Impact of Whole and Ground-by-Knife and Ball Mill Flax Seeds on the Physical and Sensorial Properties of Gluten Free-Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurement of Flaxseeds’ Physical Properties
2.3. Grinding of Flaxseeds
2.4. Baking of Gluten-Free Bread with Flaxseeds
2.5. Measurement of Gluten-Free Bread Volume
2.6. Evaluation of Bread Crumbling
- Dc—degree of bread crumbling,
- mc—mass of crumbed pieces of the sample,
- mw—mass of entire crumb sample with crumbs after cutting.
2.7. Assessment of the Color of a Bread Crumb
2.8. Texture Measurement of Gluten-Free Bread Crumbs
2.9. Sensory Evaluation of Gluten-Free Breads
2.10. Statistical Analysis
3. Results and Discussion
3.1. Grinding Energy and Particle Size Distribution of Flaxseeds
3.2. Basic Baking Properties of Gluten-Free Bread with Ground Flaxseeds
3.3. Color of Gluten-Free Bread with Ground Flaxseeds
3.4. Crumb Texture of Gluten-Free Bread with Ground Flaxseeds
3.5. Crumbling of Gluten-Free Bread with Ground Flaxseeds
3.6. Sensory Evaluation of Gluten-Free Bread with Ground Flaxseeds
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hager, A.S.; Wolter, A.; Czerny, M.; Bez, J.; Zannini, E.; Arendt, E.K.; Czerny, M. Investigation of product quality, sensory profile and ultrastructure of breads made from a range of commercial gluten-free flours compared to their wheat counterparts. Eur. Food Res. Technol. 2012, 235, 333–344. [Google Scholar] [CrossRef]
- Vici, G.; Belli, L.; Biondi, M.; Polzonetti, V. Gluten free diet and nutrient deficiencies: A review. Clin. Nutr. 2016, 35, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Ziemichód, A.; Wójcik, M.; Różyło, R. Seeds of Plantago psyllium and Plantago ovata: Mineral composition, grinding, and use for gluten-free bread as substitutes for hydrocolloids. J. Food Process Eng. 2019, 42, e12931. [Google Scholar] [CrossRef]
- Ziemichód, A.; Wójcik, M.; Różyło, R. Ocimumtenuiflorum seeds and Salvia hispanica seeds: Mineral and amino acid composition, physical properties, and use in gluten-free bread. CYTA J. Food. 2019, 17, 804–813. [Google Scholar] [CrossRef] [Green Version]
- Korus, J.; Witczak, T.; Ziobro, R.; Juszczak, L. Linseed (Linumusitatissimum L.) mucilage as a novel structure forming agent in gluten-free bread. LWT Food Sci. Technol. 2015, 62, 257–264. [Google Scholar] [CrossRef]
- Susheelamma, N. Functional role of linseed (Linumusitatissimum L.) polysaccharide in steamed pudding (idli). J. Food Sci. Technol. 1989, 26, 16–20. [Google Scholar]
- Zhu, F.; Li, J. Physicochemical and sensory properties of fresh noodles fortified with ground linseed (Linumusitatissimum). LWT Food Sci. Technol. 2019, 101, 847–853. [Google Scholar] [CrossRef]
- Shafie, S.R.; Poudyal, H.; Panchal, S.K.; Brown, L. Linseed as a Functional Food for the Management of Obesity. In Omega-3 Fatty Acids: Keys to Nutritional Health; Springer International Publishing: Cham, Switzerland, 2016; pp. 173–187. [Google Scholar]
- Zhang, Z.S.; Wang, L.J.; Li, D.; Jiao, S.S.; Chen, X.D.; Mao, Z.H. Ultrasound-assisted extraction of oil from flaxseed. Sep. Purif. Technol. 2008, 62, 192–198. [Google Scholar] [CrossRef]
- Gruia, A.; Dumbravă, D.G.; Moldovan, C.; Bordean, D.M. Fatty acids composition and oil characteristics of linseed (LinumUsitatissimum, L.) from Romania. J. Agroaliment. Process. Technol. 2012, 18, 136–140. [Google Scholar]
- De Lorgeril, M.; Salen, P. Alpha-linolenic acid and coronary heart disease. Nutr. Metab. Cardiovasc. Dis. 2004, 14, 162–169. [Google Scholar] [CrossRef]
- Kronberga, M.; Karkliņa, D. Nutritional Supplements in Optimal Human Nutrition. Proc. Latv. Acad. Sci. Sect. B Natl. Exact Appl. Sci. 2013, 67, 367–372. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Tańska, M.; Rotkiewicz, D. Quality of fat from oilseeds used to produce selected kinds of bread. Żywnosc Nauka Technol. Jakość 2011, 5, 62–74. (In Polish) [Google Scholar] [CrossRef]
- Bautista Justo, M.; Castro Alfaro, A.D.; Camarena Aguilar, E.; Wrobel, K.; Wrobel, K.; Alanis Guzman, G.; Gamino Sierra, Z.; Zanella, V.D. Integral bread development with soybean, chia, linseed, and folic acid as a functional food for woman. Arch. Latinoam. Nutr. 2007, 57, 78–84. [Google Scholar]
- Codină, G.G.; Istrate, A.M.; Gontariu, I.; Mironeasa, S. Rheological properties of wheat-flaxseed composite flours assessed by mixolab and their relation to quality features. Foods 2019, 8, 333. [Google Scholar] [CrossRef] [Green Version]
- Hrušková, M.; Švec, I. Rheological Characteristics of Composite Flour with Linseed Fibre—Relationship to Bread Quality. Czech J. Food Sci. 2017, 35, 424–431. [Google Scholar]
- Hrušková, M.; Švec, I. Flax—Evaluation of composite flour and using in cereal products. Potravinarstvo 2016, 10, 287–294. [Google Scholar]
- Švec, I.; Hrušková, M. Effect of golden and brown linseed fibre on wheat flour pasting, dough properties and bread quality. Cereal Res Commun. 2018, 46, 1–10. [Google Scholar] [CrossRef]
- Krishna Kumar, R.; Bejkar, M.; Du, S.; Serventi, L. Flax and wattle seed powders enhance volume and softness of gluten-free bread. Food Sci. Technol. Int. 2019, 25, 66–75. [Google Scholar] [CrossRef]
- Pejcz, E.; Mularczyk, A.; Gil, Z. Technological characteristics of wheat and non-cereal flour blends and their applicability in bread making. J. Food Nutr. Res. 2015, 54, 69–78. [Google Scholar]
- Tarek-Tilistyák, J.; Tarek, M.; Juhász-Román, M.; Jekő, J. Effect of oil-seed pressing residue on bread colour and texture. Acta. Univ. Sapientiae Aliment. 2015, 8, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Wirkijowska, A.; Zarzycki, P.; Sobota, A.; Nawrocka, A.; Blicharz-Kania, A.; Andrejko, D. The possibility of using by-products from the flaxseed industry for functional bread production. LWT Food Sci. Technol. 2020, 118, 108860. [Google Scholar] [CrossRef]
- Tarek-Tilistyák, J.; Agócs, J.; Lukács, M.; Dobró-Tóth, M.; Juhász-Román, M.; Dinya, Z.; Jekő, J.; Máthé, E. Novel breads fortified through oilseed and nut cakes. Acta Aliment. 2014, 43, 444–451. [Google Scholar] [CrossRef] [Green Version]
- Thanatuksorn, P.; Kawai, K.; Kajiwara, K.; Suzuki, T. Effects of ball-milling on the glass transition of wheat flour constituents. J. Sci. Food Agric. 2009, 89, 430–435. [Google Scholar] [CrossRef]
- Van Craeyveld, V.; Holopainen, U.; Selinheimo, E.; Poutanen, K.; Delcour, J.A.; Courtin, C.M. Extensive dry ball milling of wheat and rye bran leads to in situ production of arabinoxylan oligosaccharides through nanoscale fragmentation. J. Agric. Food Chem. 2009, 57, 8467–8473. [Google Scholar] [CrossRef]
- De La Hera, E.; Rosell, C.M.; Gomez, M. Effect of water content and flour particle size on gluten-free bread quality and digestibility. Food Chem. 2014, 151, 526–531. [Google Scholar] [CrossRef] [Green Version]
- Egan, H.; Kirk, R.; Sawyer, R. The Luff Schoorl method. Sugars and Preserves. In Pearson’s Chemical Analysis of Foods, 8th ed.; Longman Scientific and Technical: Harlow, UK, 1981; pp. 152–153. [Google Scholar]
- Asp, N.G.; Johansson, C.G.; Hallmer, H.; Siljestróm, M. Rapid Enzymatic Assay of Insoluble and Soluble Dietary Fiber. J. Agric. Food Chem. 1983, 31, 476–482. [Google Scholar] [CrossRef]
- Dziki, D.; Laskowski, J. Study to analyze the influence of sprouting of the wheat grain on the grinding process. J. Food Eng. 2010, 96, 562–567. [Google Scholar] [CrossRef]
- Dziki, D. Effect of preliminary grinding of the wheat grain on the pulverizing process. J. Food Eng. 2011, 104, 585–591. [Google Scholar] [CrossRef]
- Różyło, R.; Dziki, D.; Gawlik-Dziki, U.; Cacak-Pietrzak, G.; Miś, A.; Rudy, S. Physical properties of gluten-free bread caused by water addition. Int. Agrophys. 2015, 29, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Różyło, R.; Rudy, S.; Krzykowski, A.; Dziki, D.; Siastała, M.; Polak, R. Gluten-Free Bread Prepared with Fresh and Freeze-Dried Rice Sourdough-Texture and Sensory Evaluation. J. Texture Stud. 2016, 47, 443–453. [Google Scholar] [CrossRef]
- Różyło, R.; Dziki, D.; Laskowski, J.; Skonecki, S.; Łysiak, G.; Kulig, R.; Różyło, K. Texture and sensory evaluation of composite wheat-oat bread prepared with novel two-phase method using oat yeast-fermented leaven. J. Texture Stud. 2014, 45, 235–245. [Google Scholar] [CrossRef]
- Lim, H.S.; Park, S.H.; Ghafoor, K.; Hwang, S.Y.; Park, J. Quality and antioxidant property of bread containing turmeric. Curcuma longa L. cultivated in South Korea. Food Chem. 2011, 112, 1577–1582. [Google Scholar] [CrossRef]
- De La Hera, E.; Gomez, M.; Rosell, C.M. Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties. Carbohydr. Polym. 2013, 98, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.T.; Shim, M.J.; Goh, H.K.; Mok, C.; Puligundla, P. Effect of jet milling on the physicochemical properties, pasting properties, and in vitro starch digestibility of germinated brown rice flour. Food Chem. 2019, 282, 164–168. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Cao, X.; Wang, J. Preparation and modification of high dietary fiber flour: A review. Food Res. Int. 2018, 113, 24–35. [Google Scholar] [CrossRef]
- Vázquez-Ovando, A.; Rosado-Rubio, G.; Chel-Guerrero, L.; Betancur-Ancona, D. Physicochemical properties of a fibrous fraction from chia (Salvia hispanica L.). LWT Food Sci. Technol. 2009, 42, 168–173. [Google Scholar]
- Mariotti, M.; Lucisano, M.; Pagani, M.A.; Ng, P.K. The role of corn starch, amaranth flour, pea isolate, and Psyllium flour on the rheological properties and the ultrastructure of gluten-free doughs. Food Res. Int. 2009, 42, 963–975. [Google Scholar] [CrossRef]
- Aprodu, I.; Banu, I. Influence of dietary fiber, water, and glucose oxidase on rheological and baking properties of maize based gluten-free bread. Food Sci. Biotechnol. 2015, 24, 1301–1307. [Google Scholar] [CrossRef]
- Cappa, C.; Lucisano, M.; Mariotti, M. Influence of Psyllium, sugar beet fibre and water on gluten-free dough properties and bread quality. Carbohydr. Polym. 2013, 98, 1657–1666. [Google Scholar] [CrossRef]
- Jacobs, P.J.; Bogaerts, S.; Hemdane, S.; Delcour, J.A.; Courtin, C.M. Impact of Wheat Bran Hydration Properties As Affected by Toasting and Degree of Milling on Optimal Dough Development in Bread Making. J. Agric. Food Chem. 2016, 64, 3636–3644. [Google Scholar] [CrossRef] [PubMed]
- Hemery, Y.; Holopainen, U.; Lampi, A.M.; Lehtinen, P.; Nurmi, T.; Piironen, V.; Rouau, X. Potential of dry fractionation of wheat bran for the development of food ingredients, part II: Electrostatic separation of particles. J. Cereal Sci. 2011, 53, 9–18. [Google Scholar] [CrossRef]
- Iglesias-Puig, E.; Haros, M. Evaluation of performance of dough and bread incorporating chia (Salvia hispanica L.). Eur. Food Res. Technol. 2013, 237, 865–874. [Google Scholar] [CrossRef] [Green Version]
- Pourabedin, M.; Aarabi, A.; Rahbaran, S. Effect of flaxseed flour on rheological properties, staling and total phenol of Iranian toast. J. Cereal Sci. 2017, 76, 173–178. [Google Scholar] [CrossRef]
- Conforti, F.D.; Davis, S.F. The effect of soya flour and flaxseed as a partial replacement for bread flour in yeast bread. Int. J. Food Sci. Technol. 2006, 41, 95–101. [Google Scholar] [CrossRef]
- Lazaridou, A.; Duta, D.; Papageorgiou, M.; Belc, N.; Biliaderis, C.G. Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. J. Food Eng. 2007, 79, 1033–1047. [Google Scholar] [CrossRef]
- Witczak, M.; Korus, J.; Ziobro, R.; Juszczak, L. Waxy starch as dough component and anti-staling agent in gluten-free bread. LWT Food Sci. Technol. 2019, 99, 476–482. [Google Scholar] [CrossRef]
- Mercier, S.; Villeneuve, S.; Moresoli, C.; Mondor, M.; Marcos, B.; Power, K.A. Flaxseed-enriched cereal-based products: A review of the impact of processing conditions. Comp. Rev.Food Sci. Food Saf. 2014, 13, 400–412. [Google Scholar] [CrossRef]
- Skudra, L.; Rakcejeva, T.; Rubene, S. Evaluation of Nutritive Value of Wheat Bread with Flax Seed Marc Additive. In Proceedings of the 4th International Congress on Flour Bread, 24–27 October 2007, Opatija, Croatia.
Kind of Sample | Particle Size Distribution (mm) | Average Particle Size (mm) | ||||||
---|---|---|---|---|---|---|---|---|
>1.0 (%) | 1.0–0.8 (%) | 0.8–0.63 (%) | 0.63–0.4 (%) | 0.4–0.315 (%) | 0.315–0.2 (%) | <0.2 (%) | ||
SK | 16.5 ± 1.8 b | 16.6 ± 1.1 b | 17.5 ± 0.9 b,c | 18.1 ± 1.6 b | 22.9 ± 1.2 d | 7.5 ± 0.1 e | 0.2 ± 0.0 f | 0.634 b |
SKC | 23.1 ± 1.9 a | 24.1 ± 1.2 a | 25.5 ± 1.4 a | 26.9 ± 1.1 a | 0 | 0 | 0 | 0.769a |
SKF | 0 | 0 | 0 | 0 | 72.8 ± 0.5 a | 25.8 ± 1.2 b | 0.6 ± 0.0 e | 0.328 e |
BK | 9.5 ± 0.5 d | 9.2 ± 0.6 d | 11.3 ± 1.3 d | 13.8 ± 2.8 c | 29.3 ± 0.2 c | 17.2 ± 0.2 c | 9.2 ± 0.1 b | 0.497 d |
BKC | 15.5 ± 1.0 c | 17.4 ± 0.8 b | 18.3 ± 0.7 b | 18.6 ± 1.9 b | 15.9 ± 1.1 e | 9.1 ± 0.6 d | 1.1 ± 0.1 d | 0.621 b |
BKF | 0 | 0 | 0 | 0 | 58.4 ± 0.8 b | 28.1 ± 1.3 a | 13.3 ± 0.3 a | 0.308 f |
LK | 11.4 ± 0.7 d | 14.9 ± 0.5 c | 15.6 ± 1.8 c | 18.9 ± 2.5 b | 24.5 ± 1.4 d | 10.4 ± 0.7 d | 3.8 ± 0.1 c | 0.579 c |
Kind of Bread | Hardness (N) | Elasticity (mm) | Cohesiveness (-) |
---|---|---|---|
1st day of storage | |||
C | 37.2 ± 1.08 c | 6.64 ± 0.216 c | 0.14 ± 0.009 h |
W | 29.4 ± 1.86 d | 6.66 ± 0.209 c | 0.17 ± 0.002 g |
SK | 21.6 ± 1.34 g | 7.49 ± 0.301 a | 0.24 ± 0.003 c |
SKC | 20.7 ± 1.09 g,h | 7.79 ± 0.319 a | 0.26 ± 0.001 a |
SKF | 17.5 ± 1.09 i | 7.57 ± 0.260 a | 0.24 ± 0.001 c |
BK | 19.5 ± 1.08 h | 7.29 ± 0.280 a,b | 0.26 ± 0.005 a |
BKC | 19.6 ± 0.75 h | 7.66 ± 0.288 a | 0.25 ± 0.004 b |
BKF | 17.7 ± 0.77 i | 7.19 ± 0.157 b | 0.23 ± 0.004 d |
LK | 18.9 ± 0.96 h,i | 7.51 ± 0.320 a | 0.26 ± 0.002 a |
3rd day of storage | |||
C | 64.5 ± 1.54 a | 3.38 ± 0.105 f | 0.12 ± 0.002 i |
W | 45.9 ± 2.07 b | 4.03 ± 0.136 e | 0.16 ± 0.008 g |
SK | 26.3 ± 1.43 e | 4.14 ± 0.120 e | 0.22 ± 0.008 d,e |
SKC | 25.8 ± 0.75 e | 4.55 ± 0.166 d | 0.24 ± 0.006 c |
SKF | 24.2 ± 1.31 e,f | 4.26 ± 0.191 d,e | 0.19 ± 0.002 f |
BK | 27.8 ± 0.80 e | 3.94 ± 0.169 e | 0.24 ± 0.005 c |
BKC | 26.6 ± 1.08 e | 4.69 ± 0.126 d | 0.21 ± 0.007 e |
BKF | 23.5 ± 1.09 f | 4.19 ± 0.197 d,e | 0.20 ± 0.003 e,f |
LK | 25.5 ± 0.84 e,f | 4.28 ± 0.202 d,e | 0.23 ± 0.004 c,d |
Kind of Bread | Taste | Aroma | Appearance | Texture | Overall |
---|---|---|---|---|---|
C | 4.04 ± 0.36 c | 5.53 ± 0.32 b | 4.33 ± 0.29 c | 4.29 ± 0.30 d | 4.30 ± 0.39 d |
W | 7.01 ± 0.48 b | 6.31 ± 0.38 a | 6.67 ± 0.42 b | 6.68 ± 0.45 c | 5.67 ± 0.41 c |
SK | 7.61 ± 0.52 a | 6.01 ± 0.37 a | 7.54 ± 0.47 a | 8.31 ± 0.56 a | 7.70 ± 0.53 a |
SKC | 7.66 ± 0.59 a | 6.32 ± 0.36 a | 7.70 ± 0.39 a | 8.67 ± 0.58 a | 7.68 ± 0.46 a |
SKF | 7.83 ± 0.49 a | 6.35 ± 0.44 a | 7.54 ± 0.45 a | 7.13 ± 0.49 b,c | 7.02 ± 0.42 a,b |
BK | 7.62 ± 0.46 a | 6.04 ± 0.41 a | 7.51 ± 0.40 a | 8.21 ± 0.53 a | 7.01 ± 0.38 a,b |
BKC | 7.67 ± 0.51 a | 6.37 ± 0.35 a | 7.65 ± 0.39 a | 8.47 ± 0.61 a | 7.67 ± 0.37 a |
BKF | 7.30 ± 0.42 a | 6.34 ± 0.35 a | 7.46 ± 0.46 a | 6.67 ± 0.42 c | 6.70 ± 0.31 b |
LK | 7.35 ± 0.39 a | 6.31 ± 0.37 a | 7.50 ± 0.38 a | 7.71 ± 0.45 b | 7.69 ± 0.33 a |
Color L* | Color a* | Color b* | Crumbling | Spec Volume | Hardness | Elasticity | Cohesiv. | |
---|---|---|---|---|---|---|---|---|
Taste | −0.89 * | 0.47 | −0.94 * | −0.89 * | 0.79* | −0.90 * | 0.71 * | 0.53 |
Aroma | −0.68 * | 0.27 | −0.76 * | −0.75 * | 0.65 | −0.76 * | 0.55 | 0.24 |
Apearance | −0.93 * | 0.55 | −0.97 * | −0.91 * | 0.85 * | −0.95 * | 0.78 * | 0.63 |
Texture | −0.88 * | 0.51 | −0.93 * | −0.97 * | 0.78 * | −0.81 * | 0.81 * | 0.68 * |
Overall | −0.92 * | 0.69 * | −0.98 * | −0.93 * | 0.88 * | −0.94 * | 0.93 * | 0.79 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziemichód, A.; Różyło, R.; Dziki, D. Impact of Whole and Ground-by-Knife and Ball Mill Flax Seeds on the Physical and Sensorial Properties of Gluten Free-Bread. Processes 2020, 8, 452. https://doi.org/10.3390/pr8040452
Ziemichód A, Różyło R, Dziki D. Impact of Whole and Ground-by-Knife and Ball Mill Flax Seeds on the Physical and Sensorial Properties of Gluten Free-Bread. Processes. 2020; 8(4):452. https://doi.org/10.3390/pr8040452
Chicago/Turabian StyleZiemichód, Alicja, Renata Różyło, and Dariusz Dziki. 2020. "Impact of Whole and Ground-by-Knife and Ball Mill Flax Seeds on the Physical and Sensorial Properties of Gluten Free-Bread" Processes 8, no. 4: 452. https://doi.org/10.3390/pr8040452
APA StyleZiemichód, A., Różyło, R., & Dziki, D. (2020). Impact of Whole and Ground-by-Knife and Ball Mill Flax Seeds on the Physical and Sensorial Properties of Gluten Free-Bread. Processes, 8(4), 452. https://doi.org/10.3390/pr8040452