Understanding If Differences in Salivary Flow Rate and Total Protein Content Triggered by Biological Factors (Sex and Age) Affect Aroma Perception and the Hedonic and Emotional Response of Wine Consumers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Samples
2.2. Consumer Recruitment
2.3. Saliva Collection and Characterization
2.4. Consumer Tests
2.5. Data Analysis
3. Results
3.1. Differences in Salivary Flow Rate and Total Protein Content (TPC) by Age–Gender Groups
3.2. Differences in Retronasal Aroma Perception by Age–Gender Groups
3.3. Differences in Liking and Emotional Response to Wine by Age–Gender Groups
3.4. Relationship between Salivary Parameters and Sensory Perception
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buettner, A. Influence of Human Saliva on Odorant Concentrations. 2. Aldehydes, Alcohols, 3-Alkyl-2-Methoxypyrazines, Methoxyphenols, and 3-Hydroxy-4, 5-Dimethyl-2 (5 H)-Furanone. J. Agric. Food Chem. 2002, 50, 7105–7110. [Google Scholar] [CrossRef] [PubMed]
- Canon, F.; Neiers, F.; Guichard, E. Saliva and Flavor Perception: Perspectives. J. Agric. Food Chem. 2018, 66, 7873–7879. [Google Scholar] [CrossRef] [PubMed]
- Ijichi, C.; Wakabayashi, H.; Sugiyama, S.; Ihara, Y.; Nogi, Y.; Nagashima, A.; Ihara, S.; Niimura, Y.; Shimizu, Y.; Kondo, K. Metabolism of Odorant Molecules in Human Nasal/Oral Cavity Affects the Odorant Perception. Chem. Senses 2019, 44, 465–481. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-González, C.; Feron, G.; Brulé, M.; Canon, F. Understanding the Release and Metabolism of Aroma Compounds Using Micro-Volume Saliva Samples by Ex Vivo Approaches. Food Chem. 2018, 240, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Ployon, S.; Morzel, M.; Canon, F. The Role of Saliva in Aroma Release and Perception. Food Chem. 2017, 226, 212–220. [Google Scholar] [CrossRef]
- Xu, F.; Laguna, L.; Sarkar, A. Aging-Related Changes in Quantity and Quality of Saliva: Where Do We Stand in Our Understanding? J. Texture stud. 2018, 50, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Affoo, R.H.; Foley, N.; Garrick, R.; Siqueira, W.L.; Martin, R.E. Meta-Analysis of Salivary Flow Rates in Young and Older Adults. J. Am. Geriatr. Soc. 2015, 63, 2142–2151. [Google Scholar] [CrossRef]
- Neyraud, E.; Palicki, O.; Schwartz, C.; Nicklaus, S.; Feron, G. Variability of Human Saliva Composition: Possible Relationships with Fat Perception and Liking. Arch. Oral Biol. 2012, 57, 556–566. [Google Scholar] [CrossRef]
- Schipper, R.G.; Silletti, E.; Vingerhoeds, M.H. Saliva as Research Material: Biochemical, Physicochemical and Practical Aspects. Arch. Oral Biol. 2007, 52, 1114–1135. [Google Scholar] [CrossRef]
- Lukacs, J.R.; Thompson, L.M. Dental Caries Prevalence by Sex in Prehistory: Magnitude and Meaning. Cambridge Stud. Biol. Evol. Anthropol. 2008, 53, 136. [Google Scholar]
- Criado, C.; Pérez-Jiménez, M.; Muñoz-González, C.; Pozo-Bayón, A. Understanding the Effect of Saliva Composition Depending on Gender and Age on Wine Aroma Perception: Oral Aroma Release, Dynamics of Sensory Perception and Consumer Preferences and Liking. In Proceedings of the 16th Weurman Flavour Research Symposium, Dijon, France, 3–7 May 2021. [Google Scholar]
- Yang, N.; Yang, Q.; Chen, J.; Fisk, I. Impact of Capsaicin on Aroma Release and Perception from Flavoured Solutions. LWT 2021, 138, 110613. [Google Scholar] [CrossRef] [PubMed]
- Criado, C.; Muñoz-González, C.; Pozo-Bayón, M.Á. Differences in Salivary Flow and Composition between Age Groups Are Correlated to Dynamic Retronasal Aroma Perception during Wine Consumption. Food Qual. Prefer. 2021, 87, 104046. [Google Scholar] [CrossRef]
- Pérez-Jiménez, M.; Muñoz-González, C.; Chaya, C.; Fernández-Ruiz, V.; Álvarez, M.D.; Herranz, B.; Pozo-Bayón, M.Á. Insights on the Effect of Age and Gender on In-Mouth Volatile Release during Wine Tasting. Food Res. Int. 2022, 155, 111100. [Google Scholar] [CrossRef] [PubMed]
- Lattey, K.A.; Bramley, B.R.; Francis, I.L. Consumer Acceptability, Sensory Properties and Expert Quality Judgements of Australian Cabernet Sauvignon and Shiraz Wines. Aust. J. Grape Wine Res. 2010, 16, 189–202. [Google Scholar] [CrossRef]
- Barber, N.; Almanza, B.A.; Donovan, J.R. Motivational Factors of Gender, Income and Age on Selecting a Bottle of Wine. Int. J. Wine Mark. 2006, 18, 218–232. [Google Scholar] [CrossRef]
- Mora, M.; Urdaneta, E.; Chaya, C. Emotional Response to Wine: Sensory Properties, Age and Gender as Drivers of Consumers’ Preferences. Food Qual. Prefer. 2018, 66, 19–28. [Google Scholar] [CrossRef]
- Culbert, J.A.; Ristic, R.; Ovington, L.A.; Saliba, A.J.; Wilkinson, K.L. Influence of Production Method on the Sensory Profile and Consumer Acceptance of Australian Sparkling White Wine Styles. Aust. J. Grape Wine Res. 2017, 23, 170–178. [Google Scholar] [CrossRef]
- Yang, J.; Lee, J. Current Research Related to Wine Sensory Perception Since 2010. Beverages 2020, 6, 47. [Google Scholar] [CrossRef]
- Gutjar, S.; De Graaf, C.; Kooijman, V.; Mensink, M.; De Wijk, R.; Jager, G. Emotional Responses to Unlabelled and Labelled Food Products. Appetite 2013, 71, 476. [Google Scholar] [CrossRef]
- Mora, M.; Dupas de Matos, A.; Vázquez-Araújo, L.; Puente, V.; Hernando, J.; Chaya, C. Exploring Young Consumers’ Attitudes and Emotions to Sensory and Physicochemical Properties of Different Red Wines. Food Res. Int. 2021, 143, 110303. [Google Scholar] [CrossRef]
- Ng, M.; Chaya, C.; Hort, J. Beyond Liking: Comparing the Measurement of Emotional Response Using EsSense Profile and Consumer Defined Check-All-That-Apply Methodologies. Food Qual. Prefer. 2013, 28, 193–205. [Google Scholar] [CrossRef]
- Silva, A.P. A Flavour of Emotions: Sensory & Emotional Profiling of Wine, Beer and Non-Alcoholic Beer. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 26 June 2017. [Google Scholar]
- Den Uijl, L.C.; Jager, G.; Zandstra, E.H.; de Graaf, C.; Kremer, S. Self-Reported Food-Evoked Emotions of Younger Adults, Older Normosmic Adults, and Older Hyposmic Adults as Measured Using the PrEmo2 Tool and the Affect Grid. Food Qual. Prefer. 2016, 51, 109–117. [Google Scholar] [CrossRef]
- Edwards, J.S.A.; Hartwell, H.J.; Brown, L. The Relationship between Emotions, Food Consumption and Meal Acceptability When Eating out of the Home. Food Qual. Prefer. 2013, 30, 22–32. [Google Scholar] [CrossRef]
- Montepare, J.M.; Dobish, H. Younger and Older Adults’ Beliefs about the Experience and Expression of Emotions across the Life Span. J. Gerontol.-Ser. B Psychol. Sci. Soc. Sci. 2014, 69, 892–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaya, C.; Eaton, C.; Hewson, L.; Vázquez, R.F.; Fernández-Ruiz, V.; Smart, K.A.; Hort, J. Developing a Reduced Consumer-Led Lexicon to Measure Emotional Response to Beer. Food Qual. Prefer. 2015, 45, 100–112. [Google Scholar] [CrossRef]
- Dubé, L.; LeBel, J.L.; Lu, J. Affect Asymmetry and Comfort Food Consumption. Physiol. Behav. 2005, 86, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Piqueras-Fiszman, B.; Jaeger, S.R. The Effect of Product–Context Appropriateness on Emotion Associations in Evoked Eating Occasions. Food Qual. Prefer. 2015, 40, 49–60. [Google Scholar] [CrossRef]
- Pérez-Jiménez, M.; Muñoz-González, C.; Pozo-Bayón, M.A. Understanding Human Salivary Esterase Activity and Its Variation under Wine Consumption Conditions. RSC Adv. 2020, 10, 24352–24361. [Google Scholar] [CrossRef]
- Dorado, R.; Pérez-Hugalde, C.; Picard, A.; Chaya, C. Influence of First Position Effect on Emotional Response. Food Qual. Prefer. 2016, 49, 189–196. [Google Scholar] [CrossRef]
- Worch, T.; Sinesio, F.; Moneta, E.; Abbà, S.; Dreyfuss, L.; McEwan, J.A.; Porcherot-Lassallette, C. Influence of Different Test Conditions on the Emotional Responses Elicited by Beers. Food Qual. Prefer. 2020, 83, 103895. [Google Scholar] [CrossRef]
- Mora, M.; Dupas de Matos, A.; Fernández-Ruiz, V.; Briz, T.; Chaya, C. Comparison of Methods to Develop an Emotional Lexicon of Wine: Conventional vs Rapid-Method Approach. Food Qual. Prefer. 2020, 83, 103920. [Google Scholar] [CrossRef]
- Smith, C.H.; Boland, B.; Daureeawoo, Y.; Donaldson, E.; Small, K.; Tuomainen, J. Effect of Aging on Stimulated Salivary Flow in Adults. J. Am. Geriatr. Soc. 2013, 61, 805–808. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Kurihara, M.; Matsusue, Y.; Imanishi, M.; Tsuyuki, M.; Kirita, T. Whole Saliva Flow Rate and Body Profile in Healthy Young Adults. Arch. Oral Biol. 2009, 54, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Inoue, H.; Ono, K.; Masuda, W.; Morimoto, Y.; Tanaka, T.; Yokota, M.; Inenaga, K. Gender Difference in Unstimulated Whole Saliva Flow Rate and Salivary Gland Sizes. Arch. Oral Biol. 2006, 51, 1055–1060. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zhao, F.; Wang, Q.; Zhong, Y.; Cai, T.; Wu, P.; Yang, F.; Li, Z. Analysis of Age and Gender Associated N-Glycoproteome in Human Whole Saliva. Clin. Proteom. 2014, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Nagler, R.M.; Hershkovich, O. Age-Related Changes in Unstimulated Salivary Function and Composition and Its Relations to Medications and Oral Sensorial Complaints. Aging Clin. Exp. Res. 2005, 17, 358–366. [Google Scholar] [CrossRef]
- López, M.E.; Colloca, M.E.; Páez, R.G.; Schallmach, J.N.; Koss, M.A.; Chervonagura, A. Salivary Characteristics of Diabetic Children. Braz. Dent. J. 2003, 14, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Panchbhai, A.S.; Degwekar, S.S.; Bhowte, R.R. Estimation of Salivary Glucose, Salivary Amylase, Salivary Total Protein and Salivary Flow Rate in Diabetics in India. J. Oral Sci. 2010, 52, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Wurz, D.A.; Allebrandt, R.; de Bem, B.P.; Bonin, B.; Reinehr, J.; Canossa, A.T.; Rufato, L.; Kretzschmar, A.A. Women Have Better Olfactory Perception for Wine Aromas. BIO Web Conf. 2017, 9, 04005. [Google Scholar] [CrossRef] [Green Version]
- Sorokowski, P.; Karwowski, M.; Misiak, M.; Marczak, M.K.; Dziekan, M.; Hummel, T.; Sorokowska, A. Sex Differences in Human Olfaction: A Meta-Analysis. Front. Psychol. 2019, 10, 242. [Google Scholar] [CrossRef] [Green Version]
- Koelega, H.S.; Köster, E.P. Some Experiments on Sex Differences in Odor Perception. Ann. N. Y. Acad. Sci. 1974, 237, 234–246. [Google Scholar] [CrossRef]
- Doty, R.L.; Cameron, E.L. Sex Differences and Reproductive Hormone Influences on Human Odor Perception. Physiol. Behav. 2009, 97, 213–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, R.A.; Costiloe, J.P.; Howard, R.P.; Wolf, S. Olfactory Perception Thresholds in Hypogonadal Women: Changes Accompanying Administration of Androgen and Estrogen. J. Clin. Endocrinol. Metab. 1958, 18, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Good, P.R.; Geary, N.; Engen, T. The Effect of Estrogen on Odor Detection. Chem. Senses 1976, 2, 45–50. [Google Scholar] [CrossRef]
- Silva, A.P.; Jager, G.; Van Zyl, H.; Voss, H.-P.; Pintado, M.; Hogg, T.; De Graaf, C. Critical Reviews in Food Science and Nutrition. Crit. Rev. Food Sci. Nutr. 2017, 57, 1340–1349. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.P.; Jager, G.; Voss, H.-P.; van Zyl, H.; Hogg, T.; Pintado, M.; de Graaf, C. What’s in a Name? The Effect of Congruent and Incongruent Product Names on Liking and Emotions When Consuming Beer or Non-Alcoholic Beer in a Bar. Food Qual. Prefer. 2017, 55, 58–66. [Google Scholar] [CrossRef]
- Criado, C.; Chaya, C.; Fernández-Ruíz, V.; Álvarez, M.D.; Herranz, B.; Pozo-Bayón, M.Á. Effect of Saliva Composition and Flow on Inter-Individual Differences in the Temporal Perception of Retronasal Aroma during Wine Tasting. Food Res. Int. 2019, 126, 108677. [Google Scholar] [CrossRef]
- Repoux, M.; Sémon, E.; Feron, G.; Guichard, E.; Labouré, H. Inter-Individual Variability in Aroma Release during Sweet Mint Consumption. Flavour Fragr. J. 2012, 27, 40–46. [Google Scholar] [CrossRef]
- Taylor, A.J.; Roozen, J.P. Volatile Flavor Release from Foods during Eating. Crit. Rev. Food Sci. Nutr. 1996, 36, 765–784. [Google Scholar] [CrossRef]
- Piombino, P.; Genovese, A.; Esposito, S.; Moio, L.; Cutolo, P.P.; Chambery, A.; Severino, V.; Moneta, E.; Smith, D.P.; Owens, S.M.; et al. Saliva from Obese Individuals Suppresses the Release of Aroma Compounds from Wine. PLoS ONE 2014, 9, e85611. [Google Scholar] [CrossRef] [Green Version]
- Gierczynski, I.; Guichard, E.; Laboure, H. Aroma Perception in Dairy Products: The Roles of Texture, Aroma Release and Consumer Physiology. A Review. Flavour Fragr. J. 2011, 26, 141–152. [Google Scholar] [CrossRef]
- Fuhrman, B.; Volkova, N.; Suraski, A.; Aviram, M. White Wine with Red Wine-like Properties: Increased Extraction of Grape Skin Polyphenols Improves the Antioxidant Capacity of the Derived White Wine. J. Agric. Food Chem. 2001, 49, 3164–3168. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Brandão, E.; Mateus, N.; de Freitas, V. Sensorial Properties of Red Wine Polyphenols: Astringency and Bitterness. Crit. Rev. Food Sci. Nutr. 2017, 57, 937–948. [Google Scholar] [CrossRef] [PubMed]
- Mitropoulou, A.; Hatzidimitriou, E.; Paraskevopoulou, A. Aroma Release of a Model Wine Solution as Influenced by the Presence of Non-Volatile Components. Effect of Commercial Tannin Extracts, Polysaccharides and Artificial Saliva. Food Res. Int. 2011, 44, 1561–1570. [Google Scholar] [CrossRef]
- Perez-Jiménez, M.; Chaya, C.; Pozo-Bayón, M.Á. Individual Differences and Effect of Phenolic Compounds in the Immediate and Prolonged In-Mouth Aroma Release and Retronasal Aroma Intensity during Wine Tasting. Food Chem. 2019, 285, 147–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McRae, J.M.; Kennedy, J.A. Wine and Grape Tannin Interactions with Salivary Proteins and Their Impact on Astringency: A Review of Current Research. Molecules 2011, 16, 2348–2364. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.A.; Ismail, B.; Vickers, Z.M. The Role of Salivary Proteins in the Mechanism of Astringency. J. Food Sci. 2012, 77, C381–C387. [Google Scholar] [CrossRef]
- Condelli, N.; Monteleone, E.; Dinnella, C. Perceived Astringency in Wine: A Predictive Model. In Proceedings of the International Workshop on Advances in Grapevine and Wine Research 754, Venosa, Italy, 15–17 September 2005; pp. 523–532. [Google Scholar] [CrossRef]
- Martin, L.E.; Nikonova, L.V.; Kay, K.E.; Torregrossa, A.M. Altering Salivary Protein Profile Can Increase Acceptance of a Novel Bitter Diet. Appetite 2019, 136, 8–17. [Google Scholar] [CrossRef]
- Brown, F.N.; Mackie, A.R.; He, Q.; Branch, A.; Sarkar, A. Protein-Saliva Interactions: A Systematic Review. Food Funct. 2021, 12, 3324–3351. [Google Scholar] [CrossRef]
Age–Gender Group | Salivary Flow Rate (mL/min) | TPC (mg/L) |
---|---|---|
Senior–Male | 1.33 ± 0.52 ab | 1448.35 ± 549.03 a |
Young–Male | 1.57 ± 0.52 a | 991.39 ± 539.96 b |
Senior–Female | 1.10 ± 0.52 b | 1483.44 ± 547.87 a |
Young–Female | 1.27 ± 0.52 ab | 1219.75 ± 553.24 ab |
Pr > F | 0.02 | <0.01 |
Age–Gender Groups | White Wine | Red Wine |
---|---|---|
Senior–Male | 6.23 ± 0.39 | 6.45 ± 0.39 |
Young–Male | 6.21 ± 0.38 | 5.96 ± 0.38 |
Senior–Female | 6.22 ± 0.37 | 6.39 ± 0.39 |
Young–Female | 6.82 ± 0.32 | 6.44 ± 0.32 |
Pr > F | 0.44 | 0.78 |
Emotional Terms | Liking |
---|---|
Sensitive | 0.216 |
Sleepy | −0.223 |
Lucky | 0.527 |
Affectionate | 0.466 |
Cheerful | 0.507 |
Joyful | 0.535 |
Anxious | 0.535 |
Nostalgic | 0.139 |
Sadness | −0.251 |
Displeased | −0.459 |
Relaxed | 0.492 |
Satisfied | 0.700 |
Curious | 0.439 |
Fun | 0.487 |
Refreshed | 0.389 |
Emotional Terms | p-Values |
---|---|
Sensitive | 0.23 |
Sleepy | 0.86 |
Lucky | 0.79 |
Affectionate | 0.55 |
Cheerful | 0.48 |
Joyful | 0.76 |
Anxious | 0.96 |
Nostalgic | 0.57 |
Sadness | 0.39 |
Displeased | 0.84 |
Relaxed | 0.09 |
Satisfied | 0.06 |
Curious | 0.04 |
Fun | 0.64 |
Refreshed | 0.15 |
Variables | White Wine | Red Wine | ||
---|---|---|---|---|
Salivary Flow Rate (mL/min) | TPC (mg/L) | Salivary Flow Rate (mL/min) | TPC (mg/L) | |
Pineapple intensity | −0.048 | 0.129 | −0.081 | −0.072 |
Black pepper intensity | 0.089 | 0.005 | 0.218 | 0.043 |
Liking | −0.001 | −0.006 | 0.072 | 0.211 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Criado, C.; Muñoz-González, C.; Mora, M.; Fernández-Ruíz, V.; Chaya, C.; Pozo-Bayón, M.A. Understanding If Differences in Salivary Flow Rate and Total Protein Content Triggered by Biological Factors (Sex and Age) Affect Aroma Perception and the Hedonic and Emotional Response of Wine Consumers. Foods 2022, 11, 3104. https://doi.org/10.3390/foods11193104
Criado C, Muñoz-González C, Mora M, Fernández-Ruíz V, Chaya C, Pozo-Bayón MA. Understanding If Differences in Salivary Flow Rate and Total Protein Content Triggered by Biological Factors (Sex and Age) Affect Aroma Perception and the Hedonic and Emotional Response of Wine Consumers. Foods. 2022; 11(19):3104. https://doi.org/10.3390/foods11193104
Chicago/Turabian StyleCriado, Celia, Carolina Muñoz-González, María Mora, Virginia Fernández-Ruíz, Carolina Chaya, and María Angeles Pozo-Bayón. 2022. "Understanding If Differences in Salivary Flow Rate and Total Protein Content Triggered by Biological Factors (Sex and Age) Affect Aroma Perception and the Hedonic and Emotional Response of Wine Consumers" Foods 11, no. 19: 3104. https://doi.org/10.3390/foods11193104
APA StyleCriado, C., Muñoz-González, C., Mora, M., Fernández-Ruíz, V., Chaya, C., & Pozo-Bayón, M. A. (2022). Understanding If Differences in Salivary Flow Rate and Total Protein Content Triggered by Biological Factors (Sex and Age) Affect Aroma Perception and the Hedonic and Emotional Response of Wine Consumers. Foods, 11(19), 3104. https://doi.org/10.3390/foods11193104