Supporting Newsrooms with Journalistic Knowledge Graph Platforms: Current State and Future Directions †
Abstract
:1. Introduction
2. Analysed Platforms
3. Challenges and Opportunities Facing Newsrooms
4. State of Research on JKPs
4.1. Stakeholders
4.2. Information
4.3. Functionalities
4.4. Techniques
4.5. Components
4.6. Concerns
5. Future Directions for Research on JKPs
5.1. Implications for Research
5.1.1. Stakeholders
5.1.2. Information
5.1.3. Functionalities
5.1.4. Techniques
5.1.5. Components
5.1.6. Concerns
5.2. Implications for Practice
5.2.1. Stakeholders
5.2.2. Information
5.2.3. Functionalities
5.2.4. Techniques
5.2.5. Components
5.2.6. Concerns
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
JKP | Journalistic Knowledge Platform |
AI | Artificial Intelligence |
ML | Machine Learning |
NLP | Natural Language Processing |
LOD | Linked Open Data |
RDF | Resource Description Framework |
Appendix A. Analysis Method
References
- Newman, N.; Fletcher, R.; Schulz, A.; Andi, S.; Robertson, C.T.; Nielsen, R.K. Reuters Institute Digital News Report 2021; Technical Report; Reuters Institute for the Study of Journalism: Oxford, UK, 2021. [Google Scholar]
- Simon, F.M.; Graves, L. Pay Models for Online News in the US and Europe: 2019 Update; Technical Report; Reuters Institute for the Study of Journalism: Oxford, UK, 2019. [Google Scholar]
- Fletcher, R.; Nielsen, R.K. Paying for Online News. Digit. J. 2017, 5, 1173–1191. [Google Scholar] [CrossRef]
- Newman, N.; Fletcher, R.; Kalogeropoulos, A.; Nielsen, R.K. Reuters Institute Digital News Report 2019; Technical Report; Reuters Institute for the Study of Journalism: Oxford, UK, 2019. [Google Scholar]
- Newman, N.; Fletcher, R.; Schulz, A.; Andi, S.; Nielsen, R.K. Reuters Institute Digital News Report 2020; Technical Report; Reuters Institute for the Study of Journalism: Oxford, UK, 2020. [Google Scholar]
- Toff, B.J.; Badrinathan, S.; Mont’Alverne, C.; Arguedas, A.R.; Fletcher, R.; Nielsen, R.K. Overcoming Indifference: What Attitudes Towards News Tell Us about Building Trust; Technical Report; Reuters Institute for the Study of Journalism: Oxford, UK, 2021. [Google Scholar]
- Newman, N.; Fletcher, R. Bias, Bullshit and Lies: Audience Perspectives on Low Trust in the Media; Technical Report; SSRN: Rochester, NY, USA, 2017. [Google Scholar] [CrossRef] [Green Version]
- Vázquez Herrero, J.; Direito-Rebollal, S.; Rodríguez, A.S.; García, X. Journalistic Metamorphosis: Media Transformation in the Digital Age; Springer: Cham, Swizerland, 2020. [Google Scholar] [CrossRef]
- Beckett, C. New Powers, New Responsibilities: A Global Survey of Journalism and Artificial Intelligence; Technical Report; Polis, London School of Economics and Political Science: London, UK, 2019. [Google Scholar]
- Lewis, S.C.; Westlund, O. Big Data and Journalism. Digit. J. 2015, 3, 447–466. [Google Scholar] [CrossRef]
- Keefe, J.; Zhou, Y.; Merrill, J.B. The Present and Potential of AI in Journalism. Knight Foundation. 2021. Available online: https://knightfoundation.org/articles/the-present-and-potential-of-ai-in-journalism/ (accessed on 22 February 2022).
- Fernández, N.; Blázquez, J.M.; Fisteus, J.A.; Sánchez, L.; Sintek, M.; Bernardi, A.; Fuentes, M.; Marrara, A.; Ben-Asher, Z. NEWS: Bringing Semantic Web Technologies into News Agencies. In Proceedings of the Semantic Web—ISWC 2006, Athens, GA, USA, 5–9 November 2006; pp. 778–791. [Google Scholar] [CrossRef] [Green Version]
- Maiden, N.; Zachos, K.; Brown, A.; Brock, G.; Nyre, L.; Nygård Tonheim, A.; Apsotolou, D.; Evans, J. Making the News: Digital Creativity Support for Journalists. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–11. [Google Scholar] [CrossRef]
- Castells, P.; Perdrix, F.; Pulido, E.; Rico, M.; Benjamins, R.; Contreras, J.; Lorés, J. Neptuno: Semantic Web Technologies for a Digital Newspaper Archive. In Proceedings of the Semantic Web: Research and Applications, ESWS 2004, Heraklion, Crete, Greece, 10–12 May 2004. [Google Scholar] [CrossRef]
- Rospocher, M.; van Erp, M.; Vossen, P.; Fokkens, A.; Aldabe, I.; Rigau, G.; Soroa, A.; Ploeger, T.; Bogaard, T. Building Event-Centric Knowledge Graphs from News. J. Web Semant. 2016, 37–38, 132–151. [Google Scholar] [CrossRef]
- Raimond, Y.; Scott, T.; Oliver, S.; Sinclair, P.; Smethurst, M. Use of Semantic Web technologies on the BBC Web Sites. In Linking Enterprise Data; Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Miranda, S.A.; Nogueira, D.; Mendes, A.; Vlachos, A.; Secker, A.; Garrett, R.; Mitchel, J.; Marinho, Z. Automated Fact Checking in the News Room. In Proceedings of the World Wide Web Conference, WWW ’19, San Francisco, CA, USA, 13–17 May 2019; Association for Computing Machinery: New York, NY, USA; pp. 3579–3583. [Google Scholar] [CrossRef] [Green Version]
- Kalfoglou, Y.; Domingue, J.; Motta, E.; Vargas-Vera, M.; Buckingham Shum, S. myPlanet: An ontology driven Web based personalised news service. In Proceedings of the International Joint Conference on Artificial Intelligence, Washington, DC, USA, 4–10 August 2001; Volume 2001, pp. 44–52. [Google Scholar]
- Java, A.; Finin, T.; Nirenburg, S. SemNews: A Semantic News Framework. In Proceedings of the Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, Boston, MA, USA, 16–20 July 2006. [Google Scholar]
- Borsje, J.; Levering, L.; Frasincar, F. Hermes: A Semantic Web-Based News Decision Support System. In Proceedings of the 2008 ACM Symposium on Applied Computing, SAC ’08, Fortaleza, Brazil, 16–20 March 2008; Association for Computing Machinery: New York, NY, USA, 2008; pp. 2415–2420. [Google Scholar] [CrossRef] [Green Version]
- Leban, G.; Fortuna, B.; Brank, J.; Grobelnik, M. Event Registry: Learning about World Events from News. In Proceedings of the 23rd International Conference on World Wide Web, WWW’14 Companion, Seoul, Korea, 7–11 April 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 107–110. [Google Scholar] [CrossRef]
- Liu, X.; Nourbakhsh, A.; Li, Q.; Shah, S.; Martin, R.; Duprey, J. Reuters tracer: Toward automated news production using large scale social media data. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 1483–1493. [Google Scholar]
- Rudnik, C.; Ehrhart, T.; Ferret, O.; Teyssou, D.; Troncy, R.; Tannier, X. Searching News Articles Using an Event Knowledge Graph Leveraged by Wikidata. In Proceedings of the Companion Proceedings of The 2019 World Wide Web Conference, WWW ’19, San Francisco, CA, USA, 13–17 May 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1232–1239. [Google Scholar] [CrossRef] [Green Version]
- Ramagem, D.B.; Margerin, B.; Kendall, J. AnnoTerra: Building an integrated earth science resource using semantic Web technologies. IEEE Intell. Syst. 2004, 19, 48–57. [Google Scholar] [CrossRef]
- Al-Moslmi, T.; Gallofré Ocaña, M.; Opdahl, A.L.; Tessem, B. Detecting Newsworthy Events in a Journalistic Platform. In Proceedings of the 3rd European Data and Computational Journalism Conference, Malaga, Spain, 1–2 July 2019; pp. 3–5. [Google Scholar]
- Hogan, A.; Blomqvist, E.; Cochez, M.; D’amato, C.; Melo, G.D.; Gutierrez, C.; Kirrane, S.; Gayo, J.E.L.; Navigli, R.; Neumaier, S.; et al. Knowledge Graphs. ACM Comput. Surv. 2021, 54, 1–257. [Google Scholar] [CrossRef]
- Bizer, C.; Heath, T.; Berners-Lee, T. Linked data: The story so far. In Semantic Services, Interoperability and Web Applications: Emerging Concepts; IGI Global: Hershey, PA, USA, 2011; pp. 205–227. [Google Scholar]
- Opdahl, A.L.; Al-Moslmi, T.; Dang-Nguyen, D.T.; Gallofré Ocaña, M.; Tessem, B.; Veres, C. Semantic Knowledge Graphs for the News: A Review. Comput. Surv. 2022; to appear. [Google Scholar]
- Berven, A.; Christensen, O.A.; Moldeklev, S.; Opdahl, A.L.; Villanger, K.J. A knowledge-graph platform for newsrooms. Comput. Ind. 2020, 123, 103321. [Google Scholar] [CrossRef]
- Gallofré Ocaña, M.; Opdahl, A.L. Challenges and Opportunities for Journalistic Knowledge Platforms. In Proceedings of the CIKM 2020 Workshops, Galway, Ireland, 19–23 October 2020. [Google Scholar]
- Domingue, J.; Motta, E. PlanetOnto: From news publishing to integrated knowledge management support. IEEE Intell. Syst. Their Appl. 2000, 15, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Frasincar, F.; Borsje, J.; Levering, L. A semantic web-based approach for building personalized news services. Int. J. E-Bus. Res. (IJEBR) 2009, 5, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Schouten, K.; Ruijgrok, P.; Borsje, J.; Frasincar, F.; Levering, L.; Hogenboom, F. A semantic web-based approach for personalizing news. In Proceedings of the 2010 ACM Symposium on Applied Computing—SAC ’10, Sierre, Switzerland, 22–26 March 2010; ACM Press: Sierre, Switzerland, 2010; p. 854. [Google Scholar] [CrossRef]
- Kobilarov, G.; Scott, T.; Raimond, Y.; Oliver, S.; Sizemore, C.; Smethurst, M.; Bizer, C.; Lee, R. Media Meets Semantic Web – How the BBC Uses DBpedia and Linked Data to Make Connections. In The Semantic Web: Research and Applications; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5554. [Google Scholar] [CrossRef] [Green Version]
- Fernández, N.; Fuentes, D.; Sánchez, L.; Fisteus, J.A. The NEWS ontology: Design and applications. Expert Syst. Appl. 2010, 37, 8694–8704. [Google Scholar] [CrossRef]
- Kattenberg, M.; Beloki, Z.; Soroa, A.; Artola, X.; Fokkens, A.; Huygen, P.; Verstoep, K. Two architectures for parallel processing for huge amounts of text. In Proceedings of the Language Resources and Evaluation Conference (LREC). European Language Resources Association (ELRA), Portorož, Slovenia, 23–28 May 2016; pp. 4513–4519. [Google Scholar]
- Vossen, P.; Agerri, R.; Aldabe, I.; Cybulska, A.; van Erp, M.; Fokkens, A.; Laparra, E.; Minard, A.L.; Aprosio, A.P.; Rigau, G.; et al. NewsReader: Using knowledge resources in a cross-lingual reading machine to generate more knowledge from massive streams of news. Spec. Issue Knowl.-Based Syst. Elsevier 2016, 110, 60–85. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Shah, S.; Liu, X.; Nourbakhsh, A.; Fang, R. TweetSift: Tweet Topic Classification Based on Entity Knowledge Base and Topic Enhanced Word Embedding. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, CIKM ’16, Indianapolis, IN, USA, 24–28 October 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 2429–2432. [Google Scholar] [CrossRef]
- Liu, X.; Li, Q.; Nourbakhsh, A.; Fang, R.; Thomas, M.; Anderson, K.; Kociuba, R.; Vedder, M.; Pomerville, S.; Wudali, R.; et al. Reuters Tracer: A Large Scale System of Detecting & Verifying Real-Time News Events from Twitter. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, CIKM ’16, Indianapolis, IN, USA, 24–28 October 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 207–216. [Google Scholar] [CrossRef]
- Paikens, P.; Barzdins, G.; Mendes, A.; Ferreira, D.C.; Broscheit, S.; Almeida, M.S.; Miranda, S.; Nogueira, D.; Balage, P.; Martins, A.F. SUMMA at TAC Knowledge Base Population Task 2016. In Proceedings of the Ninth Text Analysis Conference (TAC), Gaithersburg, MA, USA, 14–15 November 2016. [Google Scholar]
- Germann, U.; Liepins, R.; Gosko, D.; Barzdins, G. Integrating Multiple NLP Technologies into an Open-source Platform for Multilingual Media Monitoring. In Proceedings of the Workshop for NLP Open Source Software (NLP-OSS), Melbourne, Australia, 19–20 July 2018; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 47–51. [Google Scholar] [CrossRef]
- Germann, U.; Liepins, R.; Barzdins, G.; Gosko, D.; Miranda, S.; Nogueira, D. The SUMMA Platform: A Scalable Infrastructure for Multi-lingual Multi-media Monitoring. In Proceedings of the ACL 2018, System Demonstrations, Melbourne, Australia, 15–20 July 2018; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 99–104. [Google Scholar] [CrossRef]
- Gallofré Ocaña, M.; Nyre, L.; Opdahl, A.L.; Tessem, B.; Trattner, C.; Veres, C. Towards a Big Data Platform for News Angles. In Proceedings of the 4th Norwegian Big Data Symposium (NOBIDS) 2018, Trondheim, Norway, 14 November 2018; pp. 17–29. [Google Scholar]
- Gallofré Ocaña, M.; Opdahl, A.L. Developing a Software Reference Architecture forJournalistic Knowledge Platforms. In Proceedings of the ECSA2021 Companion Volume, Växjö, Sweden, 13–17 September 2021. [Google Scholar]
- Berners-Lee, T.; Hendler, J.; Lassila, O. The semantic web. Sci. Am. 2001, 284, 34–43. [Google Scholar] [CrossRef]
- Shadbolt, N.; Berners-Lee, T.; Hall, W. The Semantic Web Revisited. IEEE Intell. Syst. 2006, 21, 96–101. [Google Scholar] [CrossRef] [Green Version]
- International Press Telecommunications Council. IPTC: Media Topics. 2022. Available online: https://iptc.org/standards/media-topics/ (accessed on 22 February 2022).
- Cyganiak, R.; Wood, D.; Lanthaler, M. RDF 1.1 Concepts and Abstract Syntax. 2014. Available online: http://www.w3.org/TR/rdf11-concepts/ (accessed on 22 February 2022).
- Troncy, R. Bringing the IPTC News Architecture into the Semantic Web. In Proceedings of the Semantic Web—ISWC 2008, Karlsruhe, Germany, 26–30 October 2008; Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 483–498. [Google Scholar]
- International Press Telecommunications Council. IPTC: NewsCodes. 2022. Available online: https://iptc.org/standards/newscodes/ (accessed on 22 February 2022).
- Miles, A.; Bechhofer, S. SKOS Simple Knowledge Organization System Namespace Document—HTML Variant. 2009. Available online: http://www.w3.org/2004/02/skos/core.html (accessed on 22 February 2022).
- W3C OWL Working Group. OWL 2 Web Ontology Language Document Overview (Second Edition). 2012. Available online: https://www.w3.org/TR/owl-overview/ (accessed on 22 February 2022).
- International Press Telecommunications Council. IPTC: News Architecture. 2022. Available online: https://iptc.org/standards/news-architecture/ (accessed on 22 February 2022).
- Opdahl, A.L.; Tessem, B. Ontologies for finding journalistic angles. Softw. Syst. Model. 2020, 20, 71–87. [Google Scholar] [CrossRef]
- Lopez, M.G.; Porlezza, C.; Cooper, G.; Makri, S.; MacFarlane, A.; Missaoui, S. A Question of Design: Strategies for Embedding AI-Driven Tools into Journalistic Work Routines. Digit. J. 2022, 10, 1–20. [Google Scholar] [CrossRef]
- Gutierrez Lopez, M.; Makri, S.; MacFarlane, A.; Porlezza, C.; Cooper, G.; Missaoui, S. Making newsworthy news: The integral role of creativity and verification in the human information behavior that drives news story creation. J. Assoc. Inf. Sci. Technol. 2022; online version of record. [Google Scholar]
- Deuze, M. On creativity. Journalism 2019, 20, 130–134. [Google Scholar] [CrossRef]
- Meel, P.; Vishwakarma, D.K. Fake news, rumor, information pollution in social media and web: A contemporary survey of state-of-the-arts, challenges and opportunities. Expert Syst. Appl. 2020, 153, 112986. [Google Scholar] [CrossRef]
- Guo, Z.; Schlichtkrull, M.; Vlachos, A. A Survey on Automated Fact-Checking. Trans. Assoc. Comput. Linguist. 2022, 10, 178–206. [Google Scholar]
- Diakopoulos, N. Computational News Discovery: Towards Design Considerations for Editorial Orientation Algorithms in Journalism. Digit. J. 2020, 8, 945–967. [Google Scholar] [CrossRef]
- El-Kassas, W.S.; Salama, C.R.; Rafea, A.A.; Mohamed, H.K. Automatic text summarization: A comprehensive survey. Expert Syst. Appl. 2021, 165, 113679. [Google Scholar] [CrossRef]
- Al-Moslmi, T.; Gallofré Ocaña, M. Lifting News into a Journalistic Knowledge Platform. In Proceedings of the CIKM 2020 Workshops, Galway, Ireland, 19–23 October 2020. [Google Scholar]
- Garlan, D. Software Architecture. In Encyclopedia of Software Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Gallofré Ocaña, M.; Al-Moslmi, T.; Opdahl, A.L. Data Privacy in Journalistic Knowledge Platforms. In Proceedings of the CIKM 2020 Workshops, Galway, Ireland, 19–23 October 2020. [Google Scholar]
- Neuberger, C.; Nuernbergk, C.; Langenohl, S. Journalism as Multichannel Communication. J. Stud. 2019, 20, 1260–1280. [Google Scholar] [CrossRef]
- Zhang, X.; Li, W. From Social Media with News: Journalists’ Social Media Use for Sourcing and Verification. J. Pract. 2020, 14, 1193–1210. [Google Scholar] [CrossRef]
- Stray, J. Making Artificial Intelligence Work for Investigative Journalism. Digit. J. 2019, 7, 1076–1097. [Google Scholar] [CrossRef]
- Broussard, M.; Diakopoulos, N.; Guzman, A.L.; Abebe, R.; Dupagne, M.; Chuan, C.H. Artificial Intelligence and Journalism. J. Mass Commun. Q. 2019, 96, 673–695. [Google Scholar] [CrossRef]
- Graefe, A.; Bohlken, N. Automated Journalism: A Meta-Analysis of Readers’ Perceptions of Human-Written in Comparison to Automated News. Media Commun. 2020, 8, 50–59. [Google Scholar] [CrossRef]
- Tandoc, E.C., Jr.; Yao, L.J.; Wu, S. Man vs. Machine? The Impact of Algorithm Authorship on News Credibility. Digit. J. 2020, 8, 548–562. [Google Scholar] [CrossRef]
- Swart, J. Experiencing Algorithms: How Young People Understand, Feel About, and Engage with Algorithmic News Selection on Social Media. Soc. Media Soc. 2021, 7, 20563051211008828. [Google Scholar] [CrossRef]
- Guo, W.; Wang, J.; Wang, S. Deep Multimodal Representation Learning: A Survey. IEEE Access 2019, 7, 63373–63394. [Google Scholar] [CrossRef]
- Mogadala, A.; Kalimuthu, M.; Klakow, D. Trends in integration of vision and language research: A survey of tasks, datasets, and methods. J. Artif. Intell. Res. 2021, 71, 1183–1317. [Google Scholar] [CrossRef]
- Chen, S.; Aguilar, G.; Neves, L.; Solorio, T. Can images help recognize entities? A study of the role of images for Multimodal NER. In Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021), Online, 11 November 2020; Association for Computational Linguistics: Stroudsburg, PA, USA, 2021; pp. 87–96. [Google Scholar] [CrossRef]
- Shon, S.; Pasad, A.; Wu, F.; Brusco, P.; Artzi, Y.; Livescu, K.; Han, K.J. SLUE: New Benchmark Tasks For Spoken Language Understanding Evaluation on Natural Speech. In Proceedings of the ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; pp. 7927–7931. [Google Scholar] [CrossRef]
- van Erp, M.; Ilievski, F.; Rospocher, M.; Vossen, P. Missing Mr. Brown and buying an Abraham Lincoln—Dark entities and DBpedia. In Proceedings of the Third NLP & DBpedia Workshop, Bethlehem, PA, USA, 11 October 2015; pp. 81–86. [Google Scholar]
- Al-Moslmi, T.; Gallofré Ocaña, M.; Opdahl, A.L.; Veres, C. Named entity extraction for knowledge graphs: A literature overview. IEEE Access 2020, 8, 32862–32881. [Google Scholar] [CrossRef]
- Luo, B.; Lau, R.Y.; Li, C.; Si, Y.W. A critical review of state-of-the-art chatbot designs and applications. WIREs Data Min. Knowl. Discov. 2022, 12, e1434. [Google Scholar] [CrossRef]
- Miroshnichenko, A. AI to Bypass Creativity. Will Robots Replace Journalists? (The Answer Is “Yes”). Information 2018, 9, 183. [Google Scholar] [CrossRef] [Green Version]
- Alhussain, A.I.; Azmi, A.M. Automatic Story Generation: A Survey of Approaches. ACM Comput. Surv. 2021, 54, 1–38. [Google Scholar] [CrossRef]
- Zhu, S.; Sun, G.; Jiang, Q.; Zha, M.; Liang, R. A survey on automatic infographics and visualization recommendations. Vis. Inform. 2020, 4, 24–40. [Google Scholar] [CrossRef]
- Lampropoulos, G.; Keramopoulos, E.; Diamantaras, K. Enhancing the functionality of augmented reality using deep learning, semantic web and knowledge graphs: A review. Vis. Inform. 2020, 4, 32–42. [Google Scholar] [CrossRef]
- Zhou, X.; Zafarani, R. A Survey of Fake News: Fundamental Theories, Detection Methods, and Opportunities. ACM Comput. Surv. 2020, 53, 1–40. [Google Scholar] [CrossRef]
- Pasquini, C.; Amerini, I.; Boato, G. Media forensics on social media platforms: A survey. EURASIP J. Inf. Secur. 2021, 2021, 1–19. [Google Scholar] [CrossRef]
- Bhagtani, K.; Yadav, A.K.S.; Bartusiak, E.R.; Xiang, Z.; Shao, R.; Baireddy, S.; Delp, E.J. An Overview of Recent Work in Media Forensics: Methods and Threats. arXiv 2022, arXiv:2204.12067. [Google Scholar]
- Hitzler, P.; Bianchi, F.; Ebrahimi, M.; Sarker, M.K. Neural-symbolic integration and the Semantic Web. Semant. Web 2020, 11, 3–11. [Google Scholar] [CrossRef]
- Hitzler, P.; Krotzsch, M.; Rudolph, S. Foundations of Semantic Web Technologies; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Thomson, T.; Angus, D.; Dootson, P.; Hurcombe, E.; Smith, A. Visual Mis/disinformation in Journalism and Public Communications: Current Verification Practices, Challenges, and Future Opportunities. J. Pract. 2020, 16, 1–25. [Google Scholar] [CrossRef]
- Collyda, C.; Apostolidis, E.; Pournaras, A.; Markatopoulou, F.; Mezaris, V.; Patras, I. VideoAnalysis4ALL: An On-Line Tool for the Automatic Fragmentation and Concept-Based Annotation, and the Interactive Exploration of Videos. In Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval, ICMR ’17, Bucharest, Romania, 6–9 June 2017; Association for Computing Machinery: New York, NY, USA, 2017. [Google Scholar] [CrossRef] [Green Version]
- Marinova, Z.; Spangenberg, J.; Teyssou, D.; Papadopoulos, S.; Sarris, N.; Alaphilippe, A.; Bontcheva, K. Weverify: Wider and Enhanced Verification for You Project Overview and Tools. In Proceedings of the 2020 IEEE International Conference on Multimedia Expo Workshops (ICMEW), London, UK, 6–10 July 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Salzmann, A.; Guribye, F.; Gynnild, A. “We in the Mojo Community”—Exploring a Global Network of Mobile Journalists. J. Pract. 2021, 15, 620–637. [Google Scholar] [CrossRef] [Green Version]
- Shin, D. Why Does Explainability Matter in News Analytic Systems? Proposing Explainable Analytic Journalism. J. Stud. 2021, 22, 1047–1065. [Google Scholar] [CrossRef]
- Kaur, D.; Uslu, S.; Rittichier, K.J.; Durresi, A. Trustworthy Artificial Intelligence: A Review. ACM Comput. Surv. 2022, 55, 1–38. [Google Scholar] [CrossRef]
- Motta, E.; Daga, E.; Opdahl, A.L.; Tessem, B. Analysis and Design of Computational News Angles. IEEE Access 2020, 8, 120613–120626. [Google Scholar] [CrossRef]
- Yan, Y.; Sun, H.; Liu, J. A Review and Outlook for Relation Extraction. In Proceedings of the 5th International Conference on Computer Science and Application Engineering, CSAE 2021, Sanya, China, 19–21 October 2021; Association for Computing Machinery: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- van Erp, M.; Groth, P. Towards Entity Spaces. In Proceedings of the 12th Language Resources and Evaluation Conference, Marseille, France, 11–16 May 2020; European Language Resources Association: Marseille, France, 2020; pp. 2129–2137. [Google Scholar]
- Xiao, G.; Ding, L.; Cogrel, B.; Calvanese, D. Virtual Knowledge Graphs: An Overview of Systems and Use Cases. Data Intell. 2019, 1, 201–223. [Google Scholar] [CrossRef]
- Martínez-Fernández, S.; Ayala, C.P.; Franch, X.; Marques, H.M. Benefits and drawbacks of software reference architectures: A case study. Inf. Softw. Technol. 2017, 88, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Eisenhardt, K.M. Building Theories from Case Study Research. Acad. Manag. Rev. 1989, 14, 532–550. [Google Scholar] [CrossRef]
- Hoon, C. Meta-Synthesis of Qualitative Case Studies: An Approach to Theory Building. Organ. Res. Methods 2013, 16, 522–556. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, J.A. A Realist Approach for Qualitative Research; Sage: Newcastle upon Tyne, UK, 2012. [Google Scholar]
- Corbin, J.; Strauss, A. Grounded theory research: Procedures, canons, and evaluative criteria. Qual. Sociol. 1990, 13, 2–21. [Google Scholar] [CrossRef]
- Corbin, J.; Strauss, A. Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory; Sage Publications: Newcastle upon Tyne, UK, 1998. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Bird, S.; Loper, E.; Klein, E. Natural Language Processing with Python; O’Reilly Media, Inc.: Newton, MA, USA, 2009. [Google Scholar]
- Honnibal, M.; Montani, I.; van Landeghem, S.; Boyd, A. spaCy: Industrial-Strength Natural Language Processing in Python; Zenodo: Geneva, Switzerland, 2020. [Google Scholar] [CrossRef]
- Damerau, F.J. A Technique for Computer Detection and Correction of Spelling Errors. Commun. ACM 1964, 7, 171–176. [Google Scholar] [CrossRef]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed Representations of Words and Phrases and their Compositionality. In Proceedings of the Advances in Neural Information Processing Systems 26, NIPS 2013, Barcelona, Spain, 11–19 December 2013; Neural Information Processing Systems Foundation: San Diego, CA, USA. [Google Scholar]
- Miller, G.A. WordNet: A Lexical Database for English. Commun. ACM 1995, 38, 39–41. [Google Scholar] [CrossRef]
- Gwet, K.L. Handbook of Inter-Rater Reliability: The Definitive Guide to Measuring the Extent of Agreement among Raters; Advanced Analytics, LLC: Oxford, MS, USA, 2014. [Google Scholar]
Platform | Industry partners | Countries | References |
---|---|---|---|
PlanetOnto | - | UK | [18,31] |
Neptuno | Diari SEGREN and iSOCOT | Spain | [14] |
AnnoTerra | NASA’s Earth ObservatoryN | USA | [24] |
SemNews * | - | USA | [19] |
Hermes * | - | The Netherlands | [20,32,33] |
BBC CMS | BBCN | UK | [16,34] |
NEWS | Agencia EFEN, Agencia ANSAN and Ontology Ldt.T | Spain and Italy | [12,35] |
EventRegistry * | - | Slovenia | [21] |
NewsReader * | LexisNexisT, The Sensible Code Company (before ScraperWiki)T and SynerscopeT | The Netherlands, Spain and Italy | [15,36,37] |
Reuters Tracer | ReutersN | USA | [22,38,39] |
SUMMA | LETAN, BBC MonitoringN, Deutsche WelleN and Priberam LabsT | Latvia, UK, Germany | [17,40,41,42] |
INJECT | AdresseavisenN, AFPN, The Globe and MailN, StiboT | Norway, France, Canada | [13] |
ASRAEL | AFPN | France | [23] |
News Hunter ‡ | WolftechT | Norway | [29,43,44] |
Information | Explanation |
---|---|
News content | The reported story or event. |
Textual data | Textual information. |
Multimedia data | Images, videos and audio information. |
Data format | The format in which the data is stored or structured. |
Metadata | Data about or that describe the news content. |
Linked Open Data (LOD) | Structured and open available data on the Internet (e.g., data from Wikidata and DBpedia) [27] |
Events | Newsworthy happenings. |
Information needs | Different information types and categories of interest. |
Functionality | Explanation |
---|---|
News creation | The process to create a news story. |
Verification | The process of checking the facts and claims. |
Source selection | The ability to select the information sources of interest. |
Monitoring | The ability to continuously distil information from source. |
Knowledge discovery | Functionalities for exploring relevant information. |
Trends | The current newsworthy developments. |
Alert | A notification. |
Summarisation | Extracting and representing the key information from a larger text or group of text. |
Clustering | Grouping similar stories or events. |
Business support | Functionalities to support management workflows. |
Content management | Functionalities oriented to store, organise and distribute information. |
Personalisation | Providing information according to the user’s interests. |
Technique | Explanation |
---|---|
Semantic technologies | Set of technologies designed to work with LOD and semantic data [46]. |
Fact extraction | The techniques used to identify factual claims. |
Conceptual model | A representations of the world or a part of. |
Reasoning | The techniques used to infer knowledge. |
Network analysis | The techniques used to analyse networks of things. |
Event analysis | The techniques used to analyse events. |
Natural Language Processing (NLP) | A set of techniques intended to work and process language. |
AI training | The process of creating and tuning an AI model to perform on a given dataset or scenario. |
Aspect | Explanation |
---|---|
Customers heterogeneity | The diversity of newsroom customers. |
Standards | Standards like IPTC topics or RDF. |
Ownership | Copyrights, authorship and licensing information. |
Multilingual content | Content produced in various languages. |
Timeliness | The temporal aspect of news, when they are published and when the stories happen. |
Human factors | Human-related aspects that affect newsroom and JKPs. |
Quality | The information and data quality. |
Big data | Aspects related to the large volume of data, variety of data and velocity in which data is produced. |
Performance | The ability to provide results with the expected quality and on time. |
Legacy | Old systems or repositories. |
Software architecture | The structure and components of a software system [63]. |
Maintenance | The ability to reuse, fix and update existing systems. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallofré Ocaña, M.; Opdahl, A.L. Supporting Newsrooms with Journalistic Knowledge Graph Platforms: Current State and Future Directions. Technologies 2022, 10, 68. https://doi.org/10.3390/technologies10030068
Gallofré Ocaña M, Opdahl AL. Supporting Newsrooms with Journalistic Knowledge Graph Platforms: Current State and Future Directions. Technologies. 2022; 10(3):68. https://doi.org/10.3390/technologies10030068
Chicago/Turabian StyleGallofré Ocaña, Marc, and Andreas L. Opdahl. 2022. "Supporting Newsrooms with Journalistic Knowledge Graph Platforms: Current State and Future Directions" Technologies 10, no. 3: 68. https://doi.org/10.3390/technologies10030068
APA StyleGallofré Ocaña, M., & Opdahl, A. L. (2022). Supporting Newsrooms with Journalistic Knowledge Graph Platforms: Current State and Future Directions. Technologies, 10(3), 68. https://doi.org/10.3390/technologies10030068