Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,874)

Search Parameters:
Keywords = functional food

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4768 KiB  
Article
New Functional Food for the Treatment of Gastric Ulcer Based on Bioadhesive Microparticles Containing Sage Extract: Anti-Ulcerogenic, Anti-Helicobacter pylori, and H+/K+-ATPase-Inhibiting Activity Enhancement
by Yacine Nait Bachir, Ryma Nait Bachir, Meriem Medjkane, Nouara Boudjema and Roberta Foligni
Foods 2025, 14(15), 2757; https://doi.org/10.3390/foods14152757 (registering DOI) - 7 Aug 2025
Abstract
Salvia officinalis is an aromatic plant of Mediterranean origin traditionally used to treat inflammatory, cardiovascular, endocrine, and digestive diseases. In this work, the ability of the Salvia officinalis extract in the treatment of gastric ulcers was evaluated, and an innovative administration system was [...] Read more.
Salvia officinalis is an aromatic plant of Mediterranean origin traditionally used to treat inflammatory, cardiovascular, endocrine, and digestive diseases. In this work, the ability of the Salvia officinalis extract in the treatment of gastric ulcers was evaluated, and an innovative administration system was proposed to increase the therapeutic effect of this plant. Salvia officinalis ethanolic extract was prepared and analyzed by HPLC/UV-DAD and encapsulated in a matrix based on gelatin and pectin using an emulsion–coacervation process. The prepared microcapsules were analyzed by laser particle size, optical microscopy, in vitro dissolution kinetics, and ex vivo bioadhesion. In order to determine the action mechanism of Salvia officinalis extract, in the treatment of gastric ulcer, the in vivo anti-ulcerogenic activity in rats, using the ulcer model induced by ethanol; the in vivo anti-Helicobacter pylori activity; and in vitro inhibitory activity of H+/K+-ATPase were carried out. These three biological activities were evaluated for ethanolic extract and microcapsules to determine the effect of formulation on biological activities. Ethanolic extract of Salvia officinalis was mainly composed of polyphenols (chlorogenic acid 7.43%, rutin 21.74%, rosmarinic acid 5.88%, and quercitrin 14.39%). Microencapsulation of this extract allowed us to obtain microcapsules of 104.2 ± 7.5 µm in diameter, an encapsulation rate of 96.57 ± 3.05%, and adequate bioadhesion. The kinetics of in vitro dissolution of the extract increase significantly after its microencapsulation. Percentages of ulcer inhibition for 100 mg/kg of extract increase from 71.71 ± 2.43% to 89.67 ± 2.54% after microencapsulation. In vitro H+/K+-ATPase-inhibiting activity resulted in an IC50 of 86.08 ± 8.69 µM/h/mg protein for free extract and 57.43 ± 5.78 µM/h/mg protein for encapsulated extract. Anti-Helicobacter pylori activity showed a similar Minimum Inhibitory Concentration (MIC) of 50 µg/mL for the extract and microcapsules. Salvia officinalis ethanolic extract has a significant efficacy for the treatment of gastric ulcer; its mechanism of action is based on its gastroprotective effect, anti-Helicobacter pylori, and H+/K+-ATPase inhibitor. Moreover, the microencapsulation of this extract increases its gastroprotective and H+/K+-ATPase-inhibiting activities significantly. Full article
Show Figures

Figure 1

24 pages, 4458 KiB  
Review
Selenium-Enriched Microorganisms: Metabolism, Production, and Applications
by Lin Luo, Xue Hou, Dandan Yi, Guangai Deng, Zhiyong Wang and Mu Peng
Microorganisms 2025, 13(8), 1849; https://doi.org/10.3390/microorganisms13081849 (registering DOI) - 7 Aug 2025
Abstract
Microorganisms, as abundant biological resources, offer significant potential in the development of selenium-enrichment technologies. Selenium-enriched microorganisms not only absorb, reduce, and accumulate selenium efficiently but also produce various selenium compounds without relying on synthetic chemical processes. In particular, nano-selenium produced by these microorganisms [...] Read more.
Microorganisms, as abundant biological resources, offer significant potential in the development of selenium-enrichment technologies. Selenium-enriched microorganisms not only absorb, reduce, and accumulate selenium efficiently but also produce various selenium compounds without relying on synthetic chemical processes. In particular, nano-selenium produced by these microorganisms during cultivation has garnered attention due to its unique physicochemical properties and biological activity, making it a promising raw material for functional foods and pharmaceutical products. This paper reviews selenium-enriched microorganisms, focusing on their classification, selenium metabolism, and transformation mechanisms. It explores how selenium is absorbed, reduced, and transformed within microbial cells, analyzing the biochemical processes by which inorganic selenium is converted into organic and nano-selenium forms. Finally, the broad applications of selenium-enriched microbial products in food, medicine, and agriculture are explored, including their roles in selenium-rich foods, nano-selenium materials, and disease prevention and treatment. Full article
(This article belongs to the Special Issue Exploring the Diversity of Microbial Applications)
Show Figures

Figure 1

20 pages, 3001 KiB  
Article
Agroecosystem Modeling and Sustainable Optimization: An Empirical Study Based on XGBoost and EEBS Model
by Meiqing Xu, Zilong Yao, Yuxin Lu and Chunru Xiong
Sustainability 2025, 17(15), 7170; https://doi.org/10.3390/su17157170 (registering DOI) - 7 Aug 2025
Abstract
As agricultural land continues to expand, the conversion of forests to farmland has intensified, significantly altering the structure and function of agroecosystems. However, the dynamic ecological responses and their interactions with economic outcomes remain insufficiently modeled. This study proposes an integrated framework that [...] Read more.
As agricultural land continues to expand, the conversion of forests to farmland has intensified, significantly altering the structure and function of agroecosystems. However, the dynamic ecological responses and their interactions with economic outcomes remain insufficiently modeled. This study proposes an integrated framework that combines a dynamic food web model with the Eco-Economic Benefit and Sustainability (EEBS) model, utilizing empirical data from Brazil and Ghana. A system of ordinary differential equations solved using the fourth-order Runge–Kutta method was employed to simulate species interactions and energy flows under various land management strategies. Reintroducing key species (e.g., the seven-spot ladybird and ragweed) improved ecosystem stability to over 90%, with soil fertility recovery reaching 95%. In herbicide-free scenarios, introducing natural predators such as bats and birds mitigated disturbances and promoted ecological balance. Using XGBoost (Extreme Gradient Boosting) to analyze 200-day community dynamics, pest control, resource allocation, and chemical disturbance were identified as dominant drivers. EEBS-based multi-scenario optimization revealed that organic farming achieves the highest alignment between ecological restoration and economic benefits. The model demonstrated strong predictive power (R2 = 0.9619, RMSE = 0.0330), offering a quantitative basis for green agricultural transitions and sustainable agroecosystem management. Full article
(This article belongs to the Section Sustainable Agriculture)
21 pages, 2047 KiB  
Article
Sustainable Management of Fruit By-Products Through Design Thinking: Development of an Innovative Food Product
by Sylwia Sady, Alfred Błaszczyk, Bogdan Pachołek, Anna Muzykiewicz-Szymańska, Anna Nowak, Justyna Syguła-Cholewińska, Tomasz Sawoszczuk, Stanisław Popek, Małgorzata Krzywonos, Agnieszka Piekara and Dominika Jakubowska
Sustainability 2025, 17(15), 7164; https://doi.org/10.3390/su17157164 (registering DOI) - 7 Aug 2025
Abstract
Sustainable development and the circular economy have become key challenges in the modern food sector, calling for innovative solutions that reduce waste and promote the efficient use of resources. The aim of this study was to develop a functional food product by utilizing [...] Read more.
Sustainable development and the circular economy have become key challenges in the modern food sector, calling for innovative solutions that reduce waste and promote the efficient use of resources. The aim of this study was to develop a functional food product by utilizing by-products from chokeberry processing, thereby contributing to circularity in food systems. The integration of design thinking with fermentation of chokeberry pomace is presented in this study as an approach to developing value-added food ingredients. Qualitative consumer research (focus group interviews, n = 36) identified preferences and expectations regarding functional foods containing by-products. Conducted by an interdisciplinary team, the project followed five stages, involving both qualitative and quantitative research. Liquid surface fermentation was performed using Aspergillus niger, selected for its proven ability to enhance the antioxidant capacity and polyphenol content of plant matrices. The optimal process was 2-day fermentation under controlled pH conditions with glucose supplementation, which significantly enhanced the quality and nutritional value of the final product. Antioxidant activity (ABTS, FRAP, CUPRAC assays), total polyphenols, anthocyanins, and proanthocyanidins were determined, showing significant increases compared to non-fermented controls. The outcome was the development of a dried, fermented chokeberry pomace product that meets consumer expectations and fulfils sustainability goals through waste reduction and innovative reuse of fruit processing by-products. Full article
(This article belongs to the Special Issue Innovative Technologies in Food Engineering Towards Sustainability)
14 pages, 2041 KiB  
Article
Tuning Corn Zein-Chitosan Biocomposites via Mild Alkaline Treatment: Structural and Physicochemical Property Insights
by Nagireddy Poluri, Creston Singer, David Salas-de la Cruz and Xiao Hu
Polymers 2025, 17(15), 2161; https://doi.org/10.3390/polym17152161 (registering DOI) - 7 Aug 2025
Abstract
This study investigates the structural and functional enhancement of corn zein–chitosan composites via mild alkaline treatment to develop biodegradable protein-polysaccharide materials for diverse applications. Films with varying zein-to-chitosan ratios were fabricated and characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning [...] Read more.
This study investigates the structural and functional enhancement of corn zein–chitosan composites via mild alkaline treatment to develop biodegradable protein-polysaccharide materials for diverse applications. Films with varying zein-to-chitosan ratios were fabricated and characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Both untreated and sodium hydroxide (NaOH)-treated films were evaluated to assess changes in physicochemical properties. FTIR analysis revealed that NaOH treatment promoted deprotonation of chitosan’s amine groups, partial removal of ionic residues, and increased deacetylation, collectively enhancing hydrogen bonding and resulting in a denser molecular network. Simultaneously, partial unfolding of zein’s α-helical structures improved conformational flexibility and strengthened interactions with chitosan. These molecular-level changes led to improved thermal stability, reduced degradation, and the development of porous microstructures. Controlled NaOH treatment thus provides an effective strategy to tailor the physicochemical properties of zein–chitosan composite films, supporting their potential in sustainable food packaging, wound healing, and drug delivery applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
24 pages, 3924 KiB  
Article
Effects of Zinc-Layered Filler Incorporation Routes on the Antimicrobial, Mechanical, and Physical Properties of Calcium Caseinate Biopolymeric Films
by Maria E. Becerra, Reynell Pérez-Blanco, Oscar Giraldo, Lucia Medina-Pimentel and Christhy V. Ruiz
Molecules 2025, 30(15), 3307; https://doi.org/10.3390/molecules30153307 (registering DOI) - 7 Aug 2025
Abstract
As the demand for sustainable materials continues to grow, calcium caseinate (Cas) biopolymer films have emerged as promising alternatives to fossil-based plastics. However, their mechanical fragility and high-water sensitivity limit their application in packaging. In this study, we reinforced Cas films with zinc [...] Read more.
As the demand for sustainable materials continues to grow, calcium caseinate (Cas) biopolymer films have emerged as promising alternatives to fossil-based plastics. However, their mechanical fragility and high-water sensitivity limit their application in packaging. In this study, we reinforced Cas films with zinc hydroxide nitrate (ZHN) using two incorporation methods: wet (ZHN-w) and dry (ZHN-d). We evaluated how each method affected the dispersion of the filler and, consequently, the functional properties of the films. To our knowledge, this is the first report of ZHN being used in biopolymeric films. Structural and morphological analyses showed better dispersion of ZHN in the wet-incorporated films. These samples exhibited a substantial increase in tensile strength, from 0.75 ± 0.00 MPa to 9.62 ± 2.45 MPa, along with a marked improvement in Young’s modulus. The films also became less soluble in water, more resistant to swelling, and structurally more cohesive. In antimicrobial tests, the ZHN-w films showed stronger inhibition against E. coli and S. aureus. Overall, this approach offers a simple and effective way to enhance protein-based films using food-safe materials, making them suitable for active and bio-based packaging applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

14 pages, 1194 KiB  
Article
A Benzimidazole-Based Fluorescent Probe for the Selective Recognition of Cobalt (II) Ions
by Jing Zhu, Hua-Fen Wang, Jia-Xiang Zhang, Man Wang, Yu-Wei Zhuang, Zhi-Guang Suo, Ye-Wu He, Yan-Chang Zhang, Min Wei and Hai-Yan Zhang
Molecules 2025, 30(15), 3309; https://doi.org/10.3390/molecules30153309 (registering DOI) - 7 Aug 2025
Abstract
Cobalt, a rare element in the Earth’s crust, is widely used in industries due to its hardness and antioxidant properties. It also plays a vital role in physiological functions, being a key component of vitamin B12. However, excessive cobalt intake can [...] Read more.
Cobalt, a rare element in the Earth’s crust, is widely used in industries due to its hardness and antioxidant properties. It also plays a vital role in physiological functions, being a key component of vitamin B12. However, excessive cobalt intake can cause health issues. Detecting cobalt ions, especially Co2+, in food is crucial due to potential contamination from various sources. Fluorescent probes offer high sensitivity, selectivity, a rapid response, and ease of use, making them ideal for the accurate and efficient recognition of Co2+ in complex samples. In this context, a highly selective fluorescent probe, 2,2′-((3-(1H-benzo[d]imidazol-2-yl)-1,2-phenylene) bis(oxy)) bis(N-(quinolin-8-yl) acetamide) (DQBM-B), was synthesized using chloroacetyl chloride, 8-aminoquinoline, 2,3-dihydroxybenzaldehyde, and benzidine as raw materials for the recognition of Co2+. Probe DQBM-B can exhibit fluorescence alone in DMF. However, as the concentration of Co2+ increased, Photoinduced Electron Transfer (PET) occurred, which quenched the original fluorescence of the probe. Probe DQBM-B shows better selectivity for Co2+ than other ions with high sensitivity (detection limit: 3.56 μmol L−1), and the reaction reaches equilibrium within 30 min. Full article
Show Figures

Graphical abstract

26 pages, 1638 KiB  
Review
In Silico Modeling of Metabolic Pathways in Probiotic Microorganisms for Functional Food Biotechnology
by Baiken B. Baimakhanova, Amankeldi K. Sadanov, Irina A. Ratnikova, Gul B. Baimakhanova, Saltanat E. Orasymbet, Aigul A. Amitova, Gulzat S. Aitkaliyeva and Ardak B. Kakimova
Fermentation 2025, 11(8), 458; https://doi.org/10.3390/fermentation11080458 - 7 Aug 2025
Abstract
Recent advances in computational biology have provided powerful tools for analyzing, modeling, and optimizing probiotic microorganisms, thereby supporting their development as promising agents for improving human health. The essential role of the microbiota in regulating physiological processes and preventing disease has driven interest [...] Read more.
Recent advances in computational biology have provided powerful tools for analyzing, modeling, and optimizing probiotic microorganisms, thereby supporting their development as promising agents for improving human health. The essential role of the microbiota in regulating physiological processes and preventing disease has driven interest in the rational design of next-generation probiotics. This review highlights progress in in silico approaches for enhancing the functionality of probiotic strains. Particular attention is given to genome-scale metabolic models, advanced simulation algorithms, and AI-driven tools that provide deeper insight into microbial metabolism and enable precise probiotic optimization. The integration of these methods with multi-omics data has greatly improved our ability to predict strain behavior and design probiotics with specific health benefits. Special focus is placed on modeling probiotic–prebiotic interactions and host–microbiome dynamics, which are essential for the development of functional food products. Despite these achievements, key challenges remain, including limited model accuracy, difficulties in simulating complex host–microbe systems, and the absence of unified standards for validating in silico-optimized strains. Addressing these gaps requires the development of integrative modeling platforms and clear regulatory frameworks. This review provides a critical overview of current advances, identifies existing barriers, and outlines future directions for the application of computational strategies in probiotic research. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

24 pages, 3032 KiB  
Article
Conjugation of Pea Peptides and D-Xylose via Maillard Glycosylation and Its Functionality to Antagonize Alcohol-Induced Liver Injury in Zebrafish
by Guanlong Li, Xiaolan Liu, Siyu Diao and Xiqun Zheng
Nutrients 2025, 17(15), 2570; https://doi.org/10.3390/nu17152570 - 7 Aug 2025
Abstract
Background: In this study, the preparation of pea glycopeptides based on the Maillard glycosylation pathway (PPH-M) and its antagonistic mechanism against alcoholic liver injury in zebrafish were studied. Results: The results showed that the conjugation of D-xylose significantly improved the antioxidant activity of [...] Read more.
Background: In this study, the preparation of pea glycopeptides based on the Maillard glycosylation pathway (PPH-M) and its antagonistic mechanism against alcoholic liver injury in zebrafish were studied. Results: The results showed that the conjugation of D-xylose significantly improved the antioxidant activity of pea protein hydrolysates (PPHs). The structural characterization indicated that PPH was successfully covalent binding to D-xylose, which was mainly manifested as a stretching vibration change in Fourier transform infrared spectroscopy (FTIR) and molecular size increase. Scanning electron microscopy (SEM) and zeta potential also confirmed the covalently bound of the two. In addition, a model of alcohol-induced liver injury in zebrafish was established. Through the intervention of different doses of PPH-M, it was found that the intervention of PPH-M could significantly increase superoxide dismutase (SOD) activity, reduce malondialdehyde (MDA) content, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) activity, and significantly improve alcohol-induced liver injury in zebrafish. The protective effect of PPH-M was also confirmed by liver pathology and fluorescence microscopy. Finally, reverse transcription-polymerase chain reaction (qRT-PCR) results indicated that PPH-M could significantly regulate the expression level of antioxidant-related mRNA. PPH-M could also regulate the expression of the Keap1/Nrf2 signaling pathway and up-regulated glutathione synthesis signaling pathway to antagonize alcohol-induced liver injury in zebrafish. Conclusion: This study revealed the mechanism of PPH-M antagonized alcoholic liver injury and laid a theoretical foundation for its development as functional foods. Full article
(This article belongs to the Section Proteins and Amino Acids)
Show Figures

Figure 1

15 pages, 3139 KiB  
Review
From Agro-Industrial Waste to Natural Hydrogels: A Sustainable Alternative to Reduce Water Use in Agriculture
by César F. Alonso-Cuevas, Nathiely Ramírez-Guzmán, Liliana Serna-Cock, Marcelo Guancha-Chalapud, Jorge A. Aguirre-Joya, David R. Aguillón-Gutiérrez, Alejandro Claudio-Rizo and Cristian Torres-León
Gels 2025, 11(8), 616; https://doi.org/10.3390/gels11080616 - 7 Aug 2025
Abstract
The increasing demand for food necessitates that agri-food systems adopt innovative techniques to enhance food production while optimizing the use of limited resources, such as water. In agriculture, hydrogels are being increasingly used to enhance water retention and reduce irrigation requirements. However, most [...] Read more.
The increasing demand for food necessitates that agri-food systems adopt innovative techniques to enhance food production while optimizing the use of limited resources, such as water. In agriculture, hydrogels are being increasingly used to enhance water retention and reduce irrigation requirements. However, most of these materials are based on synthetic polymers that are not biodegradable. This raises serious environmental and health concerns, highlighting the urgent need for sustainable, biodegradable alternatives. Biomass-derived from agro-industrial waste presents a substantial potential for producing hydrogels, which can effectively function as water collectors and suppliers for crops. This review article provides a comprehensive overview of recent advancements in the application of agro-industrial waste for the formulation of hydrogels. Additionally, it offers a critical analysis of the development of hydrogels utilizing natural and compostable materials. Agro-industrial and food waste, which are rich in hemicellulose and cellulose, have been utilized to enhance the mechanical properties and water absorption capacity of hydrogels. These biomaterials hold significant potential for the development of effective hydrogels in agricultural applications; they can be either hybrid or natural materials that exhibit efficacy in enhancing seed germination, improving water retention capabilities, and facilitating the controlled release of fertilizers. Natural hydrogels derived from agro-industrial waste present a sustainable technological alternative that is environmentally benign. Full article
Show Figures

Graphical abstract

11 pages, 1066 KiB  
Article
Extraction and Spray Drying-Based Encapsulation of Anthocyanin Pigments from Jabuticaba Sabará Peel (Myrciaria jaboticaba (Vell.) O. Berg)
by Fernanda B. Pauletto, Renata Hentz, Carolina E. Demaman Oro, Caroline Borgmann, Sabrina Camargo, Rogério M. Dallago, Rogério L. Cansian, Marcus V. Tres, Eunice Valduga and Natalia Paroul
Processes 2025, 13(8), 2490; https://doi.org/10.3390/pr13082490 - 7 Aug 2025
Abstract
Jabuticaba (Myrciaria jaboticaba (Vell.) O. Berg) peel is a native Brazilian fruit by-product recognized for its high anthocyanin (ANC) content and strong antioxidant potential, making it a valuable natural source for food applications. This study aimed to optimize the extraction and spray [...] Read more.
Jabuticaba (Myrciaria jaboticaba (Vell.) O. Berg) peel is a native Brazilian fruit by-product recognized for its high anthocyanin (ANC) content and strong antioxidant potential, making it a valuable natural source for food applications. This study aimed to optimize the extraction and spray drying-based encapsulation of ANCs from the peels of Sabará jabuticaba. Extraction was performed using ethanol acidified with HCl (6 M) under varying conditions of pH (1.0–3.0), temperature (14–50 °C), and solvent volume (100–250 mL). The highest anthocyanin yield (328.13 mg/100 g dry basis) was achieved at pH 1.0, 50 °C, and 250 mL solvent volume. For encapsulation, gum arabic and maltodextrin were used as wall materials at different mass ratios (1:1, 1:2, 1:3, 1:4, 2:1, 3:1, and 4:1 w/w). The 1:2 ratio (gum arabic/maltodextrin) resulted in the highest retention of anthocyanins (315.37 mg/100 g dry basis), with encapsulation efficiency of approximately 96%, low water activity (0.27), and reduced moisture content (3.6%). These characteristics are essential for ensuring product stability during storage. The optimized anthocyanin-rich microparticles present promising potential for application as natural colorants and functional ingredients in food formulations or as antioxidant carriers in pharmaceutical products. Full article
(This article belongs to the Special Issue Extraction, Separation, and Purification of Bioactive Compounds)
Show Figures

Figure 1

17 pages, 701 KiB  
Article
Hydroethanolic Extracts of Raspberry (Rubus idaeus) Pomace as Ingredients of Functional Foods: Characterization and Effect of Gastrointestinal Digestion
by Ziva Vipotnik, Majda Golob and Alen Albreht
Plants 2025, 14(15), 2444; https://doi.org/10.3390/plants14152444 - 7 Aug 2025
Abstract
The extract of powdered raspberry pomace was characterized in terms of its phenolic profile and antioxidant and antimicrobial activity. Kuromanin, chlorogenic acid, protocatechuic acid, and pelargonidin-3-O-glucoside were found to be the major phenolic compounds, while the antioxidant activity of the extract [...] Read more.
The extract of powdered raspberry pomace was characterized in terms of its phenolic profile and antioxidant and antimicrobial activity. Kuromanin, chlorogenic acid, protocatechuic acid, and pelargonidin-3-O-glucoside were found to be the major phenolic compounds, while the antioxidant activity of the extract correlated positively with the total phenolic content (TPC), which was 472.9 ± 0.1 mg GAE/g dw. The extract also showed good antimicrobial activity against Gram-positive foodborne bacteria. More importantly, in vitro bioaccessibility of phenols from the raspberry pomace extract was 5-fold higher when the extract was incorporated into meringue cookies. Although the concentrations of anthocyanins, flavonoids, and tannins decreased after the oral, gastric, and intestinal phases of digestion, the TPC slightly increased as the compounds were released from the food matrix. The content of available phenolics was 4-fold lower in the case of a commercial raspberry colorant, demonstrating that the waste from raspberry pomace could serve as a valuable health-promoting ingredient for functional food formulations. Full article
Show Figures

Figure 1

15 pages, 771 KiB  
Review
Trichoderma: Dual Roles in Biocontrol and Plant Growth Promotion
by Xiaoyan Chen, Yuntong Lu, Xing Liu, Yunying Gu and Fei Li
Microorganisms 2025, 13(8), 1840; https://doi.org/10.3390/microorganisms13081840 - 7 Aug 2025
Abstract
The genus Trichoderma plays a pivotal role in sustainable agriculture through its multifaceted contributions to plant health and productivity. This review explores Trichoderma’s biological functions, including its roles as a biocontrol agent, plant growth promoter, and stress resilience enhancer. By producing various [...] Read more.
The genus Trichoderma plays a pivotal role in sustainable agriculture through its multifaceted contributions to plant health and productivity. This review explores Trichoderma’s biological functions, including its roles as a biocontrol agent, plant growth promoter, and stress resilience enhancer. By producing various enzymes, secondary metabolites, and volatile organic compounds, Trichoderma effectively suppresses plant pathogens, promotes root development, and primes plant immune responses. This review details the evolutionary adaptations of Trichoderma, which has transitioned from saprotrophism to mycoparasitism and established beneficial symbiotic relationships with plants. It also highlights the ecological versatility of Trichoderma in colonizing plant roots and improving soil health, while emphasizing its role in mitigating both biotic and abiotic stressors. With increasing recognition as a biostimulant and biocontrol agent, Trichoderma has become a key player in reducing chemical inputs and advancing eco-friendly farming practices. This review addresses challenges such as strain selection, formulation stability, and regulatory hurdles and concludes by advocating for continued research to optimize Trichoderma’s applications in addressing climate change, enhancing food security, and promoting a sustainable agricultural future. Full article
(This article belongs to the Special Issue Advances in Plant–Soil–Microbe Interactions)
Show Figures

Figure 1

15 pages, 1253 KiB  
Article
Effect of Modification Methods on Composition and Technological Properties of Sea Buckthorn (Hippophae rhamnoides L.) Pomace
by Gabrielė Kaminskytė, Jolita Jagelavičiūtė, Loreta Bašinskienė, Michail Syrpas and Dalia Čižeikienė
Appl. Sci. 2025, 15(15), 8722; https://doi.org/10.3390/app15158722 - 7 Aug 2025
Abstract
With the growth of the plant-based food sector, increasing amounts of by-products are generated. Sea buckthorn pomace (SBP), a by-product of juice and other manufacturing products, is rich in bioactive compounds such as phenolics, oligosaccharides, proteins, and dietary fiber. The aim of the [...] Read more.
With the growth of the plant-based food sector, increasing amounts of by-products are generated. Sea buckthorn pomace (SBP), a by-product of juice and other manufacturing products, is rich in bioactive compounds such as phenolics, oligosaccharides, proteins, and dietary fiber. The aim of the study was to evaluate the impact of modification methods, such as enzymatic hydrolysis and supercritical carbon dioxide extraction (SFE-CO2), on the chemical composition and technological properties of SBP. SBP and SBP obtained after SFE-CO2 (SBP-CO2) were enzymatically modified using Pectinex® Ultra Tropical, Viscozyme® L, and Celluclast® 1.5 L (Novozyme A/S, Bagsværd, Denmark). The SBP’s main constituent was insoluble dietary fiber (IDF), followed by crude proteins and lipids (respectively, 58.7, 21.1 and 12.6 g/100 in d.m.). SFE-CO2 reduced the lipid content (by 85.7%) in the pomace while increasing protein and TDF content. Enzymatic hydrolysis decreased the content of both soluble dietary fiber (SDF) and IDF, and increased the content of mono- and oligosaccharides as well as free phenolics, depending on the commercial enzyme preparation used in SBP and SBP-CO2 samples. Celluclast® 1.5 L was the most effective in hydrolyzing IDF, while Viscozyme® L and Pectinex® Ultra Tropical were the most effective in degrading SDF. Enzymatic treatment improved water swelling capacity, water retention capacity, water solubility index, oil retention capacity of SBP and SBP-CO2; however, it did not have a significant effect on the stability of the emulsions. Modification of SBP by SFE-CO2 effectively increased WSC and WSI, however it reduced WRC. These findings highlight the potential of targeted modifications to enhance the nutritional and technological properties of SBP for functional food applications. Full article
Show Figures

Figure 1

17 pages, 780 KiB  
Review
Progress in the Study of Plant Nitrogen and Potassium Nutrition and Their Interaction Mechanisms
by Weiyu Cao, Hai Sun, Cai Shao, Yue Wang, Jiapeng Zhu, Hongjie Long, Xiaomeng Geng and Yayu Zhang
Horticulturae 2025, 11(8), 930; https://doi.org/10.3390/horticulturae11080930 - 7 Aug 2025
Abstract
Nitrogen (N) and potassium (K) are essential macronutrients for plants whose functions and interactions profoundly influence plant physiological metabolism, environmental adaptation, and agricultural production efficiency. This review summarizes research advances in plant N and K nutrition and their interaction mechanisms, elucidating the key [...] Read more.
Nitrogen (N) and potassium (K) are essential macronutrients for plants whose functions and interactions profoundly influence plant physiological metabolism, environmental adaptation, and agricultural production efficiency. This review summarizes research advances in plant N and K nutrition and their interaction mechanisms, elucidating the key physiological functions of N and K individually and their respective absorption and transport mechanisms involving transporters such as NRTs and HAKs/KUPs. The review discusses the types of nutrient interactions (synergism and antagonism), with a primary focus on the physiological basis of N–K interactions and their interplay in root absorption and transport (e.g., K+-NO3 co-transport; NH4+ inhibition of K+ uptake), photosynthesis (jointly optimizing CO2 conductance, mesophyll conductance, and N allocation within photosynthetic machinery to enhance photosynthetic N use efficiency, PNUE), as well as sensing, signaling, co-regulation, and metabolism. This review emphasizes that N–K balance is crucial for improving crop yield and quality, enhancing fertilizer use efficiency (NUE/KUE), and reducing environmental pollution. Consequently, developing effective N–K management strategies based on these interaction mechanisms and implementing Balanced Fertilization Techniques (BFT) to optimize N–K ratios and application strategies in agricultural production represent vital pathways for ensuring food security, addressing resource constraints, and advancing green, low-carbon agriculture, including through coordinated management of greenhouse gas emissions. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

Back to TopTop