Assessment of the Physicochemical, Antioxidant, Microbial, and Sensory Attributes of Yogurt-Style Products Enriched with Probiotic-Fermented Aronia melanocarpa Berry Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Starter Cultures
2.2. Black Chokeberry Juice Production and Fermentation
2.3. Novel Yogurt-Style Production
2.4. Physicochemical Analysis
2.5. Microbiological Assessment and Viable Probiotic Cell Count
2.6. Antioxidant Capacity
2.7. Sensory Attributes
2.8. Statistical Analysis
3. Results and Discussion
3.1. Impact of Incorporated Enriched Materials on the Physicochemical Characteristics of the Products
3.2. Antioxidant Activity and Phenolic Content
3.3. Microbial Stability of Yogurts-Style Products during Cold Storage
3.4. Viability of L. plantarum and Possible Beneficial Effects
3.5. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Sugajski, M.; Buszewska-Forajta, M.; Buszewski, B. Functional Beverages in the 21st Century. Beverages 2023, 9, 27. [Google Scholar] [CrossRef]
- Terpou, A.; Rai, A.K. Microbial transformation for improving food functionality. In Current Developments in Biotechnology and Bioengineering: Technologies for Production of Nutraceuticals and Functional Food Products; Elsevier: Amsterdam, The Netherlands, 2021; pp. 31–45. [Google Scholar]
- Terpou, A.; Papadaki, A.; Lappa, I.K.; Kachrimanidou, V.; Bosnea, L.A.; Kopsahelis, N. Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients 2019, 11, 1591. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Tancredi, D.J.; Cifelli, C.J.; Slavin, J.L.; Gahche, J.; Marco, M.L.; Hutkins, R.; Fulgoni, V.L.; Merenstein, D.; Sanders, M.E. Positive Health Outcomes Associated with Live Microbe Intake from Foods, Including Fermented Foods, Assessed using the NHANES Database. J. Nutr. 2023, 153, 1143–1149. [Google Scholar] [CrossRef]
- Gill, P.; Staudacher, H.M. Are postbiotics key to the potential benefits of fermented foods? Lancet Gastroenterol. Hepatol. 2023, 8, 509. [Google Scholar] [CrossRef]
- ISAPP. 2023. Available online: https://isappscience.org/ (accessed on 25 December 2023).
- Terpou, A. Selected Ethnic Fermented foods of Greece. In Fermented Food Products, 1st ed.; Sankaranarayanan, A., Dhanasekaran, N.A.D., Eds.; CRC Press: Boca Raton, FL, USA, 2020; p. 10. [Google Scholar]
- Wang, F.; Wang, H.; Cho, J.H. Consumer Preference for Yogurt Packaging Design Using Conjoint Analysis. Sustainability 2022, 14, 3463. [Google Scholar] [CrossRef]
- Plessas, S. Advancements in the Use of Fermented Fruit Juices by Lactic Acid Bacteria as Functional Foods: Prospects and Challenges of Lactiplantibacillus (Lpb.) plantarum subsp. plantarum Application. Fermentation 2022, 8, 6. [Google Scholar] [CrossRef]
- Mantzourani, I.; Terpou, A.; Bekatorou, A.; Mallouchos, A.; Alexopoulos, A.; Kimbaris, A.; Bezirtzoglou, E.; Koutinas, A.A.; Plessas, S. Functional pomegranate beverage production by fermentation with a novel synbiotic L. paracasei biocatalyst. Food Chem. 2020, 308, 125658. [Google Scholar] [CrossRef]
- Nagpal, R.; Kumar, A.; Kumar, M. Fortification and fermentation of fruit juices with probiotic lactobacilli. Ann. Microbiol. 2012, 62, 1573–1578. [Google Scholar] [CrossRef]
- Chen, W.; Xie, C.; He, Q.; Sun, J.; Bai, W. Improvement in color expression and antioxidant activity of strawberry juice fermented with lactic acid bacteria: A phenolic-based research. Food Chem. X 2023, 17, 100535. [Google Scholar] [CrossRef] [PubMed]
- Bontsidis, C.; Mallouchos, A.; Terpou, A.; Nikolaou, A.; Batra, G.; Mantzourani, I.; Alexopoulos, A.; Plessas, S. Microbiological and chemical properties of chokeberry juice fermented by novel lactic acid bacteria with potential probiotic properties during fermentation at 4 °C for 4 weeks. Foods 2021, 10, 768. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, H.; Lei, H. Phenolics Profile, Antioxidant Activity and Flavor Volatiles of Pear Juice: Influence of Lactic Acid Fermentation Using Three Lactobacillus Strains in Monoculture and Binary Mixture. Foods 2021, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S.; Parija, T.; Panda, S.K. Chapter 25—Starter cultures: An insight into specific applications in flavoring and health promotion. In Indigenous Fermented Foods for the Tropics; Adebo, O.A., Chinma, C.E., Obadina, A.O., Soares, A.G., Panda, S.K., Gan, R.-Y., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 409–418. [Google Scholar]
- Obradović, N.; Volić, M.; Nedović, V.; Rakin, M.; Bugarski, B. Microencapsulation of probiotic starter culture in protein–carbohydrate carriers using spray and freeze-drying processes: Implementation in whey-based beverages. J. Food Eng. 2022, 321, 110948. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, F.; Wang, B.; Zhang, L.; Dong, Y.; Shao, Y. Genome-wide analysis of fermentation and probiotic trait stability in Lactobacillus plantarum during continuous culture. J. Dairy Sci. 2020, 103, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Echegaray, N.; Yilmaz, B.; Sharma, H.; Kumar, M.; Pateiro, M.; Ozogul, F.; Lorenzo, J.M. A novel approach to Lactiplantibacillus plantarum: From probiotic properties to the omics insights. Microbiol. Res. 2023, 268, 127289. [Google Scholar] [CrossRef] [PubMed]
- Baspinar, B.; Güldaş, M. Traditional plain yogurt: A therapeutic food for metabolic syndrome? Crit. Rev. Food Sci. Nutr. 2021, 61, 3129–3143. [Google Scholar] [CrossRef] [PubMed]
- Terpou, A.; Papadaki, A.; Bosnea, L.; Kanellaki, M.; Kopsahelis, N. Novel frozen yogurt production fortified with sea buckthorn berries and probiotics. LWT 2019, 105, 242–249. [Google Scholar] [CrossRef]
- Abdelhamid, S.M.; Edris, A.E.; Sadek, Z. Novel approach for the inhibition of Helicobacter pylori contamination in yogurt using selected probiotics combined with eugenol and cinnamaldehyde nanoemulsions. Food Chem. 2023, 417, 135877. [Google Scholar] [CrossRef]
- Do Espírito Santo, A.P.; Perego, P.; Converti, A.; Oliveira, M. de Influence of Milk Type and Addition of Passion Fruit Peel Powder on Fermentation Kinetics, Texture Profile and Bacterial Viability in Probiotic Yoghurts. LWT 2012, 47, 393–399. [Google Scholar] [CrossRef]
- Amirdivani, S.; Baba, A.S.H. Green tea yogurt: Major phenolic compounds and microbial growth. J. Food Sci. Technol. 2015, 52, 4652–4660. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Fattah, A.; Sakr, S.; El-Dieb, S.; Elkashef, H. Developing functional yogurt rich in bioactive peptides and gamma-aminobutyric acid related to cardiovascular health. LWT 2018, 98, 390–397. [Google Scholar] [CrossRef]
- Durmus, N.; Capanoglu, E.; Kilic-Akyilmaz, M. Activity and bioaccessibility of antioxidants in yoghurt enriched with black mulberry as affected by fermentation and stage of fruit addition. Int. Dairy J. 2021, 117, 105018. [Google Scholar] [CrossRef]
- Bond, J. Gut reactions. New Sci. 2022, 256, 46–49. [Google Scholar] [CrossRef]
- Sung, J.M.; Kim, Y.B.; Kum, J.S.; Choi, Y.S.; Seo, D.H.; Choi, H.W.; Park, J.D. Effects of Freeze-dried Mulberry on Antioxidant Activities and Fermented Characteristics of Yogurt during Refrigerated Storage. Korean J. Food Sci. Anim. Resour. 2015, 35, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Gomez Mattson, M.; Sozzi, A.; Corfield, R.; Gagneten, M.; Franceschinis, L.; Schebor, C.; Salvatori, D. Colorant and antioxidant properties of freeze-dried extracts from wild berries: Use of ultrasound-assisted extraction method and drivers of liking of colored yogurts. J. Food Sci. Technol. 2022, 59, 944–955. [Google Scholar] [CrossRef] [PubMed]
- Abdelazez, A.; Mohamed, D.M.; Refaey, M.M.M.; Niu, J. Intervention effect of freeze-dried probiotic and unripe banana pulp combination on set-type Bio-yogurt production during storage. J. Food Meas. Charact. 2023. [Google Scholar] [CrossRef]
- Jang, Y.; Koh, E. Characterisation and storage stability of aronia anthocyanins encapsulated with combinations of maltodextrin with carboxymethyl cellulose, gum Arabic, and xanthan gum. Food Chem. 2023, 405, 135002. [Google Scholar] [CrossRef]
- Terpou, A.; Bekatorou, A.; Kanellaki, M.; Koutinas, A.A.; Nigam, P. Enhanced probiotic viability and aromatic profile of yogurts produced using wheat bran (Triticum aestivum) as cell immobilization carrier. Process Biochem. 2017, 55, 1–10. [Google Scholar] [CrossRef]
- Mantzourani, I.; Nouska, C.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Panayiotidis, M.I.; Galanis, A.; Plessas, S. Production of a Novel Functional Fruit Beverage Consisting of Cornelian Cherry Juice and Probiotic Bacteria. Antioxidants 2018, 7, 163. [Google Scholar] [CrossRef]
- Mantzourani, I.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Bekatorou, A.; Plessas, S. Production of a potentially synbiotic fermented Cornelian cherry (Cornus mas L.) beverage using Lactobacillus paracasei K5 immobilized on wheat bran. Biocatal. Agric. Biotechnol. 2019, 17, 347–351. [Google Scholar] [CrossRef]
- Mantzourani, I.; Kazakos, S.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Bekatorou, A.; Plessas, S. Potential of the Probiotic Lactobacillus Plantarum ATCC 14917 Strain to Produce Functional Fermented Pomegranate Juice. Foods 2019, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Terpou, A.; Gialleli, A.I.; Bosnea, L.; Kanellaki, M.; Koutinas, A.A.; Castro, G.R. Novel cheese production by incorporation of sea buckthorn berries (Hippophae rhamnoides L.) supported probiotic cells. LWT 2017, 79, 616–624. [Google Scholar] [CrossRef]
- Tharmaraj, N.; Shah, N.P. Selective Enumeration of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Bifidobacteria, Lactobacillus casei, Lactobacillus rhamnosus, and Propionibacteria. J. Dairy Sci. 2003, 86, 2288–2296. [Google Scholar] [CrossRef] [PubMed]
- Sihag, S.; Pal, A.; Ravikant; Saharan, V. Antioxidant properties and free radicals scavenging activities of pomegranate (Punica granatum L.) peels: An in-vitro study. Biocatal. Agric. Biotechnol. 2022, 42, 102368. [Google Scholar] [CrossRef]
- Malta, L.G.; Liu, R.H. Analyses of Total Phenolics, Total Flavonoids, and Total Antioxidant Activities in Foods and Dietary Supplements. In Encyclopedia of Agriculture and Food Systems; Van Alfen, N.K., Ed.; Academic Press: Oxford, UK, 2014; pp. 305–314. [Google Scholar]
- Ng, E.W.; Yeung, M.; Tong, P.S. Effects of yogurt starter cultures on the survival of Lactobacillus acidophilus. Int. J. Food Microbiol. 2011, 145, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Bosnea, L.A.; Kopsahelis, N.; Kokkali, V.; Terpou, A.; Kanellaki, M. Production of a novel probiotic yogurt by incorporation of L. casei enriched fresh apple pieces, dried raisins and wheat grains. Food Bioprod. Process. 2017, 102, 62–71. [Google Scholar] [CrossRef]
- Sharma, H.; Ramanathan, R. Differences and correlation among various fatty acids of cow milk and goat milk probiotic yoghurt: Gas chromatography, PCA and network based analysis. Food Chem. Adv. 2023, 3, 100430. [Google Scholar] [CrossRef]
- Chand, P.; Kumar, M.D.; Singh, A.K.; Deshwal, G.K.; Rao, P.S.; Tomar, S.K.; Sharma, H. Low-calorie synbiotic yoghurt from indigenous probiotic culture and combination of inulin and oligofructose: Improved sensory, rheological, and textural attributes. J. Food Process. Preserv. 2021, 45, e15322. [Google Scholar] [CrossRef]
- Zhao, X.; Tang, F.; Cai, W.; Peng, B.; Zhang, P.; Shan, C. Effect of fermentation by lactic acid bacteria on the phenolic composition, antioxidant activity, and flavor substances of jujube–wolfberry composite juice. LWT 2023, 184, 114884. [Google Scholar] [CrossRef]
- Mota-Gutierrez, J.; Cocolin, L. Current trends and applications of plant origin lactobacilli in the promotion of sustainable food systems. Trends Food Sci. Technol. 2021, 114, 198–211. [Google Scholar] [CrossRef]
- Di Cagno, R.; Quinto, M.; Corsetti, A.; Minervini, F.; Gobbetti, M. Assessing the proteolytic and lipolytic activities of single strains of mesophilic lactobacilli as adjunct cultures using a Caciotta cheese model system. Int. Dairy J. 2006, 16, 119–130. [Google Scholar] [CrossRef]
- Ahmed, J.; Barua, S.; Roy, S. Chapter 12—Rheology and microstructure of yogurt. In Advances in Food Rheology and Its Applications, 2nd ed.; Ahmed, J., Basu, S., Eds.; Woodhead Publishing: Sutton, UK, 2023; pp. 335–363. [Google Scholar]
- Gilbert, A.; Rioux, L.E.; St-Gelais, D.; Turgeon, S.L. Studying stirred yogurt microstructure using optical microscopy: How smoothing temperature and storage time affect microgel size related to syneresis. J. Dairy Sci. 2020, 103, 2139–2152. [Google Scholar] [CrossRef] [PubMed]
- Molina, C.V.; Lima, J.G.; Moraes, I.C.F.; Pinho, S.C. Physicochemical characterization and sensory evaluation of yogurts incorporated with beta-carotene-loaded solid lipid microparticles stabilized with hydrolyzed soy protein isolate. Food Sci. Biotechnol. 2019, 28, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, X.; Guo, X.; Guo, R.; Zhu, L.; Qiu, X.; Yu, X.; Chai, J.; Gu, C.; Feng, Z. A novel strategy for improving the antioxidant, iridoid, and flavor properties of Noni (Morinda citrifolia L.) fruit juice by lactic acid bacteria fermentation. LWT 2023, 184, 115075. [Google Scholar] [CrossRef]
- Mantzourani, I.; Kazakos, S.; Terpou, A.; Mallouchos, A.; Kimbaris, A.; Alexopoulos, A.; Bezirtzoglou, E.; Plessas, S. Assessment of Volatile Compounds Evolution, Antioxidant Activity, and Total Phenolics Content during Cold Storage of Pomegranate Beverage Fermented by Lactobacillus paracasei K5. Fermentation 2018, 4, 95. [Google Scholar] [CrossRef]
- Gao, N.; Si, X.; Han, W.; Gong, E.; Shu, C.; Tian, J.; Wang, Y.; Zhang, J.; Li, B.; Li, B. The contribution of different polyphenol compositions from chokeberry produced in China to cellular antioxidant and antiproliferative activities. Food Sci. Hum. Wellness 2023, 12, 1590–1600. [Google Scholar] [CrossRef]
- Dahiya, D.; Terpou, A.; Dasenaki, M.; Nigam, P.S. Current status and future prospects of bioactive molecules delivered through sustainable encapsulation techniques for food fortification. Sustain. Food Technol. 2023, 1, 500–510. [Google Scholar] [CrossRef]
- Cocolin, L.; Dolci, P.; Alessandria, V.; Rantsiou, K. Microbiology of Fermented Dairy Products. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Liu, X.Z.; Ju, Y.; Bao, N.; Luo, Y.L.; Huang, L.L.; Cao, N.X.; Liu, M.Z.; Bo, J.N.; Zhang, S.; Yan, Y. Effects of polyphenol-rich Aronia melanocarpa pomace feeding on growth performance, biochemical profile, and meat quality in pigs at weaned and finishing stages. Livest. Sci. 2021, 252, 104674. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z.; Sun, H.; He, S.; Liu, S.; Zhang, T.; Wang, L.; Ma, G. Research progress of anthocyanin prebiotic activity: A review. Phytomedicine 2022, 102, 154145. [Google Scholar] [CrossRef]
- Whisner, C.M.; Martin, B.R.; Schoterman, M.H.; Nakatsu, C.H.; McCabe, L.D.; McCabe, G.P.; Wastney, M.E.; van den Heuvel, E.G.; Weaver, C.M. Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: A double-blind cross-over trial. Br. J. Nutr. 2013, 110, 1292–1303. [Google Scholar] [CrossRef]
- Salim, A.; Deiana, P.; Fancello, F.; Molinu, M.G.; Santona, M.; Zara, S. Antimicrobial and antibiofilm activities of pomegranate peel phenolic compounds: Varietal screening through a multivariate approach. J. Bioresour. Bioprod. 2023, 8, 146–161. [Google Scholar] [CrossRef]
- Ghamry, M.; Li, L.; Zhao, W. A metabolomics comparison of Lactobacillus communities isolated from breast milk and camel milk and Lactobacillus apis isolated from bee gut during cereals-based fermentation vs. Lactobacillus plantarum as a reference. LWT 2021, 146, 111400. [Google Scholar] [CrossRef]
- Cao, P.; Wu, L.; Wu, Z.; Pan, D.; Zeng, X.; Guo, Y.; Lian, L. Effects of oligosaccharides on the fermentation properties of Lactobacillus plantarum. J. Dairy Sci. 2019, 102, 2863–2872. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Sierra, M.; Rodríguez-López, P.; Leyva-Jiménez, F.J.; Borras-Linares, I.; Giacomazza, D.; Fredes, C.; Canales, P.S.R.; Segura-Carretero, A.; Lozano-Sánchez, J. Chapter 22—Encapsulation technologies applied to bioactive phenolic compounds and probiotics with potential application on chronic inflammation. In Current Advances for Development of Functional Foods Modulating Inflammation and Oxidative Stress; Hernández-Ledesma, B., Martínez-Villaluenga, C., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 447–476. [Google Scholar]
- Ma, G.; Chen, Y. Polyphenol supplementation benefits human health via gut microbiota: A systematic review via meta-analysis. J. Funct. Foods 2020, 66, 103829. [Google Scholar] [CrossRef]
- Rafique, N.; Jan, S.Y.; Dar, A.H.; Dash, K.K.; Sarkar, A.; Shams, R.; Pandey, V.K.; Khan, S.A.; Amin, Q.A.; Hussain, S.Z. Promising bioactivities of postbiotics: A comprehensive review. J. Agric. Food Res. 2023, 14, 100708. [Google Scholar] [CrossRef]
- Yilmaz, B.; Sharma, H.; Melekoglu, E.; Ozogul, F. Recent developments in dairy kefir-derived lactic acid bacteria and their health benefits. Food Biosci. 2022, 46, 101592. [Google Scholar] [CrossRef]
- Rodríguez, H.; Curiel, J.A.; Landete, J.M.; de las Rivas, B.; de Felipe, F.L.; Gómez-Cordovés, C.; Mancheño, J.M.; Muñoz, R. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 2009, 132, 79–90. [Google Scholar] [CrossRef]
- Guzel-Seydim, Z.B.; Sezgin, E.; Seydim, A.C. Influences of exopolysaccharide producing cultures on the quality of plain set type yogurt. Food Control 2005, 16, 205–209. [Google Scholar] [CrossRef]
- Ayseli, M.T. New frontiers in flavor, color, and sweeteners during the post-COVID-19 period: A systematic review. Trends Food Sci. Technol. 2023, 140, 104144. [Google Scholar] [CrossRef]
Storage Time (Days) | CY | LPCY | LPY | PDCY | PDY | |
---|---|---|---|---|---|---|
pH | 1 | 4.61 a ± 0.08 | 4.59 a ± 0.09 | 4.58 a ± 0.12 | 4.57 a ± 0.05 | 4.56 a ± 0.05 |
7 | 4.56 a ± 0.10 | 4.51 a ± 0.17 | 4.49 a ± 0.10 | 4.48 a ± 0.10 | 4.39 a ± 0.08 | |
14 | 4.53 b ± 0.05 | 4.45 b ± 0.05 | 4.44 ab ± 0.11 | 4.42 ab ± 0.07 | 4.31 a ± 0.10 | |
21 | 4.51 b ± 0.11 | 4.42 b ± 0.08 | 4.39 ab ± 0.10 | 4.33 ab ± 0.05 | 4.26 a ± 0.05 | |
28 | 4.48 c ± 0.03 | 4.38 bc ± 0.05 | 4.35 ab ± 0.08 | 4.27 ab ± 0.09 | 4.24 a ± 0.05 | |
Lactose (g/100 g of product) | 1 | 2.27 a ± 0.08 | 2.25 a ± 0.09 | 2.31 a ± 0.09 | 2.45 a ± 0.11 | 2.43 a ± 0.11 |
7 | 1.93 a ± 0.11 | 1.99 a ± 0.07 | 2.05 a ± 0.11 | 2.03 a ± 0.10 | 2.12 a ± 0.10 | |
15 | 1.90 a ± 0.13 | 1.38 bc ± 0.11 | 1.69 b ± 0.08 | 1.47 bc ± 0.08 | 1.77 a ± 0.14 | |
21 | 1.84 b ± 0.09 | 1.18 a ± 0.07 | 1.30 a ± 0.08 | 1.11 a ± 0.12 | 1.19 a ± 0.13 | |
28 | 1.72 b ± 0.05 | 0.99 a ± 0.05 | 1.12 a ± 0.07 | 0.95 a ± 0.09 | 1.05 a ± 0.10 | |
Lactic acid (g/100 g of product) | 1 | 0.85 a ± 0.04 | 0.87 ab ± 0.11 | 0.91 a ± 0.05 | 0.88 a ± 0.05 | 0.99 ab ± 0.05 |
7 | 1.12 ab ± 0.05 | 1.15 ab ± 0.05 | 1.04 ab ± 0.05 | 1.14 a ± 0.03 | 1.05 ab ± 0.03 | |
15 | 1.19 ab ± 0.05 | 1.22 ab ± 0.05 | 1.11 ab ± 0.06 | 1.25 ab ± 0.05 | 1.10 a ± 0.04 | |
21 | 1.23 b ± 0.04 | 1.34 b ± 0.06 | 1.18 ab ± 0.05 | 1.31 b ± 0.05 | 1.13 a ± 0.05 | |
28 | 1.31 b ± 0.05 | 1.44 b ± 0.05 | 1.24 a ± 0.03 | 1.44 b ± 0.03 | 1.17 a ± 0.04 |
Fermented Milk | Protein | Total Solids | Ash | Fat | Syneresis | TPC | DPPH |
---|---|---|---|---|---|---|---|
(% wt) | (% wt) | (% wt) | (% wt) | % | (µg GAE/g) | (µmol TE/100 g) | |
CY | 3.52 c ± 0.05 | 15.90 b ± 0.11 | 0.57 a ± 0.08 | 3.57 a ± 0.11 | 23.31 c ± 0.28 | 15.18 a ± 0.76 | 49.12 a ± 0.35 |
LPCY | 3.54 c ± 0.07 | 15.89 b ± 0.15 | 0.61 a ± 0.05 | 3.69 a ± 0.07 | 24.13 d ± 0.14 | 16.20 a ± 0.51 | 61.40 b ± 0.19 |
LPY | 3.48 c ± 0.05 | 15.77 b ± 0.11 | 0.52 a ± 0.03 | 3.65 a ± 0.05 | 24.19 d ± 0.10 | 15.24 a ± 0.87 | 51.72 a ± 0.31 |
PDCY | 3.09 a ± 0.07 | 15.99 b ± 0.10 | 0.76 b ± 0.05 | 3.61 a ± 0.05 | 22.11 a ± 0.10 | 25.74 b ± 1.13 | 69.05 c ± 1.07 |
PDY | 3.30 b ± 0.06 | 15.51 a ± 0.14 | 0.56 a ± 0.04 | 3.57 a ± 0.04 | 22.51 b ± 0.10 | 15.81 a ± 0.99 | 68.42 c ± 0.95 |
Fermented Milk | Storage Time | S. thermophilus | L. bulgaricus | Yeasts and Molds |
---|---|---|---|---|
(Days) | (log cfu/g) | |||
CY | 1 | 8.43 a ± 0.16 | 8.77 ab ± 0.12 | nd |
7 | 8.14 a ± 0.25 | 8.44 b ± 0.23 | nd | |
14 | 7.66 b ± 0.11 | 8.19 b ± 0.11 | nd | |
21 | 7.21 b ± 0.10 | 7.74 b ± 0.14 | nd | |
28 | 7.11 b ± 0.10 | 7.26 b ± 0.11 | 1.06 a ± 0.10 | |
LPCY | 1 | 8.45 a ± 0.23 | 8.56 ab ± 0.11 | nd |
7 | 8.07 a ± 0.19 | 7.17 a ± 0.09 | nd | |
14 | 7.12 a ± 0.14 | 6.64 a ± 0.28 | nd | |
21 | 6.42 a ± 0.11 | 6.57 a ± 0.10 | nd | |
28 | 6.06 a ± 0.08 | 6.34 a ± 0.12 | nd | |
LPY | 1 | nd | nd | nd |
7 | nd | nd | nd | |
14 | nd | nd | nd | |
21 | nd | nd | nd | |
28 | nd | nd | nd | |
PDCY | 1 | 8.85 b ± 0.11 | 9.41 b ± 0.13 | nd |
7 | 8.82 b ± 0.09 | 9.32 c ± 0.11 | nd | |
14 | 8.86 c ± 0.12 | 9.45 c ± 0.21 | nd | |
21 | 8.63 c ± 0.13 | 8.92 c ± 0.15 | nd | |
28 | 8.49 c ± 0.07 | 8.67 c ± 0.09 | nd | |
PDY | 1 | nd | nd | nd |
7 | nd | nd | nd | |
14 | nd | nd | nd | |
21 | nd | nd | nd | |
28 | nd | nd | 1.10 a ± 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plessas, S.; Mantzourani, I.; Terpou, A.; Bekatorou, A. Assessment of the Physicochemical, Antioxidant, Microbial, and Sensory Attributes of Yogurt-Style Products Enriched with Probiotic-Fermented Aronia melanocarpa Berry Juice. Foods 2024, 13, 111. https://doi.org/10.3390/foods13010111
Plessas S, Mantzourani I, Terpou A, Bekatorou A. Assessment of the Physicochemical, Antioxidant, Microbial, and Sensory Attributes of Yogurt-Style Products Enriched with Probiotic-Fermented Aronia melanocarpa Berry Juice. Foods. 2024; 13(1):111. https://doi.org/10.3390/foods13010111
Chicago/Turabian StylePlessas, Stavros, Ioanna Mantzourani, Antonia Terpou, and Argyro Bekatorou. 2024. "Assessment of the Physicochemical, Antioxidant, Microbial, and Sensory Attributes of Yogurt-Style Products Enriched with Probiotic-Fermented Aronia melanocarpa Berry Juice" Foods 13, no. 1: 111. https://doi.org/10.3390/foods13010111
APA StylePlessas, S., Mantzourani, I., Terpou, A., & Bekatorou, A. (2024). Assessment of the Physicochemical, Antioxidant, Microbial, and Sensory Attributes of Yogurt-Style Products Enriched with Probiotic-Fermented Aronia melanocarpa Berry Juice. Foods, 13(1), 111. https://doi.org/10.3390/foods13010111