Fractional Separation and Characterization of Cuticular Waxes Extracted from Vegetable Matter Using Supercritical CO2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. SFE Plant Description
2.3. Characterization of Cuticular Waxes
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cheng, G.; Huang, H.; Zhou, L.; He, S.; Zhang, Y.; Cheng, X. Chemical composition and water permeability of the cuticular wax barrier in rose leaf and petal: A comparative investigation. Plant Physiol. Biochem. 2019, 135, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Nguyen, N.; Klavins, L.; Kviesis, J.; Heinonen, E.; Remes, J.; Jokipii-Lukkari, S.; Klavins, M.; Karppinen, K.; Jaakola, L.; et al. Analysis of composition, morphology, and biosynthesis of cuticular wax in wild type bilberry (Vaccinium myrtillus L.) and its glossy mutant. Food Chem. 2021, 354, 129517. [Google Scholar] [PubMed]
- Ahmad, H.M.; Rahman, M.-U.; Ali, Q.; Awan, S.I. Plant cuticular waxes: A review on functions, composition, biosyntheses mechanism and transportation. Life Sci. J. 2015, 12, 60–67. [Google Scholar]
- Busta, L.; Jetter, R. Moving beyond the ubiquitous: The diversity and biosynthesis of specialty compounds in plant cuticular waxes. Phytochem. Rev. 2018, 17, 1275–1304. [Google Scholar] [CrossRef]
- Wang, X.; Kong, L.; Zhi, P.; Chang, C. Update on cuticular wax biosynthesis and its roles in plant disease resistance. Int. J. Mol. Sci. 2020, 21, 5514. [Google Scholar]
- Martin, L.B.B.; Rose, J.K.C. There’s more than one way to skin a fruit: Formation and functions of fruit cuticles. J. Exp. Bot. 2014, 65, 4639–4651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Bulushi, K.; Attard, T.M.; North, M.; Hunt, A.J. Optimisation and economic evaluation of the supercritical carbon dioxide extraction of waxes from waste date palm (Phoenix dactylifera) leaves. J. Clean. Prod. 2018, 186, 988–996. [Google Scholar] [CrossRef] [Green Version]
- Attard, T.M.; Bukhanko, N.; Eriksson, D.; Arshadi, M.; Geladi, P.; Bergsten, U.; Budarin, V.L.; Clark, J.H.; Hunt, A.J. Supercritical extraction of waxes and lipids from biomass: A valuable first step towards an integrated biorefinery. J. Clean. Prod. 2018, 177, 684–698. [Google Scholar] [CrossRef]
- Trivedi, P.; Nguyen, N.; Hykkerud, A.L.; Häggman, H.; Martinussen, I.; Jaakola, L.; Karppinen, K. Developmental and environmental regulation of cuticular wax biosynthesis in fleshy fruits. Front. Plant Sci. 2019, 10, 431. [Google Scholar] [CrossRef]
- Sin, E.H.K.; Marriott, R.; Hunt, A.J.; Clark, J.H. Identification, quantification and Chrastil modelling of wheat straw wax extraction using supercritical carbon dioxide. C. R. Chim. 2014, 17, 293–300. [Google Scholar] [CrossRef]
- Guo, Y.; Jetter, R. Comparative analyses of cuticular waxes on various organs of potato (Solanum tuberosum L.). J. Agric. Food Chem. 2017, 65, 3926–3933. [Google Scholar] [CrossRef] [PubMed]
- Jetter, R.; Schäffer, S.; Riederer, M. Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: Evidence from Prunus laurocerasus L. Plant Cell Environ. 2000, 23, 619–628. [Google Scholar] [CrossRef]
- Silvestroni Pimentel, B.; Negri, G.; Cordeiro, I.; Barbosa Motta, L.; Salatino, A. Taxonomic significance of the distribution of constituents of leaf cuticular waxes of Croton species (Euphorbiaceae). Biochem. Syst. Ecol. 2020, 92, 104106. [Google Scholar] [CrossRef]
- Simões, R.; Rodrigues, A.; Ferreira-Dias, S.; Miranda, I.; Pereira, H. Chemical composition of cuticular waxes and pigments and morphology of leaves of Quercus suber trees of different provenance. Plants 2020, 9, 1165. [Google Scholar] [CrossRef] [PubMed]
- Canizares, D.; Angers, P.; Ratti, C. Organogelation capacity of epicuticular and cuticular waxes from flax and wheat straws. J. Am. Oil Chem. Soc. 2021, 98, 329–339. [Google Scholar] [CrossRef]
- Lefebvre, T.; Destandau, E.; Lesellier, E. Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. J. Chromatogr. A 2021, 1635, 461770. [Google Scholar] [CrossRef]
- Costa, R.; Albergamo, A.; Arrigo, S.; Gentile, F.; Dugo, G. Solid-phase microextraction-gas chromatography and ultra-highperformance liquid chromatography applied to the characterizationof lemon wax, a waste product from citrus industry. J. Chromatogr. A 2019, 1603, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.-C.-T.; Angers, P.; Ratti, C. Extraction of wax-like materials from cereals. Can. J. Chem. Eng. 2018, 96, 2273–2281. [Google Scholar] [CrossRef]
- Sökmen, M.; Demir, E.; Alomar, S.Y. Optimization of sequential supercritical fluid extraction (SFE) of caffeine and catechins from green tea. J. Supercrit. Fluids 2018, 133, 171–176. [Google Scholar] [CrossRef]
- Pimentel-Moral, S.; Borrás-Linares, I.; Lozano-Sánchez, J.; Arráez-Román, D.; Martínez-Férez, A.; Segura-Carretero, A. Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. J. Supercrit. Fluids 2019, 147, 213–221. [Google Scholar] [CrossRef]
- Fuentes-Gandara, F.; Torres, A.; Fernández-Ponce, M.T.; Casas, L.; Mantell, C.; Varela, R.; Martínez de la Ossa-Fernández, E.J.; Macías, F.A. Selective fractionation and isolation of allelopathic compounds from Helianthus annuus L. leaves by means of high-pressure techniques. J. Supercrit. Fluids 2019, 143, 32–41. [Google Scholar] [CrossRef]
- Campalani, C.; Chioggia, F.; Amadio, E.; Gallo, M.; Rizzolio, F.; Selva, M.; Perosa, A. Supercritical CO2 extraction of natural antibacterials from low value weeds and agro-waste. J. CO2 Utiliz. 2020, 40, 101198. [Google Scholar] [CrossRef]
- Gomes Silva, S.; Santana de Oliveira, M.; Neves Cruz, J.; Almeida da Costa, W.; da Silva, S.H.M.; Barreto Maia, A.A.; Lopes de Sousa, R.; Carvalho Junior, R.N.; de Aguiar Andrade, E.H. Supercritical CO2 extraction to obtain Lippia thymoides Mart. & Schauer (Verbenaceae) essential oil rich in thymol and evaluation of its antimicrobial activity. J. Supercrit. Fluids 2021, 168, 105064. [Google Scholar]
- Yousefi, M.; Rahimi-Nasrabadi, M.; Mirsadeghi, S.; Mahdi Pourmortazavi, S. Supercritical fluid extraction of pesticides and insecticides from food samples and plant materials. Crit. Rev. Anal. Chem. 2021, 51, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.; Naik, S.N.; Goud, V.V.; Das, C. Supercritical CO2 extraction and online fractionation of dry ginger for production of high-quality volatile oil and gingerols enriched oleoresin. Ind. Crops Prod. 2019, 130, 352–362. [Google Scholar] [CrossRef]
- Baldino, L.; Reverchon, E. Artemisia annua organic solvent extract, processed by supercritical CO2. Chem. Technol. Biotechnol. 2018, 93, 3171–3175. [Google Scholar] [CrossRef]
- Baldino, L.; Reverchon, E. Supercritical fluid extraction of compounds of pharmaceutical interest from Wendita calysina (Burrito). Processes 2020, 8, 1023. [Google Scholar] [CrossRef]
- Gaspar, F. Extraction of essential oils and cuticular waxes with compressed CO2: Effect of extraction pressure and temperature. Ind. Eng. Chem. Res. 2002, 41, 2497–2503. [Google Scholar] [CrossRef]
- Sovova, H.; Stateva, R.P. New approach to modeling supercritical CO2 extraction of cuticular waxes: Interplay between solubility and kinetics. Ind. Eng. Chem. Res. 2015, 54, 4861–4870. [Google Scholar] [CrossRef]
- Baldino, L.; Della Porta, G.; Reverchon, E. Supercritical CO2 processing strategies for pyrethrins selective extraction. J. CO2 Utiliz. 2017, 20, 14–19. [Google Scholar] [CrossRef]
- Baldino, L.; Adami, R.; Reverchon, E. Concentration of Ruta graveolens active compounds using SC-CO2 extraction coupled with fractional separation. J. Supercrit. Fluids 2018, 131, 82–86. [Google Scholar] [CrossRef]
- Subra, P.; Vega-Bancel, A.; Reverchon, E. Breakthrough curves and adsorption isotherms of terpene mixtures in supercritical carbon dioxide. J. Supercrit. Fluids 1998, 12, 43–57. [Google Scholar] [CrossRef]
- Reverchon, E.; Della Porta, G. Supercritical CO2 extraction and fractionation of Lavender essential oil and waxes. J. Agric. Food Chem. 1995, 43, 1654–1658. [Google Scholar] [CrossRef]
- Reverchon, E.; Senatore, F. Supercritical carbon dioxide extraction of Chamomile essential oil and its analysis by gas chromatography-mass spectrometry. J. Agric. Food Chem. 1994, 42, 154–158. [Google Scholar] [CrossRef]
- Reverchon, E.; Sesti Osseo, L. Supercritical CO2 extraction of basil oil: Characterization of products and process modelling. J. Supercrit. Fluids 1994, 7, 185–190. [Google Scholar] [CrossRef]
- Reverchon, E.; Della Porta, G. Supercritical CO2 fractionation of Jasmine concrete. J. Supercrit. Fluids 1995, 8, 60–65. [Google Scholar] [CrossRef]
- Reverchon, E. Fractional separation of SCF extracts from Marjoram leaves: Mass transfer and optimization. J. Supercrit. Fluids 1992, 5, 256–261. [Google Scholar] [CrossRef]
- Baldino, L.; Scognamiglio, M.; Reverchon, E. Supercritical fluid technologies applied to the extraction of compounds of industrial interest from Cannabis sativa L. and to their pharmaceutical formulations: A review. J. Supercrit. Fluids 2020, 165, 104960. [Google Scholar] [CrossRef]
- Karğılı, U.; Aytaç, E. Supercritical fluid extraction of cannabinoids (THC and CBD) from four different strains of cannabis grown in different regions. J. Supercrit. Fluids 2022, 179, 105410. [Google Scholar] [CrossRef]
- Szakiel, A.; Pączkowski, C.; Pensec, F.; Bertsch, C. Fruit cuticular waxes as a source of biologically active triterpenoids. Phytochem. Rev. 2012, 11, 263–284. [Google Scholar] [CrossRef] [Green Version]
- Han, N.; Bakovic, M. Biologically active triterpenoids and their cardioprotective and antiInflammatory effects. J. Bioanal. Biomed. 2015, S12, 1–11. [Google Scholar]
- Francini, A.; Pintado, M.; Manganaris, G.A.; Ferrante, A. Editorial: Bioactive compounds biosynthesis and metabolism in fruit and vegetables. Front. Plant Sci. 2020, 11, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haliński, Ł.P.; Paszkiewicz, M.; Gołębiowski, M.; Stepnowski, P. The chemical composition of cuticular waxes from leaves of the gboma eggplant (Solanum macrocarpon L.). J. Food Compos. Anal. 2012, 25, 74–78. [Google Scholar] [CrossRef]
- Wang, Y.; Su, S.; Chen, G.; Mao, H.; Jiang, Y. Relationship between cuticular waxes and storage quality parameters of Korla pear under different storage methods. J. Plant Growth Regul. 2021, 40, 1152–1165. [Google Scholar] [CrossRef]
Compound Identified | Chamomile | Basil | Ginger | Jasmine | Lavender | Tobacco | Marjoram | Tangerine | Cannabis | Rosemary | Clove Buds |
---|---|---|---|---|---|---|---|---|---|---|---|
Tricosane, C23H48 | 10.69 | 0.10 | - | 1.25 | - | - | 0.05 | - | 0.04 | 0.07 | - |
Tetracosane, C24H50 | 0.99 | 0.15 | - | 0.18 | - | 0.08 | 0.12 | - | 0.51 | 0.07 | - |
Pentacosane, C25H52 | 15.12 | 5.38 | - | 6.88 | 2.32 | 3.97 | 3.53 | 2.17 | 12.04 | 3.41 | 5.80 |
1-Tetracosanol, C24H50O | 0.65 | - | - | - | 0.69 | - | 2.81 | - | 2.36 | 0.09 | - |
Hexacosane, C26H54 | 1.26 | 1.76 | - | 1.75 | - | 0.39 | 1.41 | 0.73 | 3.08 | 1.45 | 1.50 |
Methylhexacosane, C27H56 | - | - | - | - | - | - | 1.38 | - | 0.44 | 0.62 | - |
Heptacosane, C27H56 | 20.94 | 22.52 | 8.33 | 28.70 | 20.40 | 3.69 | 12.93 | 28.45 | 61.85 | 23.01 | 65.80 |
1-Hexacosanol, C26H54O | 0.65 | - | - | 2.52 | 2.32 | 1.69 | 9.78 | 0.41 | 4.06 | 1.41 | - |
Octacosane, C28H58 | 1.63 | 3.33 | 1.07 | 3.19 | 2.74 | - | 1.85 | 3.56 | 2.88 | 1.87 | 3.90 |
Octacosanal, C28H56O | - | 1.51 | 0.38 | 1.42 | - | 6.57 | 6.40 | 0.23 | 0.14 | 1.74 | - |
Nonacosane, C29H60 | 16.47 | 21.53 | 19.01 | 33.24 | 31.60 | 18.34 | 11.54 | 41.09 | 15.73 | 22.25 | 22.30 |
Methylhexacosanoate, C17H34O2 | 0.78 | - | 0.73 | - | - | - | - | - | - | - | - |
1-Octacosanol, C28H58O | 0.33 | 3.46 | - | 2.94 | 5.48 | 5.94 | 16.22 | 1.65 | - | 2.46 | - |
Triacontane, C30H62 | 1.36 | 3.34 | 2.09 | 1.61 | 2.54 | 3.11 | 1.40 | 2.93 | 0.35 | 1.67 | - |
Octacosanoic acid, C28H56O2 | - | - | - | 0.86 | - | 0.09 | - | - | - | - | - |
Methylheptacosanoate, C29H58O2 | 0.69 | 2.40 | 1.74 | 0.51 | - | 4.02 | 2.36 | 0.34 | - | 2.14 | - |
Triacontanal, C30H60O | - | 0.57 | - | 0.19 | - | 1.14 | 2.84 | 0.12 | - | 0.32 | - |
Hentriacontane, C31H64 | 9.68 | 16.69 | 19.27 | 7.12 | 13.45 | 27.84 | 8.57 | 11.41 | 0.26 | 13.20 | - |
1-Triacontanol, C30H62O | 1.03 | 4.14 | 2.85 | 2.12 | 3.92 | 1.89 | 4.24 | 2.34 | - | 2.22 | - |
Dotriacontane, C32H66 | 0.61 | 0.96 | 0.76 | 0.17 | 0.52 | 0.89 | 0.30 | 0.16 | 0.07 | 0.38 | - |
Tritriacontane, C33H68 | 1.13 | 1.23 | 1.06 | 0.52 | 0.84 | 1.36 | 0.54 | 0.49 | 0.56 | 0.62 | - |
Methyldotriacontane, C33H68 | - | 0.50 | 0.16 | - | 1.41 | 0.34 | 0.30 | 0.82 | - | 0.13 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scognamiglio, M.; Baldino, L.; Reverchon, E. Fractional Separation and Characterization of Cuticular Waxes Extracted from Vegetable Matter Using Supercritical CO2. Separations 2022, 9, 80. https://doi.org/10.3390/separations9030080
Scognamiglio M, Baldino L, Reverchon E. Fractional Separation and Characterization of Cuticular Waxes Extracted from Vegetable Matter Using Supercritical CO2. Separations. 2022; 9(3):80. https://doi.org/10.3390/separations9030080
Chicago/Turabian StyleScognamiglio, Mariarosa, Lucia Baldino, and Ernesto Reverchon. 2022. "Fractional Separation and Characterization of Cuticular Waxes Extracted from Vegetable Matter Using Supercritical CO2" Separations 9, no. 3: 80. https://doi.org/10.3390/separations9030080
APA StyleScognamiglio, M., Baldino, L., & Reverchon, E. (2022). Fractional Separation and Characterization of Cuticular Waxes Extracted from Vegetable Matter Using Supercritical CO2. Separations, 9(3), 80. https://doi.org/10.3390/separations9030080