-da-Costa, J.S.; Galli, R.; de Oliveira, E.A.; Backes, V.; Vial, E.A.; Canuto, R.; de Souza, L.L.; Cremonese, C.; Olinto, M.T.A.; Pattussi, M.P. Prevalence of Poor Self-Rated Mastication and Associated Factors in Brazilian Elderly. Cad. Saúde Pública 2010, 26, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Murrieta, J.; Alvarado, E.; Valdez, M.; Orozco, L.; Meza, J.; Juárez, M. Prevalence of Temporomandibular Joint Disorders in a Mexican Elderly Group. J. Oral Res. 2016, 5, 13–18. [Google Scholar] [CrossRef]
- Dibello, V.; Zupo, R.; Sardone, R.; Lozupone, M.; Castellana, F.; Dibello, A.; Daniele, A.; De Pergola, G.; Bortone, I.; Lampignano, L.; et al. Oral Frailty and Its Determinants in Older Age: A Systematic Review. Lancet Healthy Longev. 2021, 2, e507–e520. [Google Scholar] [CrossRef]
- Thiyagalingam, S.; Kulinski, A.E.; Thorsteinsdottir, B.; Shindelar, K.L.; Takahashi, P.Y. Dysphagia in Older Adults. Mayo Clin. Proc. 2021, 96, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Clavé, P.; Shaker, R. Dysphagia: Current Reality and Scope of the Problem. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Athukorala, R.P.; Jones, R.D.; Sella, O.; Huckabee, M.-L. Skill Training for Swallowing Rehabilitation in Patients with Parkinson’s Disease. Arch. Phys. Med. Rehabil. 2014, 95, 1374–1382. [Google Scholar] [CrossRef] [PubMed]
- Todaro, F.; Pizzorni, N.; Scarponi, L.; Ronzoni, C.; Huckabee, M.; Schindler, A. The Test of Masticating and Swallowing Solids (TOMASS): Reliability and Validity in Patients with Dysphagia. Int. J. Lang. Commun. Disord. 2021, 56, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Huckabee, M.; McIntosh, T.; Fuller, L.; Curry, M.; Thomas, P.; Walshe, M.; McCague, E.; Battel, I.; Nogueira, D.; Frank, U.; et al. The Test of Masticating and Swallowing Solids (TOMASS): Reliability, Validity and International Normative Data. Int. J. Lang. Commun. Disord. 2018, 53, 144–156. [Google Scholar] [CrossRef]
- Bolivar-Prados, M.; Tomsen, N.; Arenas, C.; Ibáñez, L.; Clave, P. A Bit Thick: Hidden Risks in Thickening Products’ Labelling for Dysphagia Treatment. Food Hydrocoll. 2022, 123, 106960. [Google Scholar] [CrossRef]
- Lam, P.; Stanschus, S.; Zaman, R.; Cichero, J.A. The International Dysphagia Diet Standardisation Initiative (IDDSI) Framework: The Kempen Pilot. Br. J. Neurosci. Nurs. 2017, 13, S18–S26. [Google Scholar] [CrossRef]
- Dysphagia Diet Food Texture Descriptors–Introduction–FTS Academy. Available online: https://ftsacademy.com/unit/dysphagia-diet-food-texture-descriptors-introduction/ (accessed on 20 March 2023).
- Maksimenko, A.; Lyude, A.; Nishiumi, T. Texture-Modified Foods for the Elderly and People with Dysphagia: Insights from Japan on the Current Status of Regulations and Opportunities of the High Pressure Technology. IOP Conf. Ser. Earth Environ. Sci. 2020, 548, 022106. [Google Scholar] [CrossRef]
- Costa, A.; Carrión, S.; Puig-Pey, M.; Juárez, F.; Clavé, P. Triple Adaptation of the Mediterranean Diet: Design of A Meal Plan for Older People with Oropharyngeal Dysphagia Based on Home Cooking. Nutrients 2019, 11, E425. [Google Scholar] [CrossRef]
- Chen, J. Food Oral Processing—A Review. Food Hydrocoll. 2009, 23, 1–25. [Google Scholar] [CrossRef]
- Ismael-Mohammed, K.; Bolivar-Prados, M.; Laguna, L.; Clavé, P. Measuring the Rheological and Textural Properties of Thick Purees Used to Manage Patients with Swallowing Disorders. Nutrients 2023, 15, 3767. [Google Scholar] [CrossRef] [PubMed]
- IDDSI—IDDSI Framework. Available online: https://iddsi.org/framework/ (accessed on 21 February 2023).
- Baixauli, R.; Bolivar-Prados, M.; Ismael-Mohammed, K.; Clavé, P.; Tárrega, A.; Laguna, L. Characterization of Dysphagia Thickeners Using Texture Analysis—What Information Can Be Useful? Gels 2022, 8, 430. [Google Scholar] [CrossRef] [PubMed]
- Viñas, P.; Martín-Martínez, A.; Cera, M.; Riera, S.A.; Escobar, R.; Clavé, P.; Ortega, O. Characteristics and Therapeutic Needs of Older Patients with Oropharyngeal Dysphagia Admitted to a General Hospital. J. Nutr. Health Aging 2023, 27, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Cichero, J.A.Y. Adjustment of Food Textural Properties for Elderly Patients. J. Texture Stud. 2016, 47, 277–283. [Google Scholar] [CrossRef]
- Matsuo, K.; Palmer, J.B. Anatomy and Physiology of Feeding and Swallowing: Normal and Abnormal. Clin. Integr. Care 2023, 16, 100139. [Google Scholar] [CrossRef]
- Bolivar-Prados, M. Textural Characteristics of 5 Different Alimentary Products and Their Modification after Oral Processing; Dysphagia Research Society: San Francisco, CA, USA, 2023. [Google Scholar]
- Young, A.K.; Cheong, J.N.; Foster, K.D.; Hedderley, D.I.; Morgenstern, M.P.; James, B.J. Exploring the Links between Texture Perception and Bolus Properties Throughout Oral Processing. Part 1: Breakdown Paths. J. Texture Stud. 2016, 47, 461–473. [Google Scholar] [CrossRef]
- Foster, R.; Fantoni, C.; Caudek, C.; Domini, F. Integration of Disparity and Velocity Information for Haptic and Perceptual Judgments of Object Depth. Acta Psychol. 2011, 136, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Mishellany, A.; Woda, A.; Labas, R.; Peyron, M.-A. The Challenge of Mastication: Preparing a Bolus Suitable for Deglutition. Dysphagia 2006, 21, 87–94. [Google Scholar] [CrossRef]
- Tournier, C.; Grass, M.; Septier, C.; Bertrand, D.; Salles, C. The Impact of Mastication, Salivation and Food Bolus Formation on Salt Release during Bread Consumption. Food Funct. 2014, 5, 2969–2980. [Google Scholar] [CrossRef]
- Mitchell, J. Food Texture and Viscosity: Concept and Measurement. Int. J. Food Sci. Technol. 2003, 38, 839–840. [Google Scholar] [CrossRef]
- Bersier, L.-F.; Banašek-Richter, C.; Cattin, M.-F. Quantitative Descriptors of Food-Web Matrices. Ecology 2002, 83, 2394–2407. [Google Scholar] [CrossRef]
- Kaartinen, R.; Roslin, T. High Temporal Consistency in Quantitative Food Web Structure in the Face of Extreme Species Turnover. Oikos 2012, 121, 1771–1782. [Google Scholar] [CrossRef]
- Bolivar-Prados, M.; Tomsen, N.; Hayakawa, Y.; Kawakami, S.; Miyaji, K.; Kayashita, J.; Clavé, P. Proposal for a Standard Protocol to Assess the Rheological Behavior of Thickening Products for Oropharyngeal Dysphagia. Nutrients 2022, 14, 5028. [Google Scholar] [CrossRef] [PubMed]
Puree | Ingredients | Weight/Recipe (g) | Carbohydrates (g) | Proteins (g) | Kcal |
---|---|---|---|---|---|
French omelet | 86.2% eggs in a French omelet, 1.4% water, and 1.1% virgin olive oil | 100 | 0.29 | 7.17 | 156.56 |
Zucchini omelet | 44.6% zucchini, 8.9% ratatouille *, 0.2% salt, 1.8% virgin olive oil, 26.7% diced potatoes, and 17.8% water | 100 | 0.39 | 2.90 | 103.62 |
Pumpkin | 80.4% diced pumpkin, 16.1% carrot, 0.3% salt, 3.1% virgin olive oil, and 0.99 thickener | 100 | 0.21 | 1.18 | 101 |
Stewed turkey | 23.1% sliced turkey breast, 1.3% salt, 5.3% virgin olive oil, 0.5% black pepper, 18.41% water, 8.8% concentrated chicken broth without salt, 19.4% ratatouille *, 13.3% diced potato, 9.1% diced carrot, and 0.99 thickener | 100 | 0.5 | 13.41 | 151.15 |
Pollock fish | 35.72% pollock fish, 0.33% salt, 1.56% olive oil, 0.11% black pepper, and 61.29% lemon sauce, and 0.99 thickener | 100 | - | 10.21 | 113.18 |
Red lentils | 15.6% lentils, 31.3% ratatouille *, 3.9% concentrated chicken broth, 0.1% salt, 2% extra virgin olive oil, 18.4% diced potato, 7.8% diced carrot, 19.6% water, and 0.2% ground cumin, 0.99 thickener. | 100 | 12.57 | 6.93 | 134.76 |
Noodles | 18.7% nº 2 noodles, 1.9% olive oil, 0.9% salt, 9.3% ratatouille *, 55% stock, 5.6% peeled shrimp, 1.9% garlic and parsley, 5.6% mussels, and 1% Nutilis Clear thickener | 100 | 13 | 4.9 | 141.81 |
Hake fish | 94.2% hake fish, 0.9% salt, 3.8% olive oil, and 0.4% black pepper, and 0.98 thickener | 100 | - | 10.19 | 113.1 |
Cauliflower | 44.6% cauliflower, 8.9% ratatouille *, 0.2% salt, 1.8% virgin olive oil, 24.7% diced potato, and 17.8% water | 100 | 5.3 | 2.75 | 74.48 |
Broccoli | 44.6% broccoli, 8.9% ratatouille *, 0.2% salt, 1.8% virgin olive oil, 24.7% diced potato, and 17.8% water | 100 | 6 | 2.75 | 74.48 |
Texture-Modified Fork Mashable Diet | Maximum Force (N) Pre-Mastication | Maximum Force (N) Post-Mastication | % Oral Mastication Effect | Absolute Differences (Pre–Post) | Relative Effect on Pre-Mastication, % |
---|---|---|---|---|---|
Mean (SD) | Mean (SD) | ||||
French omelet | 1.06 abc (0.81) | 0.70 ab (0.30) | 34 | 0.36 | 33.96 |
Zucchini omelet | 2.73 d (1.40) | 1.59 de (0.88) | 41 | 1.14 | 41.78 |
Pumpkin | 1.02 ab (0.45) | 1.30 bcd (0.62) | 21.5 | 0.28 | 27.45 |
Stewed turkey | 1.69 abc (0.68) | 1.08 abcd (0.39) | 36.1 | 0.61 | 36.09 |
Pollock fish | 1.35 bcd (0.75) | 1.17 abcd (0.52) | 13.3 | 0.18 | 13.33 |
Red lentils | 1.06 abc (0.41) | 0.88 abc (0.29) | 17 | 0.72 | 67.92 |
Noodles | 0.83 ab (0.45) | 1.36 abcd (0.84) | 39 | 0.53 | 63.86 |
Hake fish | 1.11 abc (0.54) | 0.53 a (0.18) | 52.8 | 0.58 | 52.25 |
Cauliflower | 0.65 ab (0.17) | 1.54 cde (0.58) | 57.8 | 0.89 | 41 |
Broccoli | 0.82 a (0.09) | 2.24 e (1.13) | 63.4 | 1.42 | 59 |
Texture-Modified Fork Mashable Diet | Cohesiveness Pre-Mastication | Cohesiveness Post-Mastication | % Oral Mastication Effect | Absolute Differences (Pre–Post) | Relative Effect on Pre-Mastication, % |
---|---|---|---|---|---|
Mean (SD) | Mean (SD) | ||||
French omelet | 0.87 e (0.03) | 0.73 d (0.13) | 16.09 | 0.14 | 16.09 |
Zucchini omelet | 0.66 cd (0.05) | 0.53 a (0.05) | 19.70 | 0.13 | 19.70 |
Pumpkin | 0.52 b (0.05) | 0.54 ab (0.05) | 3.7 | 0.02 | 3.85 |
Stewed turkey | 0.50 b (0.13) | 0.63 bc (0.09) | 20.6 | 0.13 | 26 |
Pollock fish | 0.76 de (0.05) | 0.72 d (0.05) | 5.26 | 0.04 | 5.26 |
Red lentils | 0.57 bc (0.14) | 0.69 cd (0.06) | 17.4 | 0.12 | 11.32 |
Noodles | 0.53 bc (0.09) | 0.49 a (0.06) | 7.55 | 0.04 | 4.82 |
Hake fish | 0.72 d (0.05) | 0.70 cd (0.06) | 2.78 | 0.02 | 2.78 |
Cauliflower | 0.49 b (0.04) | 0.50 a (0.04) | 2 | 0.01 | 2.04 |
Broccoli | 0.58 a (0.04) | 0.52 a (0.06) | 10.34 | 0.06 | 10.34 |
Texture-Modified Fork Mashable Diet | Adhesiveness (N·s) Pre-Mastication | Adhesiveness (N·s) Post-Mastication | % Oral Mastication Effect | Absolute Differences (Pre–Post) | Relative Effect on Pre-Mastication, % |
---|---|---|---|---|---|
Mean (SD) | Mean (SD) | ||||
French omelet | 0.12 a (0.45) | 0.05 a (0.07) | 58 | 0.07 | 58.33 |
Zucchini omelet | 0.04 a (0.02) | 0.20 b (0.23) | 80 | 0.16 | 13.04 |
Pumpkin | 0.15 ab (0.10) | 0.63 a (0.26) | 76.2 | 0.48 | 10.43 |
Stewed turkey | 0.66 bc (0.74) | 1.15 a (0.39) | 42.6 | 0.49 | 74.24 |
Pollock fish | 0.01 a (0.01) | 0.03 a (0.03) | 66.7 | 0.02 | 6.52 |
Red lentils | 0.95 c (0.47) | 1.14 a (0.27) | 16.7 | 0.19 | 20 |
Noodles | 0.06 a (0.07) | 0.30 a (0.40) | 80 | 0.24 | 13.04 |
Hake fish | 0.25 ab (0.99) | 0.01 a (0.01) | 96 | 0.24 | 96 |
Cauliflower | 0.02 a (0.01) | 0.22 a (0.14) | 90.9 | 0.2 | 32.60 |
Broccoli | 0.04 a (0.02) | 0.34 a (0.24) | 88.2 | 0.3 | 24.45 |
Texture-Modified Fork Mashable Diet | Mastication Cycles | Time (s) | Mastication Frequency (MC/T) |
---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | |
French omelet | 30.92 abc (8.16) | 24.63 ab (8.89) | 1.26 ab (0.15) |
Zucchini omelet | 30.60 abc (9.91) | 24.67 ab (5.41) | 1.24 ab (0.21) |
Pumpkin | 30.50 abc (12.85) | 18.18 a (6.82) | 1.68 a (0.43) |
Stewed turkey | 38.20 bc (11.10) | 24.27 ab (5.99) | 1.57 b (0.14) |
Pollock fish | 46.87 c (10.07) | 36.73 b (9.83) | 1.28 ab (0.22) |
Red lentils | 19.13 a (7.73) | 15.80 a (5.05) | 1.21 ab (0.12) |
Noodles | 33.97 abc (6.69) | 24.60 ab (5.13) | 1.38 ab (0.17) |
Hake fish | 37.00 abc (5.20) | 32.60 b (6.47) | 1.13 ab (0.16) |
Cauliflower | 27.40 ab (6.05) | 24.13 ab (6.76) | 1.14 ab (0.27) |
Broccoli | 26.13 ab (8.03) | 23.47 ab (6.78) | 1.11 ab (0.27) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismael-Mohammed, K.; Bolívar-Prados, M.; Laguna, L.; Nuñez Lara, A.; Clavé, P. Exploring Texture and Biomechanics of Food Oral Processing in Fork-Mashable Dishes for Patients with Mastication or Swallowing Impairments. Foods 2024, 13, 1807. https://doi.org/10.3390/foods13121807
Ismael-Mohammed K, Bolívar-Prados M, Laguna L, Nuñez Lara A, Clavé P. Exploring Texture and Biomechanics of Food Oral Processing in Fork-Mashable Dishes for Patients with Mastication or Swallowing Impairments. Foods. 2024; 13(12):1807. https://doi.org/10.3390/foods13121807
Chicago/Turabian StyleIsmael-Mohammed, Kovan, Mireia Bolívar-Prados, Laura Laguna, Adrian Nuñez Lara, and Pere Clavé. 2024. "Exploring Texture and Biomechanics of Food Oral Processing in Fork-Mashable Dishes for Patients with Mastication or Swallowing Impairments" Foods 13, no. 12: 1807. https://doi.org/10.3390/foods13121807
APA StyleIsmael-Mohammed, K., Bolívar-Prados, M., Laguna, L., Nuñez Lara, A., & Clavé, P. (2024). Exploring Texture and Biomechanics of Food Oral Processing in Fork-Mashable Dishes for Patients with Mastication or Swallowing Impairments. Foods, 13(12), 1807. https://doi.org/10.3390/foods13121807