Phytic Acid Treatment Inhibits Browning and Lignification to Promote the Quality of Fresh-Cut Apples during Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Treatments
2.2. Sensory Evaluation
2.3. Total Bacterial Count
2.4. Color Parameters
2.5. Weight Loss Rate
2.6. Total Phenol Content and Lignin Content
2.7. H2O2 and Malonaldehyde (MDA) Contents
2.8. Enzyme Activity
2.9. Statistical Analysis
3. Results
3.1. Sensory Evaluation
3.2. Total Bacterial Count
3.3. Flesh Color
3.4. Flesh Lignification
3.5. H2O2 and MDA Contents
3.6. Browning-Related Enzymes Activities
3.7. Phenylpropane Metabolism-Related Enzymes Activities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Li, A.; Chen, J.; Lin, Q.; Zhao, Y.Y.; Duan, Y.Q.; Wai, S.C.; Song, C.C.; Bi, J.F. Transcription factor MdWRKY32 participates in starch-sugar metabolism by binding to the MdBam5 promoter in apples during postharvest storage. J. Agric. Food Chem. 2021, 69, 14906–14914. [Google Scholar] [CrossRef] [PubMed]
- Marszalek, K.; Wozniak, L.; Barba, F.J.; Skapska, S.; Lorenzo, J.M.; Zambon, A.; Spilimbergo, S. Enzymatic, physicochemical, nutritional and phytochemical profile changes of apple (Golden delicious L.) juice under supercritical carbon dioxide and long-term cold storage. Food Chem. 2018, 268, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Chen, C.; Jiang, A.L.; Sun, X.Y.; Guan, Q.X.; Hu, W.Z. Effects of plasma-activated water on microbial growth and storage quality of fresh-cut apple. Innov. Food Sci. Emerg. Technol. 2020, 59, 102256. [Google Scholar] [CrossRef]
- Gao, H.Y.; Wu, S.Y.; Zeng, Q.; Li, P.Z.; Guan, W.Q. Effects of exogenous γ-aminobutyric acid treatment on browning and food-borne pathogens in fresh-cut apples. Postharvest Biol. Technol. 2018, 146, 1–8. [Google Scholar] [CrossRef]
- Wu, Z.S.; Zhang, M.; Adhikari, B. Effects of high pressure argon and xenon mixed treatment on wound healing and resistance against the growth of Escherichia coli or Saccharomyces cerevisiae in fresh-cut apples and pineapples. Food Control 2013, 30, 265–271. [Google Scholar] [CrossRef]
- Hu, W.Z.; Guan, Y.G.; Ji, Y.R.; Yang, X.Z. Effect of cutting styles on quality, antioxidant activity, membrane lipid peroxidation, and browning in fresh-cut potatoes. Food Biosci. 2021, 44, 101435. [Google Scholar] [CrossRef]
- Yang, R.R.; Han, Y.; Han, Z.H.; Ackah, S.; Li, Z.C.; Bi, Y.; Yang, Q.; Prusky, D. Hot water dipping stimulated wound healing of potato tubers. Postharvest Biol. Technol. 2020, 167, 111245. [Google Scholar] [CrossRef]
- Zhou, F.H.; Xu, D.Y.; Liu, C.H.; Chen, C.; Tian, M.X.; Jiang, A.L. Ascorbic acid treatment inhibits wound healing of fresh-cut potato strips by controlling phenylpropanoid metabolism. Postharvest Biol. Technol. 2021, 181, 111644. [Google Scholar] [CrossRef]
- Liu, C.H.; Chen, C.; Zhang, Y.L.; Jiang, A.L.; Hu, W.Z. Aqueous ozone treatment inhibited degradation of cell wall polysaccharides in fresh-cut apple during cold storage. Innov. Food Sci. Emerg. Technol. 2021, 67, 102550. [Google Scholar] [CrossRef]
- Manzocco, L.; Da Pieve, S.; Bertolini, A.; Bartolomeoli, I.; Maifreni, M.; Vianello, A.; Nicoli, M.C. Surface decontamination of fresh-cut apple by UV-C light exposure: Effects on structure, colour and sensory properties. Postharvest Biol. Technol. 2011, 61, 165–171. [Google Scholar] [CrossRef]
- Tappi, S.; Berardinelli, A.; Ragni, L.; Rosa, M.D.; Guarnieri, A.; Rocculi, P. Atmospheric gas plasma treatment of fresh-cut apples. Innov. Food Sci. Emerg. Technol. 2014, 21, 114–122. [Google Scholar] [CrossRef]
- Yan, S.L.; Luo, Y.G.; Zhou, B.; Ingram, D.T. Dual effectiveness of ascorbic acid and ethanol combined treatment to inhibit browning and inactivate pathogens on fresh-cut apples. LWT—Food Sci. Technol. 2017, 80, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Sarengaowa; Hu, W.Z.; Jiang, A.L.; Xiu, Z.L.; Feng, K. Effect of thyme oil-alginate-based coating on quality and microbial safety of fresh-cut apples. J. Sci. Food Agric. 2018, 98, 2302–2311. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.Q.; Fan, L.L.; Han, P.X.; Zhao, H.X.; Li, M.M.; Duan, X.M. Effect of lysozyme coatings on the storage and preservation of fresh-cut “Hanfu” apples. Mod. Food Sci. Technol. 2014, 30, 125–132. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, M.; Bhandari, B.; Mujumdar, A.S. Edible flower essential oils: A review of chemical compositions, bioactivities, safety and applications in food preservation. Food Res. Int. 2021, 139, 109809. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Hu, W.Z.; Jiang, A.L. Research advances in biological preservatives of fresh-cut fruits and vegetables. J. Food Saf. Qual. 2015, 6, 2409–2414. [Google Scholar] [CrossRef]
- Mei, J.B. Fresh-keeping technology of fresh-cut fruits and vegetables and its research progress. Mod. Food 2017, 13, 75–78. [Google Scholar] [CrossRef]
- Muraoka, S.; Miura, T. Inhibition of xanthine oxidase by phytic acid and its antioxidative action. Life Sci. 2004, 74, 1691–1700. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, B.; Raigond, P.; Sahu, C.; Mishra, U.N.; Sharma, S.; Lal, M.K. Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition. Food Res. Int. 2021, 142, 110193. [Google Scholar] [CrossRef]
- Li, G.P.; Zhou, D.; Kan, L.N.; Wu, Y.W.; Fan, J.F.; Ouyang, J. Competitive inhibition of phytic acid on enzymatic browning of chestnut (Castanea mollissima Blume). Acta Aliment. 2017, 46, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.X.; Tan, D.F.; Lin, Y.X.; Ou, M.R. Fresh-keeping effect of mixed phytic acid fresh-keeping agent on litchi fruit. Food Sci. 2004, 25, 190–192. [Google Scholar] [CrossRef]
- Feizollahi, E.; Mirmahdi, R.S.; Zoghi, A.; Zijlstra, R.T.; Roopesh, M.S.; Vasanthan, T. Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products. Food Res. Int. 2021, 143, 110284. [Google Scholar] [CrossRef] [PubMed]
- Stodolak, B.; Starzyńska, A.; Czyszczoń, M.; Żyła, K. The effect of phytic acid on oxidative stability of raw and cooked meat. Food Chem. 2007, 101, 1041–1045. [Google Scholar] [CrossRef]
- Zhang, J.C.; Li, Y.; Han, B.; Kong, X.H.; Ma, Y.P. Preservation effects of composite preservative of phytic acid and VC on Pholiota nameko. Storage Process 2016, 16, 40–43. [Google Scholar] [CrossRef]
- Wang, J.; Song, Y.; Fang, J.N.; Yang, J. Effect of phytic acid on the quality of fresh-cut red cabbage. Acta Agric. Zhejiangensis 2015, 27, 2017–2023. [Google Scholar] [CrossRef]
- Li, Y.Q. Research on the effect of soy protein isolate on the fresh-cut apple. Anhui Agri. Sci. Bull. 2021, 27, 58–61. [Google Scholar] [CrossRef]
- Li, Q. Study on Technology of Anti-Browning and Preservation of Fresh-cut Apple. Master’s Thesis, Tianjin University of Science and Technology, Tianjin, China, 2015. [Google Scholar]
- Chen, J.H.; Xu, Y.H.; Yi, Y.; Hou, W.F.; Wang, L.M.; Ai, Y.W.; Wang, H.X.; Min, T. Regulations and mechanisms of 1-methylcyclopropene treatment on browning and quality of fresh-cut lotus (Nelumbo nucifera Gaertn.) root slices. Postharvest Biol. Technol. 2022, 185, 111782. [Google Scholar] [CrossRef]
- Ge, X.Z.; Zhu, Y.; Li, Z.C.; Bi, Y.; Yang, J.; Zhang, J.L.; Prusky, D. Preharvest multiple fungicide stroby sprays promote wound healing of harvested potato tubers by activating phenylpropanoid metabolism. Postharvest Biol. Technol. 2021, 171, 111328. [Google Scholar] [CrossRef]
- Toivonen, P.M.A.; Brummell, D.A. Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biol. Technol. 2008, 48, 1–14. [Google Scholar] [CrossRef]
- Sun, X.H.; Hong, H.; Jia, S.L.; Liu, Y.M.; Luo, Y.K. Effects of phytic acid and lysozyme on microbial composition and quality of grass carp (Ctenopharyngodon idellus) fillets stored at 4 °C. Food Microbiol. 2020, 86, 103313. [Google Scholar] [CrossRef]
- De Oliveira, F.K.; Santos, L.O.; Buffon, J.G. Mechanism of action, sources, and application of peroxidases. Food Res. Int. 2021, 143, 110266. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.J.; Dou, S.Q.; Wu, S.J. Efficacy of phytic acid as an inhibitor of enzymatic and non-enzymatic browning in apple juice. Food Chem. 2012, 135, 580–582. [Google Scholar] [CrossRef]
- Meng, X.H.; Ma, X.M.; Gu, H.M.; Xu, L.L.; Sun, R.; Chen, P. Improvement the fresh-keeping effect of fresh-cut lettuce by US-NaClO-phytic acid. Sci. Technol. Food Ind. 2021, 42, 336–341. [Google Scholar] [CrossRef]
- Wang, D.; Li, D.; Xu, Y.Q.; Li, L.; Belwal, T.; Zhang, X.C.; Luo, Z.S. Elevated CO2 alleviates browning development by modulating metabolisms of membrane lipids, proline, and GABA in fresh-cut Asian pear fruit. Sci. Hortic. 2021, 281, 109932. [Google Scholar] [CrossRef]
- Li, J.; Bao, X.L.; Xu, Y.C.; Zhang, M.; Cai, Q.W.; Li, L.P.; Wang, Y.S. Hypobaric storage reduced core browning of Yali pear fruits. Sci. Hortic. 2017, 225, 547–552. [Google Scholar] [CrossRef]
- Zhang, Z.K.; Huber, D.J.; Qu, H.X.; Yun, Z.; Wang, H.; Huang, Z.H.; Huang, H.; Jiang, Y.M. Enzymatic browning and antioxidant activities in harvested litchi fruit as influenced by apple polyphenols. Food Chem. 2015, 171, 191–199. [Google Scholar] [CrossRef]
- Sun, J.Z.; Lin, H.T.; Zhang, S.; Lin, Y.F.; Wang, H.; Lin, M.S.; Hung, Y.C.; Chen, Y.H. The roles of ROS production-scavenging system in Lasiodiplodia theobromae (Pat.) Griff. & Maubl.-induced pericarp browning and disease development of harvested longan fruit. Food Chem. 2018, 247, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Mahunu, G.K.; Zhang, H.Y.; Yang, Q.Y.; Zhang, X.Y.; Li, D.D.; Zhou, Y.X. Improving the biocontrol efficacy of Pichia caribbica with phytic acid against postharvest blue mold and natural decay in apples. Biol. Control 2016, 92, 172–180. [Google Scholar] [CrossRef]
- da Costa, L.L.; Adorian, T.J.; Goulart, F.R.; Leitemperger, J.; do Amaral, A.M.B.; Loro, V.L.; Robalo, S.S.; da Silva, L.P. Phytic acid in Rhamdia quelen nutrition: Antioxidant or antinutrient? Anim. Feed Sci. Technol. 2021, 276, 114915. [Google Scholar] [CrossRef]
- Zhang, X.M.; Zong, Y.Y.; Li, Z.C.; Yang, R.R.; Li, Z.H.; Bi, Y.; Prusky, D. Postharvest Pichia guilliermondii treatment promotes wound healing of apple fruits. Postharvest Biol. Technol. 2020, 167, 111228. [Google Scholar] [CrossRef]
- Wang, B.; Li, Z.C.; Han, Z.H.; Xue, S.L.; Bi, Y.; Prusky, D. Effects of nitric oxide treatment on lignin biosynthesis and texture properties at wound sites of muskmelons. Food Chem. 2021, 362, 130193. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.H.; Chen, Y.R.; Li, C.Y.; Zhao, J.R.; Wei, M.L.; Li, X.H.; Yang, S.Q.; Mi, Y.T. Effect of sodium nitroprusside treatment on shikimate and phenylpropanoid pathways of apple fruit. Food Chem. 2019, 290, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Murtaza, A.; Zhu, L.J.; Iqbal, A.; Ali, S.W.; Xu, X.Y.; Pan, S.Y.; Hu, W.F. High pressure CO2 treatment alleviates lignification and browning of fresh-cut water-bamboo shoots (Zizania latifolia). Postharvest Biol. Technol. 2021, 182, 111690. [Google Scholar] [CrossRef]
Item | Evaluation Index | Score |
---|---|---|
Color | The surface is clear and bright, uniform color. | ≥14, <20 |
The surface is slightly darker, with dark fibrous streaks. | ≥8, <14 | |
The surface is dark, with brown spots. | <8 | |
Texture | The surface does not shrink. | ≥14, <20 |
The surface slightly shrinks. | ≥8, <14 | |
The surface severely shrinks. | <8 | |
Smell | It is intensely fruity and sweet. | ≥14, <20 |
It is lightly fruity. | ≥8, <14 | |
It is not fruity. | <8 | |
Taste | The flesh is crisp, tender, and juicy. | ≥14, <20 |
The flesh is not crisp and less juicy. | ≥8, <14 | |
The flesh is soft and not juicy. | <8 | |
Acceptability | Fully acceptable. | ≥14, <20 |
Basically acceptable. | ≥8, <14 | |
Unacceptable. | <8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, T.; Yao, J.; Duan, Y.; Zhong, Y.; Zhao, Y.; Lin, Q. Phytic Acid Treatment Inhibits Browning and Lignification to Promote the Quality of Fresh-Cut Apples during Storage. Foods 2022, 11, 1470. https://doi.org/10.3390/foods11101470
Fang T, Yao J, Duan Y, Zhong Y, Zhao Y, Lin Q. Phytic Acid Treatment Inhibits Browning and Lignification to Promote the Quality of Fresh-Cut Apples during Storage. Foods. 2022; 11(10):1470. https://doi.org/10.3390/foods11101470
Chicago/Turabian StyleFang, Ting, Jia Yao, Yuquan Duan, Yaoguang Zhong, Yaoyao Zhao, and Qiong Lin. 2022. "Phytic Acid Treatment Inhibits Browning and Lignification to Promote the Quality of Fresh-Cut Apples during Storage" Foods 11, no. 10: 1470. https://doi.org/10.3390/foods11101470
APA StyleFang, T., Yao, J., Duan, Y., Zhong, Y., Zhao, Y., & Lin, Q. (2022). Phytic Acid Treatment Inhibits Browning and Lignification to Promote the Quality of Fresh-Cut Apples during Storage. Foods, 11(10), 1470. https://doi.org/10.3390/foods11101470