The Evaluation of Amino Acid Profiles in Gluten-Free Mini Sponge Cakes Fortified with Broccoli By-Product
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Gluten-Free Sponge Cakes Fortified with Broccoli By-Products
2.3. Extraction of Amino Acids
2.3.1. Method 1
2.3.2. Method 2
2.4. Analysis of Amino Acids
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hwang, H.-I.; Hartman, T.G.; Rosen, R.T.; Lech, J.; Ho, C.-T. Formation of Pyrazines from the Maillard Reaction of Glucose and Lysine-.Alpha.-Amine-15N. J. Agric. Food Chem. 1994, 42, 1000–1004. [Google Scholar] [CrossRef]
- Szudera-Kończal, K.; Myszka, K.; Kubiak, P.; Majcher, M.A. Analysis of the Ability to Produce Pleasant Aromas on Sour Whey and Buttermilk By-Products by Mold Galactomyces Geotrichum: Identification of Key Odorants. Molecules 2021, 26, 6239. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Xiao, H.; Zhang, Z.; Gao, X.; Zhao, J. Rapid and Sensitive Method for Determining Free Amino Acids in Plant Tissue by High-Performance Liquid Chromatography with Fluorescence Detection. Acta Geochim. 2017, 36, 680–696. [Google Scholar] [CrossRef]
- Antoine, F.R.; Wei, C.I.; Littell, R.C.; Marshall, M.R. HPLC Method for Analysis of Free Amino Acids in Fish Using O-Phthaldialdehyde Precolumn DerivatizationJ. Agric. Food Chem. 1999, 47, 5100–5107. [Google Scholar] [CrossRef]
- Pérez-Palacios, T.; Barroso, M.A.; Ruiz, J.; Antequera, T. A Rapid and Accurate Extraction Procedure for Analysing Free Amino Acids in Meat Samples by GC-MS. Int. J. Anal. Chem. 2015, 2015, 209214. [Google Scholar] [CrossRef] [Green Version]
- Shafaei, A.; Halim, N.H.A.; Zakaria, N.; Ismail, Z. Analysis of Free Amino Acids in Different Extracts of Orthosiphon Stamineus Leaves by High-Performance Liquid Chromatography Combined with Solid-Phase Extraction. Pharmacogn. Mag. 2017, 13, S385–S391. [Google Scholar] [CrossRef] [PubMed]
- Saifer, A. Comparative Study of Various Extraction Methods for the Quantitative Determination of Free Amino Acids from Brain Tissue. Anal. Biochem. 1971, 40, 412–423. [Google Scholar] [CrossRef]
- Sabença, C.; Ribeiro, M.; de Sousa, T.; Poeta, P.; Bagulho, A.S.; Igrejas, G. Wheat/Gluten-Related Disorders and Gluten-Free Diet Misconceptions: A Review. Foods 2021, 10, 1765. [Google Scholar] [CrossRef]
- Šterna, V.; Zute, S.; Jansone, I.; Kantane, I. Chemical Composition of Covered and Naked Spring Barley Varieties and Their Potential for Food Production. Pol. J. Food Nutr. Sci. 2017, 67, 151–158. [Google Scholar] [CrossRef]
- van Hees, N.J.M.; Giltay, E.J.; Tielemans, S.M.A.J.; Geleijnse, J.M.; Puvill, T.; Janssen, N.; van der Does, W. Essential Amino Acids in the Gluten-Free Diet and Serum in Relation to Depression in Patients with Celiac Disease. PLoS ONE 2015, 10, e0122619. [Google Scholar] [CrossRef] [Green Version]
- Carta, M.G.; Hardoy, M.C.; Boi, M.F.; Mariotti, S.; Carpiniello, B.; Usai, P. Association between Panic Disorder, Major Depressive Disorder and Celiac Disease: A Possible Role of Thyroid Autoimmunity. J. Psychosom. Res. 2002, 53, 789–793. [Google Scholar] [CrossRef]
- Addolorato, G.; Mirijello, A.; D’Angelo, C.; Leggio, L.; Ferrulli, A.; Abenavoli, L.; Vonghia, L.; Cardone, S.; Leso, V.; Cossari, A.; et al. State and Trait Anxiety and Depression in Patients Affected by Gastrointestinal Diseases: Psychometric Evaluation of 1641 Patients Referred to an Internal Medicine Outpatient Setting. Int. J. Clin. Pract. 2008, 62, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Drabińska, N.; Krupa-Kozak, U.; Ciska, E.; Jarocka-Cyrta, E. Plasma Profile and Urine Excretion of Amino Acids in Children with Celiac Disease on Gluten-Free Diet after Oligofructose-Enriched Inulin Intervention: Results of a Randomised Placebo-Controlled Pilot Study. Amino Acids 2018, 50, 1451–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paucar-Menacho, L.M.; Dueñas, M.; Peñas, E.; Frias, J.; Martínez-Villaluenga, C. Effect of Dry Heat Puffing on Nutritional Composition, Fatty Acid, Amino Acid and Phenolic Profiles of Pseudocereals Grains. Pol. J. Food Nutr. Sci. 2018, 68, 289–297. [Google Scholar] [CrossRef]
- Weijzen, M.E.G.; van Gassel, R.J.J.; Kouw, I.W.K.; Trommelen, J.; Gorissen, S.H.M.; van Kranenburg, J.; Goessens, J.P.B.; van de Poll, M.C.G.; Verdijk, L.B.; van Loon, L.J.C. Ingestion of Free Amino Acids Compared with an Equivalent Amount of Intact Protein Results in More Rapid Amino Acid Absorption and Greater Postprandial Plasma Amino Acid Availability Without Affecting Muscle Protein Synthesis Rates in Young Adults in a Double-Blind Randomized Trial. J. Nutr. 2022, 152, 59–67. [Google Scholar] [CrossRef]
- He, X.; Sotelo-Orozco, J.; Rudolph, C.; Lönnerdal, B.; Slupsky, C.M. The Role of Protein and Free Amino Acids on Intake, Metabolism, and Gut Microbiome: A Comparison between Breast-Fed and Formula-Fed Rhesus Monkey Infants. Front. Pediatrics 2020, 7, 563. [Google Scholar] [CrossRef] [PubMed]
- Drabińska, N.; Jarocka-Cyrta, E.; Markiewicz, L.H.; Krupa-Kozak, U. The Effect of Oligofructose-Enriched Inulin on Faecal Bacterial Counts and Microbiota-Associated Characteristics in Celiac Disease Children Following a Gluten-Free Diet: Results of a Randomized, Placebo-Controlled Trial. Nutrients 2018, 10, 201. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Valan Arasu, M.; Lee, M.K.; Chun, J.H.; Seo, J.M.; Lee, S.W.; Al-Dhabi, N.A.; Kim, S.J. Quantification of Glucosinolates, Anthocyanins, Free Amino Acids, and Vitamin C in Inbred Lines of Cabbage (Brassica oleracea L.). Food Chem. 2014, 145, 77–85. [Google Scholar] [CrossRef]
- Park, S.; Arasu, M.V.; Lee, M.K.; Chun, J.H.; Seo, J.M.; Al-Dhabi, N.A.; Kim, S.J. Analysis and Metabolite Profiling of Glucosinolates, Anthocyanins and Free Amino Acids in Inbred Lines of Green and Red Cabbage (Brassica oleracea L.). LWT—Food Sci. Technol. 2014, 58, 203–213. [Google Scholar] [CrossRef]
- Arnáiz, E.; Bernal, J.; Martín, M.T.; Nozal, M.J.; Bernal, J.L.; Toribio, L. Supercritical Fluid Extraction of Free Amino Acids from Broccoli Leaves. J. Chromatogr. A 2012, 1250, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Campas-Baypoli, O.N.; Snchez-Machado, D.I.; Bueno-Solano, C.; Núñez-Gastélum, J.A.; Reyes-Moreno, C.; López-Cervantes, J. Biochemical Composition and Physicochemical Properties of Broccoli Flours. Int. J. Food Sci. Nutr. 2009, 60, 163–173. [Google Scholar] [CrossRef]
- Domínguez-Perles, R.; Martínez-Ballesta, M.C.; Carvajal, M.; García-Viguera, C.; Moreno, D. A Broccoli-Derived by-Products—A Promising Source of Bioactive Ingredients. J. Food Sci. 2010, 75, C383–C392. [Google Scholar] [CrossRef] [PubMed]
- Arnáiz, E.; Bernal, J.; Martín, M.T.; García-Viguera, C.; Bernal, J.L.; Toribio, L. Supercritical Fluid Extraction of Lipids from Broccoli Leaves. Eur. J. Lipid Sci. Technol. 2011, 113, 479–486. [Google Scholar] [CrossRef]
- Kalaydzhiev, H.; Ivanova, P.; Silva, C.L.M.; Chalova, V.I. Functional Properties of Protein Isolate and Acid Soluble Protein-Rich Ingredient Co-Produced from Ethanol-Treated Industrial Rapeseed Meal. Pol. J. Food Nutr. Sci. 2019, 69, 129–136. [Google Scholar] [CrossRef]
- O’Shea, N.; Arendt, E.K.; Gallagher, E. Dietary Fibre and Phytochemical Characteristics of Fruit and Vegetable By-Products and Their Recent Applications as Novel Ingredients in Food Products. Innov. Food Sci. Emerg. Technol. 2012, 16, 1–10. [Google Scholar] [CrossRef]
- Drabińska, N.; Ciska, E.; Szmatowicz, B.; Krupa-Kozak, U. Broccoli By-Products Improve the Nutraceutical Potential of Gluten-Free Mini Sponge Cakes. Food Chem. 2018, 267, 170–177. [Google Scholar] [CrossRef]
- Krupa-Kozak, U.; Drabińska, N.; Bączek, N.; Šimková, K.; Starowicz, M.; Jeliński, T. Application of Broccoli Leaf Powder in Gluten-Free Bread: An Innovative Approach to Improve Its Bioactive Potential and Technological Quality. Foods 2021, 10, 819. [Google Scholar] [CrossRef]
- Krupa-Kozak, U.; Drabińska, N.; Rosell, C.M.; Fadda, C.; Anders, A.; Jeliński, T.; Ostaszyk, A. Broccoli Leaf Powder as an Attractive By-Product Ingredient: Effect on Batter Behaviour, Technological Properties and Sensory Quality of Gluten-Free Mini Sponge Cake. Int. J. Food Sci. Technol. 2019, 54, 1121–1129. [Google Scholar] [CrossRef] [Green Version]
- Mncwangi, N.P.; Viljoen, A.M. Quantitative Variation of Amino Acids in Sutherlandia Frutescens (Cancer Bush)-towards Setting Parameters for Quality Control. S. Afr. J. Bot. 2012, 82, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Pournamdari, M.; Saadi, A.; Ellis, E.; Andrew, R.; Walker, B.; Watson, D.G. Development of a Derivatisation Method for the Analysis of Aldehyde Modified Amino Acid Residues in Proteins by Fourier Transform Mass Spectrometry. Anal. Chim. Acta 2009, 633, 216–222. [Google Scholar] [CrossRef]
- Starkute, V.; Bartkiene, E.; Bartkevics, V.; Rusko, J.; Zadeike, D.; Juodeikiene, G. Amino Acids Profile and Antioxidant Activity of Different Lupinus Angustifolius Seeds after Solid State and Submerged Fermentations. J. Food Sci. Technol. 2016, 53, 4141–4148. [Google Scholar] [CrossRef] [Green Version]
- Barba, F.J.; Poojary, M.M.; Wang, J.; Olsen, K.; Orlien, V. Effect of High Pressure Processing and Storage on the Free Amino Acids in Seedlings of Brussels Sprouts. Innov. Food Sci. Emerg. Technol. 2017, 41, 188–192. [Google Scholar] [CrossRef]
- Drabińska, N.; Jeż, M.; Nogueira, M. Variation in the Accumulation of Phytochemicals and Their Bioactive Properties among the Aerial Parts of Cauliflower. Antioxidants 2021, 10, 1597. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sharma, A.; Kaur, R.; Thukral, A.K.; Bhardwaj, R.; Ahmad, P. Differential Distribution of Amino Acids in Plants. Amino Acids 2017, 49, 821–869. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.; Dunstan, R.H.; Rothkirch, T.; Roberts, T.K.; Reichelt, K.L.; Cosford, R.; Deed, G.; Ellis, L.B.; Sparkes, D.L. Altered Amino Acid Excretion in Children with Autism. Nutr. Neurosci. 2008, 11, 9–17. [Google Scholar] [CrossRef]
- Dereziński, P.; Klupczynska, A.; Sawicki, W.; Pałka, J.A.; Kokot, Z.J. Amino Acid Profiles of Serum and Urine in Search for Prostate Cancer Biomarkers: A Pilot Study. Int. J. Med. Sci. 2017, 14, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murcia, M.A.; López-Ayerra, B.; Martínez-Tomé, M.; García-Carmona, F. Effect of Industrial Processing on Amino Acid Content of Broccoli. J. Sci. Food Agric. 2001, 81, 1299–1305. [Google Scholar] [CrossRef]
- Hansen, M.E.; Sørensen, H.; Cantwell, M. Changes in Acetaldehyde, Ethanol and Amino Acid Concentrations in Broccoli Florets during Air and Controlled Atmosphere Storage. Postharvest Biol. Technol. 2001, 22, 227–237. [Google Scholar] [CrossRef]
- Yoneyama, T.; Suzuki, A. Light-Independent Nitrogen Assimilation in Plant Leaves: Nitrate Incorporation into Glutamine, Glutamate, Aspartate, and Asparagine Traced by (15)N. Plants 2020, 9, 1303. [Google Scholar] [CrossRef] [PubMed]
- Šmídová, Z.; Rysová, J. Gluten-Free Bread and Bakery Products Technology. Foods 2022, 11, 480. [Google Scholar] [CrossRef]
- Sevinc, E.; Akar, H.H.; Sevinc, N.; Arslan, D.; Sezgin, G.C. Amino Acid Levels in Children with Celiac Disease. Nutr. Hosp. 2015, 32, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Fang, L.; Zhou, H.; Yang, H. Effects of Amino Acids on the Physiochemical Properties of Potato Starch. Food Chem. 2014, 151, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhou, H.; Yang, H.; Cui, M. Effects of Charge-Carrying Amino Acids on the Gelatinization and Retrogradation Properties of Potato Starch. Food Chem. 2015, 167, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Conte, P.; Fadda, C.; Drabińska, N.; Krupa-Kozak, U. Technological and Nutritional Challenges, and Novelty in Gluten-Free Breadmaking: A Review. Pol. J. Food Nutr. Sci. 2019, 69, 5–21. [Google Scholar] [CrossRef]
Amino Acid | Abbreviation | BLP | C | B1 | B2 | B3 |
---|---|---|---|---|---|---|
Non-essential amino acids | ||||||
Alanine | ALA | 11,523.4 ± 222.9 | 281.1 ± 1.4 a | 638.8 ± 6.7 b | 638.4 ± 20.4 b | 941.2 ± 10.6 c |
Glycine | GLY | 384.5 ± 2.0 | 156.3 ± 10.7 a | 187.1 ± 5.2 b | 206.4 ± 13.8 bc | 221.8 ± 8.1 c |
Serine | SER | 10,552.9 ± 184.9 | 430.5 ± 1.5 a | 746.7 ± 26.9 b | 793.5 ± 11.5 c | 1084.3 ± 7.8 d |
Proline | PRO | 3682.6 ± 32.0 | 278.5 ± 0.2 a | 439.8 ± 6.0 b | 436.8 ± 4.5 b | 576.9 ± 2.7 c |
Asparagine | ASN | 4286.6 ± 27.1 | 231.6 ± 6.7 a | 292.3 ± 18.7 b | 318.2 ± 6.2 b | 453.6 ± 3.3 c |
Aspartic acid | ASP | 25,970.3 ± 203.6 | 399.2 ± 16.2 a | 1130.4 ± 191.7 b | 1683.8 ± 20.6 c | 2448.3 ± 76.0 d |
Glutamic acid | GLU | 38,185.3 ± 385.2 | 1419.2 ± 117.8 a | 2338.3 ± 132.8 b | 2622.6 ± 93.9 c | 3294.8 ± 16.2 d |
Glutamine | GLN | 5619.2 ± 77.0 | 34.8 ± 0.7 a | 134.8 ± 0.4 b | 150.6 ± 13.2 b | 256.7 ± 22.9 c |
Tyrosine | TYR | 1090.5 ± 34.2 | 363.7 ± 142.0 a | 417.3 ± 90.6 a | 370.1 ± 58.0 a | 414.6 ± 72.5 a |
Essential amino acids | ||||||
Valine | VAL | 4080.6 ± 45.5 | 283.2 ± 2.5 a | 472.3 ± 9.9 b | 490.8 ± 28.0 b | 624.4 ± 8.0 c |
Leucine | LEU | 1712.9 ± 4.3 | 534.5 ± 8.4 a | 582.0 ± 2.1 b | 604.2 ± 1.8 c | 760.0 ± 13.0 d |
Isoleucine | ILE | 1636.7 ± 22.5 | 249.8 ± 11.7 a | 350.0 ± 5.1 b | 348.3 ± 7.2 b | 400.9 ± 7.6 c |
Threonine | THR | 6108.7 ± 47.6 | 321.5 ± 14.2 a | 538.0 ± 2.6 b | 601.4 ± 2.4 c | 769.8 ± 9.6 d |
Methionine | MET | 1147.8 ± 11.4 | 82.3 ± 0.6 a | 136.2 ± 20.7 a | 68.2 ± 3.9 a | 91.4 ± 9.0 a |
Phenylalanine | PHE | ND | 196.0 ± 20.3 a | 262.3 ± 5.7 b | 246.5 ± 3.7 b | 288.6 ± 8.3 c |
Lysine | LYS | 2826.1 ± 50.9 | 290.6 ± 11.3 a | 398.6 ± 7.7 b | 334.7 ± 8.0 c | 482.0 ± 2.1 d |
Tryptophan | TRP | 868.0 ± 18.3 | 127.6 ± 83.6 a | 127.7 ± 42.9 a | 98.1 ± 5.8 a | 170.4 ± 83.4 a |
Histidine | HIS | 2764.0 ± 96.7 | 133.9 ± 18.0 a | 127.2 ± 41.0 a | 119.7 ± 4.2 a | 234.7 ± 144.0 a |
Other amino acids and derivatives | ||||||
Thioproline | TPR | ND | 42.41 ± 8.36 a | 36.5 ± 2.6 a | 34.9 ± 10.3 a | 31.7 ± 3.4 a |
α-Aminobutyric acid | ABA | 67.9 ± 3.8 | 5.3 ± 7.5 | ND * | ND | 15.8 ± 1.4 |
β-Aminoisobutyric acid | BAIB | 68.7 ± 1.9 | ND | ND | ND | ND |
α-Aminoadipic acid | AAA | 416.0 ± 27.8 | ND | ND | ND | ND |
α-Aminopimelic acid | APA | 39.3 ± 1.9 | ND | ND | ND | ND |
Ornithine | ORN | 231.4 ± 47.3 | ND | ND | ND | ND |
Glycyl-proline | GPR | 95.8 ± 32.5 | ND | ND | ND | ND |
Hydroxylysine | HLY | 101.3 ± 98.8 | ND | ND | ND | ND |
TOTAL | 123,460.3 ± 1680.0 | 5862.0 ± 483.6 a | 9356.3 ± 619.1 b | 10,167.1 ± 317.2 b | 13,561.5 ± 501.0 c |
Amino Acid | Abbreviation | BLP | C | B1 | B2 | B3 |
---|---|---|---|---|---|---|
Non-essential amino acids | ||||||
Alanine | ALA | 1231.8 ± 87.7 | ND | ND | ND | 52.7 ± 3.6 |
Glycine | GLY | 68.4 ± 19.0 | ND | ND | ND | ND |
Valine | VAL | 907.6 ± 29.9 | 72.0 ± 11.7 a | 80.0 ± 21.6 a | 91.1 ± 18.8 a | 142.5 ± 8.0 b |
Serine | SER | 757.3 ± 31.0 | ND | ND | 40.6 ± 6.0 a | 52.7 ± 9.6 a |
Proline | PRO | 385.8 ± 8.6 | 29.1 ± 8.9 a | 37.4 ± 5.0 a | 37.0 ± 5.2 a | 47.7 ± 6.4 b |
Aspartic acid | ASP | 1889.2 ± 61.2 | 26.3 ± 9.7 a | 56.4 ± 12.2 b | 123.6 ± 14.2 c | 137.8 ± 14.8 c |
Glutamic acid | GLU | 2124.0 ± 86.1 | 64.6 ± 6.2 a | 136.5 ± 32.1 b | 195.3 ± 43.3 c | 253.6 ± 40.2 d |
Tyrosine | TYR | 94.7 ± 7.1 | 26.3 ± 0.4 a | 24.2 ± 5.7 a | 26.4 ± 10.3 a | 25.9 ± 4.0 a |
Essential amino acids | ||||||
Leucine | LEU | 146.7 ± 11.9 | 38.5 ± 15.9 a | 40.2 ± 4.6 a | 42.5 ± 5.7 a | 44.0 ± 3.0 a |
Isoleucine | ILE | 188.3 ± 11.7 | ND | 36.0 ± 5.9 a | 31.4 ± 9.5 a | 36.5 ± 7.7 a |
Threonine | THR | 473.0 ± 15.3 | ND | 34.2 ± 11.6 a | 38.4 ± 17.9 a | 43.0 ± 8.8 a |
Phenylalanine | PHE | ND | 13.6 ± 8.0 a | ND | 16.7 ± 3.2 a | 20.7 ± 1.0 a |
Lysine | LYS | 318.1 ± 9.5 | 36.7 ± 6.7 a | 37.3 ± 7.7 a | 33.7 ± 3.1 a | 49.9 ± 12.5 b |
Histidine | HIS | 126.1 ± 9.0 | ND | ND | ND | ND |
Tryptophan | TRP | 69.6 ± 7.5 | ND | ND | ND | ND |
TOTAL | 8780.36 ± 395.28 | 307.1 ± 67.4 a | 482.2 ± 106.4 a,b | 676.8 ± 137.1 b | 906.9 ± 119.6 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drabińska, N. The Evaluation of Amino Acid Profiles in Gluten-Free Mini Sponge Cakes Fortified with Broccoli By-Product. Separations 2022, 9, 81. https://doi.org/10.3390/separations9030081
Drabińska N. The Evaluation of Amino Acid Profiles in Gluten-Free Mini Sponge Cakes Fortified with Broccoli By-Product. Separations. 2022; 9(3):81. https://doi.org/10.3390/separations9030081
Chicago/Turabian StyleDrabińska, Natalia. 2022. "The Evaluation of Amino Acid Profiles in Gluten-Free Mini Sponge Cakes Fortified with Broccoli By-Product" Separations 9, no. 3: 81. https://doi.org/10.3390/separations9030081
APA StyleDrabińska, N. (2022). The Evaluation of Amino Acid Profiles in Gluten-Free Mini Sponge Cakes Fortified with Broccoli By-Product. Separations, 9(3), 81. https://doi.org/10.3390/separations9030081