Advanced Inorganic Semiconductor Materials, 3rd Edition
1. Introduction
- Mechanical and device engineering for flexible inorganic electronics (paper [10]).
- Cross-cutting advances in charge transport, defect engineering, and photophysical mechanisms (spanning all nine contributions).
2. Wide-Bandgap and Transition-Metal Oxides: Design, Doping, and Applications
2.1. W-Doped Ga2O3 for Conductive Oxide Devices (Paper [4])
2.2. Tribocatalytic ZnO for Antibiotic Degradation (Paper [5])
2.3. Laser-Induced Resistivity Reduction in LaNiO3 Thin Films (Paper [6])
2.4. Broadband Photoresponse in MoVOx Nanobelts (Paper [7])
2.5. SnS/TiO2 Heterostructure Thin Films for Photocatalysis (Paper [8])
2.6. Oxygen-Sensing Mixed Oxides TiO2–CeO2 (Paper [9])
3. Mechanics and Integration of Ultra-Thin Chips (Paper [10])
4. Hybrid Metal Halides: Chiral and Luminescent Systems
4.1. Chiral OIMHs (Paper [11])
4.2. Luminescent OIMHs (Paper [12])
5. Thematic Integration and Comparative Summary
6. Cross-Cutting Insights
6.1. Defect Engineering as a Design Lever
6.2. Interface Engineering Drives Device Function
6.3. Ambient Energy Harvesting and Sustainable Transduction
6.4. Stability, Manufacturability, and Multi-Physics Integration
7. Outlook
- Integration of ultrafast laser processing with oxide electronics.
- Mechanochemical routes for catalytic activation under ambient conditions.
- Self-powered broadband photodetectors for internet of things and autonomous sensors.
- Chiral and hybrid halides with engineered quantum and spin interactions.
- Mechanically compliant inorganic chips for wearable and implantable technologies.
8. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| CPL | circularly polarized luminescence |
| LED | light-emitting diode |
| NIR | near-infrared |
| OIMH | organic–inorganic metal halide |
| PTFE | polytetrafluoroethylene |
| XPS | x-ray photoelectron spectroscopy |
References
- Wang, S.; Sun, M.; Hung, N.T. Advanced Inorganic Semiconductor Materials. Inorganics 2024, 12, 81. [Google Scholar] [CrossRef]
- Wang, S.; Sun, M.; Hung, N.T. Advanced Inorganic Semiconductor Materials, 2nd Edition. Inorganics 2025, 13, 163. [Google Scholar] [CrossRef]
- Tsymbal, E.Y.; Dagotto, E.R.A.; Eom, C.B.; Ramesh, R. (Eds.) Multifunctional Oxide Heterostructures; Oxford University Press: Oxford, UK, 2012. [Google Scholar] [CrossRef]
- Liao, C.T.; Wang, Y.W.; Yang, C.F.; Min, K.W. Characterizations of Semiconductive W-Doped Ga2O3 Thin Films and Application in Heterojunction Diode Fabrication. Inorganics 2025, 13, 329. [Google Scholar] [CrossRef]
- Kaneva, N. Tribocatalysis of Cefuroxime Axetil: Effect of Stirring Speed, Magnetic Rods, and Beaker Material Type. Inorganics 2025, 13, 301. [Google Scholar] [CrossRef]
- Cichetto, L.J.; Doñate-Buendía, C.; Flores-Arias, M.T.; Aymerich, M.; Costa, J.P.d.C.d.; Cordoncillo-Cordoncillo, E.; Carmo, J.P.P.d.; Ando, O.H.; Beltrán Mir, H.; Bort, J.M.A.; et al. Electrical Resistivity Control for Non-Volatile-Memory Electrodes Induced by Femtosecond Laser Irradiation of LaNiO3 Thin Films Produced by Pulsed Laser Deposition. Inorganics 2025, 13, 297. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, X.; Gao, M.; Hu, R.; Wang, Y.; Li, G. One-Pot Synthesis of the MoVOx Mixed Oxide Nanobelts and Its Photoelectric Properties in the Broadband Light Spectrum Range Exhibiting Self-Powered Characteristics. Inorganics 2025, 13, 273. [Google Scholar] [CrossRef]
- Ding, Y.; Leng, J.; Zhang, M.; Shen, J. Photoelectrochemical and Photocatalytic Properties of SnS/TiO2 Heterostructure Thin Films Prepared by Magnetron Sputtering Method. Inorganics 2025, 13, 208. [Google Scholar] [CrossRef]
- Stevanović, J.N.; Silva, A.G.; Bundaleski, N.; Vasiljević-Radović, D.; Sarajlić, M.; Teodoro, O.M.N.D.; Petrović, S.P. Insight into the Oxygen-Sensing Mechanisms of TiO2–CeO2 Mixed Oxides Treated in a High-Energy Ball Mill: An XPS Analysis. Inorganics 2025, 13, 159. [Google Scholar] [CrossRef]
- Zheng, K.; Dai, S.; Ling, Z.; Gong, H. Mechanical Modelling of Integration and Debonding Process of Ultra-Thin Inorganic Chips. Inorganics 2025, 13, 234. [Google Scholar] [CrossRef]
- Zhu, H.; Sheng, Z.; Shao, B.; He, Y.; Liu, Z.; Wang, S.; Sheng, Z. Chiral Hybrid Organic–Inorganic Metal Halides: Preparation, Luminescent Properties, and Applications. Inorganics 2025, 13, 352. [Google Scholar] [CrossRef]
- Sheng, Z.; Wang, S.; Shao, B.; He, Y.; Liu, Z.; Zhu, H.; Sheng, Z. Synthesis, Photophysical Mechanisms, and Applications of Luminescent Organic–Inorganic Hybrid Metal Halides. Inorganics 2025, 13, 347. [Google Scholar] [CrossRef]
- Jasper, I.; Valério, T.L.; Klobukoski, V.; Pesqueira, C.M.; Massaneiro, J.; Camargo, L.P.; Dall’ Antonia, L.H.; Vidotti, M. Electrocatalytic and Photoelectrocatalytic Sensors Based on Organic, Inorganic, and Hybrid Materials: A Review. Chemosensors 2023, 11, 261. [Google Scholar] [CrossRef]
- Wang, S.; Ren, C.; Tian, H.; Yu, J.; Sun, M. MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: A first-principles study. Phys. Chem. Chem. Phys. 2018, 20, 13394–13399. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tian, H.; Ren, C.; Yu, J.; Sun, M. Electronic and optical properties of heterostructures based on transition metal dichalcogenides and graphene-like zinc oxide. Sci. Rep. 2018, 8, 12009. [Google Scholar] [CrossRef]
- Wang, S.; Tian, H. Two-Dimensional Valleytronic Materials: From Principles to Device Applications; IOP Publishing: Bristol, UK, 2025. [Google Scholar] [CrossRef]
- Phillips, K.C.; Gandhi, H.H.; Mazur, E.; Sundaram, S.K. Ultrafast laser processing of materials: A review. Adv. Opt. Photon. 2015, 7, 684–712. [Google Scholar] [CrossRef]
- Amrute, A.P.; Bellis, J.d.; Felderhoff, M.; Schüth, F. Mechanochemical Synthesis of Catalytic Materials. Chem. Eur. J. 2021, 27, 6819–6847. [Google Scholar] [CrossRef]
- Al Fattah, M.F.; Khan, A.A.; Anabestani, H.; Rana, M.M.; Rassel, S.; Therrien, J.; Ban, D. Sensing of ultraviolet light: A transition from conventional to self-powered photodetector. Nanoscale 2021, 13, 15526–15551. [Google Scholar] [CrossRef]
- Lu, H.; Vardeny, Z.V.; Beard, M.C. Control of light, spin and charge with chiral metal halide semiconductors. Nat. Rev. Chem. 2022, 6, 470–485. [Google Scholar] [CrossRef]
- Liu, G.; Lv, Z.; Batool, S.; Li, M.Z.; Zhao, P.; Guo, L.; Wang, Y.; Zhou, Y.; Han, S.T. Biocompatible Material-Based Flexible Biosensors: From Materials Design to Wearable/Implantable Devices and Integrated Sensing Systems. Small 2023, 19, 2207879. [Google Scholar] [CrossRef]
- Wang, S.; Kang, Y.; Wang, L.; Zhang, H.; Wang, Y.; Wang, Y. Organic/inorganic hybrid sensors: A review. Sens. Actuators B: Chem. 2013, 182, 467–481. [Google Scholar] [CrossRef]
- Zhu, J.; Wen, H.; Zhang, H.; Huang, P.; Liu, L.; Hu, H. Recent advances in biodegradable electronics- from fundament to the next-generation multi-functional, medical and environmental device. Sustain. Mater. Technol. 2023, 35, e00530. [Google Scholar] [CrossRef]
- Inorganics|Special Issue: Advanced Inorganic Semiconductor Materials, 4th Edition. Available online: https://www.mdpi.com/journal/inorganics/special_issues/18Q2Z3Z722 (accessed on 25 November 2025).
| Paper/Review | Material System | Key Technique(s) | Main Phenomenon/Property | Application Domain |
|---|---|---|---|---|
| [4] | W-doped Ga2O3 | E-beam evaporation, Hall analysis | High conductivity, n-type transport | Rectifying diodes |
| [5] | ZnO (sol–gel, hydrothermal) | Tribocatalysis | Dark oxidation of antibiotics | Environmental remediation |
| [6] | LaNiO3 | Pulsed laser deposition + femtosecond laser | Resistivity reduction | Memory electrodes |
| [7] | MoVOx | One-pot synthesis | Broadband NIR photoresponse, self-powered | Photodetectors |
| [8] | SnS/TiO2 | Magnetron sputtering | Type-II charge transfer | Photocatalysis |
| [9] | TiO2–CeO2 | High-energy milling | Oxygen vacancy tuning | Gas sensors |
| [10] | Ultra-thin Si chips | Mechanical modelling | Debonding thresholds | Flexible electronics |
| [11] | Chiral OIMHs | Chiral synthesis | CPL, spin selectivity | Chiral optoelectronics |
| [12] | Luminescent OIMHs | Hybrid synthesis | Exciton engineering | LEDs, X-ray imaging |
| Paper | Improvement Reported | Magnitude |
|---|---|---|
| [4] | Conductivity increase vs. undoped | Orders of magnitude decrease in resistivity |
| [5] | Cefuroxime degradation rate | Higher at 500 rpm with sol–gel ZnO |
| [6] | Resistivity reduction | 38–52% |
| [7] | Photocurrent stability | Maintain signal after 2 years, NIR response to 1064 nm |
| [8] | Photocurrent vs TiO2 | 13.8× |
| [9] | Sensor resistance | Mixed oxides lower than pure CeO2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Sun, M.; Hung, N.T. Advanced Inorganic Semiconductor Materials, 3rd Edition. Inorganics 2025, 13, 409. https://doi.org/10.3390/inorganics13120409
Wang S, Sun M, Hung NT. Advanced Inorganic Semiconductor Materials, 3rd Edition. Inorganics. 2025; 13(12):409. https://doi.org/10.3390/inorganics13120409
Chicago/Turabian StyleWang, Sake, Minglei Sun, and Nguyen Tuan Hung. 2025. "Advanced Inorganic Semiconductor Materials, 3rd Edition" Inorganics 13, no. 12: 409. https://doi.org/10.3390/inorganics13120409
APA StyleWang, S., Sun, M., & Hung, N. T. (2025). Advanced Inorganic Semiconductor Materials, 3rd Edition. Inorganics, 13(12), 409. https://doi.org/10.3390/inorganics13120409
