Optimizing the Focusing Performance of Diffractive Optical Elements by Integrated Structure Techniques and Laser Lithography
Abstract
1. Introduction
2. Design Methodology and Numerical Matrix Generating
3. Fabrication Process
4. Optical Verification and Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, L.; Bai, Z.; Liu, R.; Wang, Y.; Yu, J.; Ran, J.; Chen, Z.; Luo, Z.; Liao, C.; Wang, Y.; et al. Polarization-Independent Focusing Vortex Beam Generation Based on Ultra-Thin Spiral Diffractive Lens on Fiber End-Facet. Photonics 2024, 11, 1167. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Nalimov, A.G.; Stafeev, S.S. Focusing a Vortex Laser Beam with Polarization Conversion. Photonics 2021, 8, 480. [Google Scholar] [CrossRef]
- Gao, H.; Hu, X.; Yang, Z.; Liu, Z. Application of vortex beam interference in displacement measurement. In Proceedings of the Fourteenth International Conference on Information Optics and Photonics (CIOP 2023), Xi’an, China, 24 November 2023; Volume 12953, p. 129352G. [Google Scholar] [CrossRef]
- Barrows, F.; Petford-Long, A.K.; Phatak, C. 3D magnetic imaging using electron vortex beam microscopy. Commun. Phys. 2022, 5, 324. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Khorin, P.A.; Butt, M.A. Modern Types of Axicons: New Functions and Applications. Sensors 2021, 21, 6690. [Google Scholar] [CrossRef]
- Zhai, Z.; Cheng, Z.; Lv, Q.; Wang, X. Tunable Axicons Generated by Spatial Light Modulator with High-Level Phase Computer-Generated Holograms. Appl. Sci. 2020, 10, 5127. [Google Scholar] [CrossRef]
- Summers, A.M.; Yu, X.; Wang, X.; Raoul, M.; Nelson, J.; Todd, D.; Zigo, S.; Lei, S.; Trallero-Herrero, C.A. Spatial characterization of Bessel-like beams for strong-field physics. Opt. Express 2017, 25, 1646–1655. [Google Scholar] [CrossRef]
- Fan, D.; Wang, L.; Ekinci, Y. Nanolithography using Bessel Beams of Extreme Ultraviolet Wavelength. Sci. Rep. 2016, 6, 31301. [Google Scholar] [CrossRef]
- Soltau, J.; Meyer, P.; Hartmann, R.; Strüeder, L.; Soltau, H.; Salditt, T. Full-field x-ray fluorescence imaging using a Fresnel zone plate coded aperture. Optica 2023, 10, 127–133. [Google Scholar] [CrossRef]
- Marchesini, S.; Sakdinawat, A. Shaping coherent x-rays with binary optics. Opt. Express 2019, 27, 907–917. [Google Scholar] [CrossRef]
- Skinner, G.K. Design and imaging performance of achromatic diffractive–refractive x-ray and gamma-ray Fresnel lenses. Appl. Opt. 2004, 43, 4845–4853. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Wang, Z.; Cheng, X.; Dun, X. Design of diffractive optical element for ultra-thin deep ultraviolet imaging system. In Proceedings of the International Conference on Optoelectronic and Microelectronic Technology and Application, Nanjing, China, 4 December 2020; Volume 11617, pp. 560–567. [Google Scholar]
- Nalimov, A.; Stafeev, S.; Kotlyar, V.; Kozlova, E. Optical Sensor Methodology for Measuring Shift, Thickness, Refractive Index and Tilt Angle of Thin Films. Photonics 2023, 10, 690. [Google Scholar] [CrossRef]
- Khonina, S.N.; Ustinov, A.V.; Kirilenko, M.S.; Kuchmizhak, A.A.; Porfirev, A.P. Application of a binary curved fork grating for the generation and detection of optical vortices outside the focal plane. J. Opt. Soc. Am. B 2020, 37, 1714–1721. [Google Scholar] [CrossRef]
- Kichi, Z.A.; Sabouri, S.G. Multiple Airy beam generation by a digital micro mirror device. Opt. Express 2022, 30, 23025–23034. [Google Scholar] [CrossRef]
- Sedova, V.; Ogor, F.; Rovera, J.; Tsilipakos, O.; Wiedenmann, J.; Heggarty, K.; Erdmann, A. Advances in modeling and optimization for two-photon lithography. J. Micro/Nanopatter. Mater. Metrol. 2025, 24, 023001. [Google Scholar] [CrossRef]
- Wang, Z.; Piao, M.; Xie, N.; Zhao, Y.; Zhang, C.; Ma, D.; Yang, D. Optimal design of the computational flat diffractive optical system. Opt. Express 2024, 32, 5969–5981. [Google Scholar] [CrossRef]
- Dallas, W.J. Computer-Generated Holograms. In Digital Holography and Three-Dimensional Display; Poon, T.C., Ed.; Springer: Boston, MA, USA, 2006. [Google Scholar] [CrossRef]
- Feldman, M.R.; Guest, C.C. Computer generated holographic optical elements for optical interconnection of very large scale integrated circuits. Appl. Opt. 1987, 26, 4377–4384. [Google Scholar] [CrossRef] [PubMed]
- Wyrowski, F.; Bryngdahl, O. Iterative Fourier-transform algorithm applied to computer holography. J. Opt. Soc. Am. A 1988, 5, 1058–1065. [Google Scholar] [CrossRef]
- Hacker, M.; Stobrawa, G.; Feurer, T. Iterative Fourier transform algorithm for phase-only pulse shaping. Opt. Express 2001, 9, 191–199. [Google Scholar] [CrossRef]
- Trung, H.T.D.; Nguyen, H.L.V.; Munnibee, A.; Kim, Y.-J.; Ghim, Y.-S.; Rhee, H.G. Design and fabrication of a Fresnel zone plate with an enhanced depth of focus. Appl. Opt. 2024, 63, 6384–6392. [Google Scholar] [CrossRef]
- Zeitner, U.D.; Banasch, M.; Trost, M. Potential of E-beam lithography for micro- and nano-optics fabrication on large areas. J. Micro/Nanopatter. Mater. Metrol. 2023, 22, 041405. [Google Scholar] [CrossRef]
- Smith, M.A.; Berry, S.; Parameswaran, L.; Holtsberg, C.; Siegel, N.; Lockwood, R.; Chrisp, M.P.; Freeman, D.; Rothschild, M. Design, simulation, and fabrication of three-dimensional microsystem components using grayscale photolithography. J. Micro/Nanolithogr. MEMS MOEMS 2019, 18, 043507. [Google Scholar] [CrossRef]
- Stonyte, D.; Jukna, V.; Lukosiunas, I.; Zakarauskas, P.; Huang, H.-H.; Katkus, T.; Zheng, N.; Le, N.H.A.; Juodkazis, S.; Gailevicius, D.; et al. Four-level diffractive photon sieves by deep-UV femtosecond laser ablation. Opt. Express 2024, 32, 43102–43117. [Google Scholar] [CrossRef]
- Rahman, M.; Kamal, N.; Abdullah, N.F. EDT-STACK: A stacking ensemble-based decision trees algorithm for tire tread depth condition classification. Results Eng. 2024, 22, 102218. [Google Scholar] [CrossRef]
- Alrbai, M.; Al-Dahidi, S.; Alahmer, H.; Al-Ghussain, L.; Hayajneh, H.; Shboul, B.; Abusorra, M.; Alahmer, A. Utilizing waste heat in wastewater treatment plants for water desalination: Modeling and Multi-Objective optimization of a Multi-Effect desalination system using Decision Tree Regression and Pelican optimization algorithm. Therm. Sci. Eng. Prog. 2024, 54, 102784. [Google Scholar] [CrossRef]
- Goodman, J.W. Introduction to Fourier Optics, 2nd ed.; McGraw-Hill Companies Inc.: New York, NY, USA, 1996. [Google Scholar]
- Vijayakumar, A.; Bhattacharya, S. Design and Fabrication of Diffractive Optical Elements with MATLAB.; SPIE-Press: Bellingham, WA, USA, 2017; ISBN 9781510607064. [Google Scholar] [CrossRef]
- Voelz, D.G. Computational Fourier Optics: A MATLAB Tutorial; SPIE-Press: Bellingham, WA, USA, 2011; Volume TT89, pp. 52+64–66. ISBN 9780819482044. [Google Scholar]
- Torcal-Milla, F.J.; Sanchez-Brea, L.M.; Gomez-Pedrero, J.A. Sector-based Fresnel zone plate with extended depth of focus. Opt. Laser Technol. 2022, 154, 108294. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Vinoth, B.; Minin, I.V.; Rosen, J.; Minin, O.V.; Cheng, C.-J. Experimental demonstration of square Fresnel zone plate with chiral side lobes. Appl. Opt. 2017, 56, F128–F133. [Google Scholar] [CrossRef]
- Sakdinawat, A.; Liu, Y. Soft-x-ray microscopy using spiral zone plates. Opt. Lett. 2007, 32, 2635–2637. [Google Scholar] [CrossRef]
- Li, Y.; Guo, M.; Guo, G.; Ma, Q. Transdermal drug delivery mediated by acoustic vortex beam. Ultrasonics 2024, 140, 107304. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Sun, S.; Wang, J.; Qu, Z.; Wei, T.; Liu, X.; Sun, H.; Monka, P.P.; Hamza, A. Application of array Bessel beam generated by superposition method in electronic glass cutting. Opt. Lasers Eng. 2024, 181, 108384. [Google Scholar] [CrossRef]
- Trung, H.T.D.; Ghim, Y.-S.; Rhee, H.G. Design and Fabrication of Micro-binary Diffractive Optical Elements to Generate Airy Beams Using a Versatile Direct Laser Lithography Machine. Curr. Opt. Photon. 2025, 9, 130–140. [Google Scholar] [CrossRef]
- Atar, M.F.; Trung, H.T.D.; Ghim, Y.; Rhee, H. Design, Fabrication, and Performance Analysis of Diffractive Beam Shaping Negative Square Fresnel Zone Plate. Curr. Opt. Photon. 2025, 9, 343–353. [Google Scholar] [CrossRef]
- Trung, H.T.D.; Ghim, Y.-S.; Rhee, H.-G. Fabrication of Diffractive Optical Elements to Generate Square Focal Spots via Direct Laser Lithography and Machine Learning. Photonics 2025, 12, 794. [Google Scholar] [CrossRef]














Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Trung, H.T.D.; Ghim, Y.-S.; Rhee, H.-G. Optimizing the Focusing Performance of Diffractive Optical Elements by Integrated Structure Techniques and Laser Lithography. Photonics 2026, 13, 75. https://doi.org/10.3390/photonics13010075
Trung HTD, Ghim Y-S, Rhee H-G. Optimizing the Focusing Performance of Diffractive Optical Elements by Integrated Structure Techniques and Laser Lithography. Photonics. 2026; 13(1):75. https://doi.org/10.3390/photonics13010075
Chicago/Turabian StyleTrung, Hieu Tran Doan, Young-Sik Ghim, and Hyug-Gyo Rhee. 2026. "Optimizing the Focusing Performance of Diffractive Optical Elements by Integrated Structure Techniques and Laser Lithography" Photonics 13, no. 1: 75. https://doi.org/10.3390/photonics13010075
APA StyleTrung, H. T. D., Ghim, Y.-S., & Rhee, H.-G. (2026). Optimizing the Focusing Performance of Diffractive Optical Elements by Integrated Structure Techniques and Laser Lithography. Photonics, 13(1), 75. https://doi.org/10.3390/photonics13010075

