Genetic and Environmental Variation in Starch Content, Starch Granule Distribution and Starch Polymer Molecular Characteristics of French Bread Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multilocal Trials and Plant Material
- -
- Stability of their known bread-making quality. Some of them are considered stable and some varieties are recognized to be less stable.
- -
- The allelic form at the GluD1 locus considering the weight of this gene on the final rheological quality.
- -
- Earliness to heading stage which may allow adaptation to very wide geographical locations exhibiting different pedo-climatic conditions.
- -
- Classically adapted sites (“typical” or “standard” sites in France) consisted of locations with a low frequency of abiotic stress where regularly stable breadmaking quality is obtained in the control cultivars.
- -
- Classically invalidated sites (“atypical” sites in France) with episodes of heat and hydric stress leading to regularly variable breadmaking values in the control cultivars.
- -
- Sites with restrictive climatic conditions, particularly end-of-cycle temperatures from European networks (EU sites).
2.2. Flour Starch Extraction
2.3. Flour Total Starch Content
2.4. Distribution of Starch Granules
2.5. Characterization of the Molecular Weight Distribution (MWD) of Grain Storage Starch Polymers by Asymmetric Flow Field-Flow Fractionation (A4F)
2.6. Statistics
3. Results and Discussion
3.1. Starch Characteristics Exhibited Large Phenotypic Variations
3.2. Genetic Impacts on Starch Characteristics
3.3. Environment Effects on Starch Characteristics
3.4. Genetic by Environment Interaction
3.5. Starch Biosynthesis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baenziger, P.S.; Clements, R.L.; McIntosh, M.S.; Yamazaki, W.T.; Starling, T.M.; Sammons, D.J.; Johnson, J.W. Effect of Cultivar, Environment, and Their Interaction and Stability Analyses on Milling and Baking Quality of Soft Red Winter Wheat. Crop Sci. 1985, 25, 5–8. [Google Scholar] [CrossRef]
- Peterson, C.J.; Graybosch, R.A.; Baenziger, P.S.; Grombacher, A.W. Genotype and Environment Effects on Quality Characteristics of Hard Red Winter Wheat. Crop Sci. 1992, 32, 98–103. [Google Scholar] [CrossRef]
- Finlay, G.J.; Bullock, P.R.; Sapirstein, H.D.; Naeem, H.A.; Hussain, A.; Angadi, S.V.; DePauw, R.M. Genotypic and Environmental Variation in Grain, Flour, Dough and Bread-Making Characteristics of Western Canadian Spring Wheat. Can. J. Plant Sci. 2007, 87, 679–690. [Google Scholar] [CrossRef] [Green Version]
- Impa, S.M.; Vennapusa, A.R.; Bheemanahalli, R.; Sabela, D.; Boyle, D.; Walia, H.; Jagadish, S.V.K. High Night Temperature Induced Changes in Grain Starch Metabolism Alters Starch, Protein, and Lipid Accumulation in Winter Wheat. Plant Cell Environ. 2020, 43, 431–447. [Google Scholar] [CrossRef]
- Jenner, C.F.; Ugalde, T.D.; Aspinall, D. The Physiology of Starch and Protein Deposition in the Endosperm of Wheat. Funct. Plant Biol. 1991, 18, 211–226. [Google Scholar] [CrossRef]
- Aussenac, T.; Rhazi, L. Storage Proteins Accumulation and Aggregation in Developing Wheat Grains. In Global Wheat Production; Fahad, S., Basir, A., Adnan, M., Eds.; IntechOpen: London, UK, 2018; pp. 134–163. [Google Scholar]
- Zayas, I.Y.; Bechtal, D.B.; Wilson, J.D.; Dempster, R.E. Distinguishing Selected Hard and Soft Red Winter Wheats by Image Analysis of Starch Granules. Cereal Chem. 1994, 71, 82–86. [Google Scholar]
- Wilson, J.D.; Bechtel, D.B.; Todd, T.C.; Seib, P.A. Measurement of Wheat Starch Granule Size Distribution Using Image Analysis and Laser Diffraction Technology. Cereal Chem. 2006, 83, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Hizukuri, S.; Takeda, Y.; Yasuda, M.; Suzuki, A. Multi-Branched Nature of Amylose and the Action of Debranching Enzymes. Carbohydr. Res. 1981, 94, 205–213. [Google Scholar] [CrossRef]
- Shibanuma, K.; Takeda, Y.; Hizukuri, S.; Shibata, S. Molecular Structures of Some Wheat Starches. Carbohydr. Polym. 1994, 25, 111–116. [Google Scholar] [CrossRef]
- Deatherage, W.L.; Macmasters, M.M.; Rist, C.E. A Partial Survey of Amylose Content in Starch from Domestic and Foreign Varieties of Corn, Wheat, and Sorghum and from Some Other Starch-Bearing. Trans. Am. Assoc. Cereal Chem. 1955, 13, 31–42. [Google Scholar]
- Buléon, A.; Colonna, P.; Planchot, V.; Ball, S. Starch Granules: Structure and Biosynthesis. Int. J. Biol. Macromol. 1998, 23, 85–112. [Google Scholar] [CrossRef] [Green Version]
- Denyer, K.A.Y.; Johnson, P.; Zeeman, S.; Smith, A.M. The Control of Amylose Synthesis. J. Plant Physiol. 2001, 158, 479–487. [Google Scholar] [CrossRef]
- De Fekete, M.A.R.; Leloir, L.F.; Cardini, C.E. Mechanism of Starch Biosynthesis. Nature 1960, 187, 918–919. [Google Scholar] [CrossRef] [PubMed]
- Nelson, O.E.; Rines, H.W. The Enzymatic Deficiency in the Waxy Mutant of Maize. Biochem. Biophys. Res. Commun. 1962, 9, 297–300. [Google Scholar] [CrossRef]
- Tsai, C.Y. The Function of the Waxy Locus in Starch Synthesis in Maize Endosperm. Biochem. Genet. 1974, 11, 83–96. [Google Scholar] [CrossRef]
- Murai, J.; Taira, T.; Ohta, D. Isolation and Characterization of the Three Waxy Genes Encoding the Granule-Bound Starch Synthase in Hexaploid Wheat. Gene 1999, 234, 71–79. [Google Scholar] [CrossRef]
- Yamamori, M.; Endo, T.R. Variation of Starch Granule Proteins and Chromosome Mapping of Their Coding Genes in Common Wheat. Theor. Appl. Genet. 1996, 93, 275–281. [Google Scholar] [CrossRef]
- Yamamori, M.; Nakamura, T.; Endo, T.R.; Nagamine, T. Waxy Protein Deficiency and Chromosomal Location of Coding Genes in Common Wheat. Theor. Appl. Genet. 1994, 89, 179–184. [Google Scholar] [CrossRef]
- Tetlow, I.J.; Wait, R.; Lu, Z.; Akkasaeng, R.; Bowsher, C.G.; Esposito, S.; Kosar-Hashemi, B.; Morell, M.K.; Emes, M.J. Protein Phosphorylation in Amyloplasts Regulates Starch Branching Enzyme Activity and Protein–Protein Interactions. Plant Cell 2004, 16, 694–708. [Google Scholar] [CrossRef] [Green Version]
- D’Hulst, C.; Mérida, Á. The Priming of Storage Glucan Synthesis from Bacteria to Plants: Current Knowledge and New Developments. New Phytol. 2010, 188, 13–21. [Google Scholar] [CrossRef]
- Zeeman, S.C.; Kossmann, J.; Smith, A.M. Starch: Its Metabolism, Evolution, and Biotechnological Modification in Plants. Annu. Rev. Plant Biol. 2010, 61, 209–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.-K.; Kwak, J.-E.; Kim, W.-K. A Simple Method for Estimation of Enzyme-Resistant Starch Content. Starch Stärke 2003, 55, 366–368. [Google Scholar] [CrossRef]
- Yoshimoto, Y.; Egashira, T.; Hanashiro, I.; Ohinata, H.; Takase, Y.; Takeda, Y. Molecular Structure and Some Physicochemical Properties of Buckwheat Starches. Cereal Chem. 2004, 81, 515–520. [Google Scholar] [CrossRef]
- Geera, B.P.; Nelson, J.E.; Souza, E.; Huber, K.C. Composition and Properties of A- and B-Type Starch Granules of Wild-Type, Partial Waxy, and Waxy Soft Wheat. Cereal Chem. 2006, 83, 551–557. [Google Scholar] [CrossRef] [Green Version]
- Bertolini, A.C.; Souza, E.; Nelson, J.E.; Huber, K.C. Composition and Reactivity of A- and B-Type Starch Granules of Normal, Partial Waxy, and Waxy Wheat. Cereal Chem. 2003, 80, 544–549. [Google Scholar] [CrossRef]
- Blazek, J.; Copeland, L. Pasting and Swelling Properties of Wheat Flour and Starch in Relation to Amylose Content. Carbohydr. Polym. 2008, 71, 380–387. [Google Scholar] [CrossRef]
- Bancel, E.; Rogniaux, H.; Debiton, C.; Chambon, C.; Branlard, G. Extraction and Proteome Analysis of Starch Granule-Associated Proteins in Mature Wheat Kernel (Triticum aestivum L.). J. Proteome Res. 2010, 9, 3299–3310. [Google Scholar] [CrossRef]
- Edwards, M.A.; Osborne, B.G.; Henry, R.J. Effect of Endosperm Starch Granule Size Distribution on Milling Yield in Hard Wheat. J. Cereal Sci. 2008, 48, 180–192. [Google Scholar] [CrossRef]
- Chiaramonte, E.; Rhazi, L.; Aussenac, T.; White, D.R. Amylose and Amylopectin in Starch by Asymmetric Flow Field-Flow Fractionation with Multi-Angle Light Scattering and Refractive Index Detection (AF4–MALS–RI). J. Cereal Sci. 2012, 56, 457–463. [Google Scholar] [CrossRef]
- Hurkman, W.J.; McCue, K.F.; Altenbach, S.B.; Korn, A.; Tanaka, C.K.; Kothari, K.M.; Johnson, E.L.; Bechtel, D.B.; Wilson, J.D.; Anderson, O.D.; et al. Effect of Temperature on Expression of Genes Encoding Enzymes for Starch Biosynthesis in Developing Wheat Endosperm. Plant Sci. 2003, 164, 873–881. [Google Scholar] [CrossRef]
- Tester, R.F.; Karkalas, J.; Qi, X. Starch—Composition, Fine Structure and Architecture. J. Cereal Sci. 2004, 39, 151–165. [Google Scholar] [CrossRef]
- Alcázar-Alay, S.C.; Meireles, M.A.A.; Alcázar-Alay, S.C.; Meireles, M.A.A. Physicochemical Properties, Modifications and Applications of Starches from Different Botanical Sources. Food Sci. Technol. 2015, 35, 215–236. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.-H.; Jane, J. Molecular Weights and Gyration Radii of Amylopectins Determined by High-Performance Size-Exclusion Chromatography Equipped with Multi-Angle Laser-Light Scattering and Refractive Index Detectors. Carbohydr. Polym. 2002, 49, 307–314. [Google Scholar] [CrossRef]
- Naguleswaran, S.; Vasanthan, T.; Hoover, R.; Bressler, D. Amylolysis of Amylopectin and Amylose Isolated from Wheat, Triticale, Corn and Barley Starches. Food Hydrocoll. 2014, 35, 686–693. [Google Scholar] [CrossRef]
- Roger, P.; Baud, B.; Colonna, P. Characterization of Starch Polysaccharides by Flow Field-Flow Fractionation–Multi-Angle Laser Light Scattering–Differential Refractometer Index. J. Chromatogr. A 2001, 917, 179–185. [Google Scholar] [CrossRef]
- Gidley, M.J.; Hanashiro, I.; Hani, N.M.; Hill, S.E.; Huber, A.; Jane, J.-L.; Liu, Q.; Morris, G.A.; Rolland-Sabaté, A.; Striegel, A.M.; et al. Reliable Measurements of the Size Distributions of Starch Molecules in Solution: Current Dilemmas and Recommendations. Carbohydr. Polym. 2010, 79, 255–261. [Google Scholar] [CrossRef]
- Dai, Z.; Li, Y.; Zhang, H.; Yan, S.; Li, W. Effects of Irrigation Schemes on the Characteristics of Starch and Protein in Wheat (Triticum aestivum L.). Starch Stärke 2016, 68, 454–461. [Google Scholar] [CrossRef]
- Jane, J.-L.; Kasemsuwan, T.; Leas, S.; Zobel, H.; Robyt, J.F. Anthology of Starch Granule Morphology by Scanning Electron Microscopy. Starch Stärke 1994, 46, 121–129. [Google Scholar] [CrossRef]
- Shapter, F.M.; Henry, R.J.; Lee, L.S. Endosperm and Starch Granule Morphology in Wild Cereal Relatives. Plant Genet. Resour. 2008, 6, 85–97. [Google Scholar] [CrossRef]
- Evers, A.D.; O’Brien, L.; Blakeney, A.B. Cereal Structure and Composition. Aust. J. Agric. Res. 1999, 50, 629–650. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.; Tiwari, R.; Gupta, V.K.; Rane, J.; Singh, R. Genotype and Ambient Temperature during Growth Can Determine the Quality of Starch from Wheat. J. Cereal Sci. 2018, 79, 240–246. [Google Scholar] [CrossRef]
- Keeling, P.L.; Bacon, P.J.; Holt, D.C. Elevated Temperature Reduces Starch Deposition in Wheat Endosperm by Reducing the Activity of Soluble Starch Synthase. Planta 1993, 191, 342–348. [Google Scholar] [CrossRef]
- Preiss, J.; Ball, K.; Smith-White, B.; Iglesias, A.; Kakefuda, G.; Li, L. Starch Biosynthesis and Its Regulation. Biochem. Soc. Trans. 1991, 19, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Han, S.; Chen, L.; Mu, J.; Duan, L.; Li, Y.; Yan, Y.; Li, X. Expression and Regulation of Genes Involved in the Reserve Starch Biosynthesis Pathway in Hexaploid Wheat (Triticum aestivum L.). Crop J. 2020, in press. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Q.; Feng, N.; Wang, J.; Wang, S.; He, Z. Characterization of A- and B-Type Starch Granules in Chinese Wheat Cultivars. J. Integr. Agric. 2016, 15, 2203–2214. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Yan, S.; Yin, Y.; Li, Y.; Liang, T.; Gu, F.; Dai, Z.; Wang, Z. Comparison of Starch Granule Size Distribution Between Hard and Soft Wheat Cultivars in Eastern China. Agric. Sci. China 2008, 7, 907–914. [Google Scholar] [CrossRef]
- Kim, H.-S.; Huber, K.C. Physicochemical Properties and Amylopectin Fine Structures of A- and B-Type Granules of Waxy and Normal Soft Wheat Starch. J. Cereal Sci. 2010, 51, 256–264. [Google Scholar] [CrossRef]
- Peng, M.; Gao, M.; Båga, M.; Hucl, P.; Chibbar, R.N. Starch-Branching Enzymes Preferentially Associated with A-Type Starch Granules in Wheat Endosperm. Plant Physiol. 2000, 124, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Guo, W.; Jiang, Z.; Pu, H.; Feng, C.; Zhu, X.; Peng, Y.; Kuang, A.; Little, C.R. Effects of High Temperature after Anthesis on Starch Granules in Grains of Wheat (Triticum aestivum L.). J. Agric. Sci. 2011, 149, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Studnicki, M.; Wijata, M.; Sobczyński, G.; Samborski, S.; Gozdowski, D.; Rozbicki, J. Effect of Genotype, Environment and Crop Management on Yield and Quality Traits in Spring Wheat. J. Cereal Sci. 2016, 72, 30–37. [Google Scholar] [CrossRef]
- Raeker, M.Ö.; Gaines, C.S.; Finney, P.L.; Donelson, T. Granule Size Distribution and Chemical Composition of Starches from 12 Soft Wheat Cultivars. Cereal Chem. 1998, 75, 721–728. [Google Scholar] [CrossRef]
- Labuschagne, M.T.; Geleta, N.; Osthoff, G. The Influence of Environment on Starch Content and Amylose to Amylopectin Ratio in Wheat. Starch Stärke 2007, 59, 234–238. [Google Scholar] [CrossRef]
- Dai, Z.-M.; Yin, Y.-P.; Zhang, M.; Li, W.-Y.; Yan, S.-H.; Cai, R.-G.; Wang, Z.-L. Distribution of Starch Granule Size in Grains of Wheat Grown Under Irrigated and Rainfed Conditions. Acta Agron. Sin. 2008, 34, 795–802. [Google Scholar] [CrossRef]
- Beckles, D.M.; Thitisaksakul, M. How Environmental Stress Affects Starch Composition and Functionality in Cereal Endosperm. Starch Stärke 2014, 66, 58–71. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Dai, T.; Jiang, D.; Cao, W. Effects of High Temperature on Key Enzymes Involved in Starch and Protein Formation in Grains of Two Wheat Cultivars. J. Agron. Crop Sci. 2008, 194, 47–54. [Google Scholar] [CrossRef]
- Vignola, M.B.; Moiraghi, M.; Salvucci, E.; Baroni, V.; Pérez, G.T. Whole Meal and White Flour from Argentine Wheat Genotypes: Mineral and Arabinoxylan Differences. J. Cereal Sci. 2016, 71, 217–223. [Google Scholar] [CrossRef]
- Shi, Y.C.; Seib, P.A.; Bernardin, J.E. Effects of Temperature during Grain-Filling on Starches from Six Wheat Cultivars. Cereal Chem. 1994, 71, 369–383. [Google Scholar]
- Rosicka-Kaczmarek, J.; Kwaśniewska-Karolak, I.; Nebesny, E.; Miśkiewicz, K. Influence of Variety and Year of Wheat Cultivation on the Chemical Composition of Starch and Properties of Glucose Hydrolysates. J. Cereal Sci. 2013, 57, 98–106. [Google Scholar] [CrossRef]
- Panozzo, J.F.; Eagles, H.A. Cultivar and Environmental Effects on Quality Characters in Wheat. I. Starch. Aust. J. Agric. Res. 1998, 49, 757–766. [Google Scholar] [CrossRef]
- Bhullar, S.; Jenner, C. Differential Responses to High Temperatures of Starch and Nitrogen Accumulation in the Grain of Four Cultivars of Wheat. Funct. Plant Biol. 1985, 12, 363–375. [Google Scholar] [CrossRef]
- Blumenthal, C.; Bekes, F.; Gras, P.W.; Barlow, E.W.R.; Wrigley, C.W. Identification of Wheat Genotypes Tolerant to the Effects of Heat Stress on Grain Quality. Cereal Chem. 1995, 72, 539–544. [Google Scholar]
- Brooks, A.; Jenner, C.; Aspinall, D. Effects of Water Deficit on Endosperm Starch Granules and on Grain Physiology of Wheat and Barley. Funct. Plant Biol. 1982, 9, 423–436. [Google Scholar] [CrossRef]
- Singh, S.; Singh, G.; Singh, P.; Singh, N. Effect of Water Stress at Different Stages of Grain Development on the Characteristics of Starch and Protein of Different Wheat Varieties. Food Chem. 2008, 108, 130–139. [Google Scholar] [CrossRef]
- Fábián, A.; Jäger, K.; Rakszegi, M.; Barnabás, B. Embryo and Endosperm Development in Wheat (Triticum aestivum L.) Kernels Subjected to Drought Stress. Plant Cell Rep. 2011, 30, 551–563. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Z.; Yin, Y.; Cai, R.; Yan, S.; Li, W. Starch Content and Granule Size Distribution in Grains of Wheat in Relation to Post-Anthesis Water Deficits. J Agron. Crop Sci. 2010, 196, 1–8. [Google Scholar] [CrossRef]
- Labuschagne, M.T.; Elago, O.; Koen, E. The Influence of Temperature Extremes on Some Quality and Starch Characteristics in Bread, Biscuit and Durum Wheat. J. Cereal Sci. 2009, 49, 184–189. [Google Scholar] [CrossRef]
- Stone, P.J.; Savin, R.; Wardlaw, I.F.; Nicolas, M.E. The Influence of Recovery Temperature on the Effects of a Brief Heat Shock on Wheat. I. Grain Growth. Funct. Plant Biol. 1995, 22, 945–954. [Google Scholar] [CrossRef]
- Matsuki, J.; Yasui, T.; Kohyama, K.; Sasaki, T. Effects of Environmental Temperature on Structure and Gelatinization Properties of Wheat Starch. Cereal Chem. 2003, 80, 476–480. [Google Scholar] [CrossRef]
- Stone, P.J.; Nicolas, M.E. A Survey of the Effects of High Temperature during Grain Filling on Yield and Quality of 75 Wheat Cultivars. Aust. J. Agric. Res. 1995, 46, 475–492. [Google Scholar] [CrossRef]
- Altenbach, S.B.; DuPont, F.M.; Kothari, K.M.; Chan, R.; Johnson, E.L.; Lieu, D. Temperature, Water and Fertilizer Influence the Timing of Key Events During Grain Development in a US Spring Wheat. J. Cereal Sci. 2003, 37, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Toyota, K.; Tamura, M.; Ohdan, T.; Nakamura, Y. Expression Profiling of Starch Metabolism-Related Plastidic Translocator Genes in Rice. Planta 2006, 223, 248–257. [Google Scholar] [CrossRef]
- Sreenivasulu, N.; Altschmied, L.; Radchuk, V.; Gubatz, S.; Wobus, U.; Weschke, W. Transcript Profiles and Deduced Changes of Metabolic Pathways in Maternal and Filial Tissues of Developing Barley Grains. Plant J. 2004, 37, 539–553. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Li, P.; Imparl-Radosevich, J.; Preiss, J.; Keeling, P. Comparing the Properties of Escherichia Coli Branching Enzyme and Maize Branching Enzyme. Arch. Biochem. Biophys. 1997, 1, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Yandeau-Nelson, M.; Thompson, D.B.; Guiltinan, M.J. Deficiency of Maize Starch-Branching Enzyme i Results in Altered Starch Fine Structure, Decreased Digestibility and Reduced Coleoptile Growth during Germination. BMC Plant Biol. 2011, 11, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regina, A.; Kosar-Hashemi, B.; Ling, S.; Li, Z.; Rahman, S.; Morell, M. Control of Starch Branching in Barley Defined through Differential RNAi Suppression of Starch Branching Enzyme IIa and IIb. J. Exp. Bot. 2010, 61, 1469–1482. [Google Scholar] [CrossRef] [Green Version]
- Mouille, G.; Maddelein, M.L.; Libessart, N.; Talaga, P.; Decq, A.; Delrue, B.; Ball, S. Preamylopectin Processing: A Mandatory Step for Starch Biosynthesis in Plants. Plant Cell 1996, 8, 1353–1366. [Google Scholar] [CrossRef]
- Jeon, J.-S.; Ryoo, N.; Hahn, T.-R.; Walia, H.; Nakamura, Y. Starch Biosynthesis in Cereal Endosperm. Plant Physiol. Biochem. 2010, 48, 383–392. [Google Scholar] [CrossRef]
- Thitisaksakul, M.; Jiménez, R.C.; Arias, M.C.; Beckles, D.M. Effects of Environmental Factors on Cereal Starch Biosynthesis and Composition. J. Cereal Sci. 2012, 56, 67–80. [Google Scholar] [CrossRef]
- Yamakawa, H.; Hirose, T.; Kuroda, M.; Yamaguchi, T. Comprehensive Expression Profiling of Rice Grain Filling-Related Genes under High Temperature Using DNA Microarray. Plant Physiol. 2007, 144, 258–277. [Google Scholar] [CrossRef] [Green Version]
- Prathap, V.; Tyagi, A. Correlation between Expression and Activity of ADP Glucose Pyrophosphorylase and Starch Synthase and Their Role in Starch Accumulation during Grain Filling under Drought Stress in Rice. Plant Physiol. Biochem. 2020, 157, 239–243. [Google Scholar] [CrossRef]
- Cheng, F.; Zhong, L.; Zhao, N.; Liu, Y.; Zhang, G. Temperature Induced Changes in the Starch Components and Biosynthetic Enzymes of Two Rice Varieties. Plant Growth Regul. 2005, 1, 87–95. [Google Scholar] [CrossRef]
- Ohdan, T.; Sawada, T.; Nakamura, Y. Effects of Temperature on Starch Branching Enzyme Properties of Rice. J. Appl. Glycosci. 2010, 58, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, A.; Baker, D.A. The Effect of Water Stress on the Activities of Key Regulatory Enzymes of the Sucrose to Starch Pathway in Wheat. Plant Growth Regul. 2001, 35, 81–91. [Google Scholar] [CrossRef]
- Caley, C.Y.; Duffus, C.M.; Jeffcoat, B. Effects of Elevated Temperature and Reduced Water Uptake on Enzymes of Starch Synthesis in Developing Wheat Grains. Funct. Plant Biol. 1990, 17, 431–439. [Google Scholar] [CrossRef]
- Duke, E.R.; Doehlert, D.C. Effects of Heat Stress on Enzyme Activities and Transcript Levels in Developing Maize Kernels Grown in Culture. Environ. Exp. Bot. 1996, 36, 199–208. [Google Scholar] [CrossRef]
- Jenner, C. Starch Synthesis in the Kernel of Wheat under High Temperature Conditions. Funct. Plant Biol. 1994, 21, 791–806. [Google Scholar] [CrossRef]
- Liu, D.-H.; Zhang, J.-L.; Cao, J.-H.; Wang, Z.-H.; Yu, C.; Jin, D.-M. The Reduction of Amylose Content in Rice Grain and Decrease of Wx Gene Expression during Endosperm Development in Response to Drought Stress. J. Food Agric. Environ. 2010, 8, 873–878. [Google Scholar]
- Takeda, Y.; Guan, H.-P.; Preiss, J. Branching of Amylose by the Branching Isoenzymes of Maize Endosperm. Carbohydr. Res. 1993, 240, 253–263. [Google Scholar] [CrossRef]
Traits | Mean 1 | Min | Max | SD 2 | CV 3 |
---|---|---|---|---|---|
Starch content (%) | 61.10 | 54.00 | 69.48 | 2.23 | 3.66 |
A granules (%) | 74.28 | 54.59 | 90.00 | 3.29 | 4.43 |
B granules (%) | 21.14 | 10.86 | 37.65 | 2.97 | 14.08 |
C granules (%) | 4.17 | 2.59 | 7.75 | 0.49 | 11.76 |
AML | |||||
Mass fraction (%) | 30 | 17 | 41 | 2 | 6.79 |
Mn (106 g/mol) | 0.24 | 0.09 | 0.76 | 80 | 34.04 |
Mw (106 g/mol) | 0.38 | 0.14 | 1.38 | 106 | 28.37 |
Mw/Mn | 1.65 | 1.25 | 3.69 | 0.17 | 10.07 |
R (nm) | 48.92 | 29.00 | 104.10 | 7.33 | 14.99 |
AMP | |||||
Mass fraction (%) | 69 | 58 | 82 | 2 | 3.34 |
Mn (106 g/mol) | 5.66 | 1.40 | 28.08 | 1.871 | 33.06 |
Mw (106 g/mol) | 23.46 | 10.44 | 58.43 | 4.795 | 20.44 |
Mw/Mn | 4.41 | 2.00 | 9.34 | 0.66 | 14.96 |
Rw (nm) | 95.61 | 53.20 | 141.90 | 12.60 | 13.17 |
Total Starch fraction | |||||
Mw/Mn | 24.68 | 9.72 | 47.49 | 5.79 | 23.46 |
Traits | Variance Component | |||
---|---|---|---|---|
E (%) | G (%) | E × G (%) | Residual (%) | |
Starch content | 55.86 *** | 37.28 *** | 4.22 *** | 2.64 |
A granules | 21.77 *** | 73.45 *** | 3.62 *** | 1.15 |
B granules | 29.75 *** | 66.67 *** | 2.96 *** | 0.62 |
C granules | 39.05 *** | 53.81 *** | 6.13 *** | 1.00 |
AML | ||||
Mass fraction | 82.89 *** | 9.67 *** | 6.35 *** | 1.09 |
Mn | 92.06 *** | 4.75 *** | 3.10 *** | 0.09 |
Mw | 86.20 *** | 8.15 *** | 5.42 *** | 0.22 |
Mw/Mn | 86.47 *** | 7.03 *** | 5.94 *** | 0.56 |
Rw | 85.76 *** | 7.33 *** | 6.46 *** | 0.45 |
AMP | ||||
Mass fraction | 78.96 *** | 12.16 *** | 5.72 *** | 3.16 |
Mn | 60.24 *** | 22.35 *** | 17.11 *** | 0.29 |
Mw | 72.40 *** | 9.07 *** | 17.76 *** | 0.76 |
Mw/Mn | 78.96 *** | 11.75 *** | 8.78 *** | 0.51 |
Rw | 77.16 *** | 10.24 *** | 11.63 *** | 0.97 |
Total Starch fraction | ||||
Mw/Mn | 95.02 *** | 2.71 *** | 2.10 *** | 0.18 |
Traits | Environment 1 (%) | Genetic 2 (%) | CVE/CVG | ||||
---|---|---|---|---|---|---|---|
Min | Max | CVE | Min G | Max G | CVG | ||
Starch content | 58.63 | 63.59 | 4.31 | 58.88 | 62.64 | 3.92 | 1.09 |
A granules | 71.76 | 78.92 | 4.56 | 69.04 | 79.65 | 5.09 | 0.89 |
B granules | 15.66 | 23.66 | 14.21 | 16.61 | 26.44 | 15.45 | 0.91 |
C granules | 3.72 | 5.03 | 13.46 | 3.61 | 4.71 | 13.50 | 0.99 |
AML | |||||||
Mass fraction | 24 | 33 | 9.08 | 29 | 31 | 6.90 | 1.31 |
Mn | 0.16 | 0.52 | 47.36 | 0.22 | 0.27 | 24.97 | 1.89 |
Mw | 0.25 | 0.70 | 38.81 | 0.33 | 0.44 | 25.17 | 1.54 |
Mw/Mn | 1.36 | 1.86 | 12.86 | 1.60 | 1.73 | 8.51 | 1.51 |
Rw | 40.25 | 65.39 | 19.81 | 45.87 | 51.95 | 14.04 | 1.41 |
AMP | |||||||
Mass fraction | 66 | 75 | 4.50 | 68 | 70 | 3.66 | 1.22 |
Mn | 3.67 | 8.16 | 43.31 | 4.67 | 7.34 | 37.40 | 1.15 |
Mw | 18.65 | 30.52 | 25.60 | 21.91 | 24.96 | 23.21 | 1.10 |
Mw/Mn | 3.62 | 5.95 | 19.85 | 4.19 | 4.92 | 15.24 | 1.30 |
Rw | 78.40 | 111.48 | 16.20 | 91.61 | 99.58 | 13.81 | 1.17 |
Total Starch fraction | |||||||
Mw/Mn | 12.06 | 33.08 | 28.88 | 22.98 | 26.00 | 14.63 | 1.97 |
Traits | France “Typical” Locations | France “Atypical” Locations | Europe Areas |
---|---|---|---|
Starch (%) | 61.26 b,1 | 61.31 b | 60.66 a |
A granules (%) | 74.14 b | 73.34 a | 75.66 c |
B granules (%) | 21.01 b | 22.25 c | 19.78 a |
C granules (%) | 4.26 b | 4.10 a | 4.18 a,b |
AML | |||
Mass fraction (%) | 30 a | 30 a | 30 a |
Mn (106 g/mol) | 0.26 b | 0.22 a | 0.23 a |
Mw (106 g/mol) | 0.40 b | 0.35 a | 0.38 b |
Mw/Mn | 1.63 a | 1.67 b | 1.64 a,b |
Rw (nm) | 50.17 b | 48.11 a | 48.73 a,b |
AMP | |||
Mass fraction (%) | 69 a | 69 a | 69 a |
Mn (106 g/mol) | 5.62 a | 5.26 a | 6.23 b |
Mw (106 g/mol) | 23.61 b | 22.28 a | 24.86 c |
Mw/Mn | 4.28 a | 4.67 b | 4.20 a |
Rw (nm) | 96.36 b | 92.71 a | 98.71 b |
Total Starch fraction | |||
Mw/Mn | 23.06 a | 25.93 c | 24.62 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rhazi, L.; Méléard, B.; Daaloul, O.; Grignon, G.; Branlard, G.; Aussenac, T. Genetic and Environmental Variation in Starch Content, Starch Granule Distribution and Starch Polymer Molecular Characteristics of French Bread Wheat. Foods 2021, 10, 205. https://doi.org/10.3390/foods10020205
Rhazi L, Méléard B, Daaloul O, Grignon G, Branlard G, Aussenac T. Genetic and Environmental Variation in Starch Content, Starch Granule Distribution and Starch Polymer Molecular Characteristics of French Bread Wheat. Foods. 2021; 10(2):205. https://doi.org/10.3390/foods10020205
Chicago/Turabian StyleRhazi, Larbi, Benoît Méléard, Olfa Daaloul, Guénolé Grignon, Gérard Branlard, and Thierry Aussenac. 2021. "Genetic and Environmental Variation in Starch Content, Starch Granule Distribution and Starch Polymer Molecular Characteristics of French Bread Wheat" Foods 10, no. 2: 205. https://doi.org/10.3390/foods10020205
APA StyleRhazi, L., Méléard, B., Daaloul, O., Grignon, G., Branlard, G., & Aussenac, T. (2021). Genetic and Environmental Variation in Starch Content, Starch Granule Distribution and Starch Polymer Molecular Characteristics of French Bread Wheat. Foods, 10(2), 205. https://doi.org/10.3390/foods10020205