Next Issue
Volume 8, August
Previous Issue
Volume 8, June
 
 

ISPRS Int. J. Geo-Inf., Volume 8, Issue 7 (July 2019) – 26 articles

Cover Story (view full-size image): Thanks to the availability of geospatial data, 3D environment reconstruction has been used in the visualization of urban environments. OpenStreetMap offers a huge potential by providing a flexible, crowdsourced alternative to use for such purposes. In this work, City Maker, a 3D environment reconstruction tool, was designed to use OpenStreetMap as the map data source to generate digital city models. By providing additional parameters such as roughness coefficients and storm drains, the digital city model was made simulation-ready. By arranging the layers in an appropriate format, the city models were loaded and visualized efficiently. The model was tested with a hypothetical flooding scenario to demonstrate its applicability. It is also noted that given data availability, OpenStreetMap can be used to generate digital city models. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
30 pages, 11880 KiB  
Article
Efficiency of Extreme Gradient Boosting for Imbalanced Land Cover Classification Using an Extended Margin and Disagreement Performance
by Fei Sun, Run Wang, Bo Wan, Yanjun Su, Qinghua Guo, Youxin Huang and Xincai Wu
ISPRS Int. J. Geo-Inf. 2019, 8(7), 315; https://doi.org/10.3390/ijgi8070315 - 23 Jul 2019
Cited by 8 | Viewed by 3255
Abstract
Imbalanced learning is a methodological challenge in remote sensing communities, especially in complex areas where the spectral similarity exists between land covers. Obtaining high-confidence classification results for imbalanced class issues is highly important in practice. In this paper, extreme gradient boosting (XGB), a [...] Read more.
Imbalanced learning is a methodological challenge in remote sensing communities, especially in complex areas where the spectral similarity exists between land covers. Obtaining high-confidence classification results for imbalanced class issues is highly important in practice. In this paper, extreme gradient boosting (XGB), a novel tree-based ensemble system, is employed to classify the land cover types in Very-high resolution (VHR) images with imbalanced training data. We introduce an extended margin criterion and disagreement performance to evaluate the efficiency of XGB in imbalanced learning situations and examine the effect of minority class spectral separability on model performance. The results suggest that the uncertainty of XGB associated with correct classification is stable. The average probability-based margin of correct classification provided by XGB is 0.82, which is about 46.30% higher than that by random forest (RF) method (0.56). Moreover, the performance uncertainty of XGB is insensitive to spectral separability after the sample imbalance reached a certain level (minority:majority > 10:100). The impact of sample imbalance on the minority class is also related to its spectral separability, and XGB performs better than RF in terms of user accuracy for the minority class with imperfect separability. The disagreement components of XGB are better and more stable than RF with imbalanced samples, especially for complex areas with more types. In addition, appropriate sample imbalance helps to improve the trade-off between the recognition accuracy of XGB and the sample cost. According to our analysis, this margin-based uncertainty assessment and disagreement performance can help users identify the confidence level and error component in similar classification performance (overall, producer, and user accuracies). Full article
Show Figures

Figure 1

16 pages, 2405 KiB  
Article
Regionalization Analysis and Mapping for the Source and Sink of Tourist Flows
by Qiushi Gu, Haiping Zhang, Min Chen and Chongcheng Chen
ISPRS Int. J. Geo-Inf. 2019, 8(7), 314; https://doi.org/10.3390/ijgi8070314 - 23 Jul 2019
Cited by 11 | Viewed by 4913 | Correction
Abstract
At present, population mobility for the purpose of tourism has become a popular phenomenon. As it becomes easier to capture big data on the tourist digital footprint, it is possible to analyze the respective regional features and driving forces for both tourism sources [...] Read more.
At present, population mobility for the purpose of tourism has become a popular phenomenon. As it becomes easier to capture big data on the tourist digital footprint, it is possible to analyze the respective regional features and driving forces for both tourism sources and destination regions at a macro level. Based on the data of tourist flows to Nanjing on five short-period national holidays in China, this study first calculated the travel rate of tourist source regions (315 cities) and the geographical concentration index of the visited attractions (51 scenic spots). Then, the spatial autocorrelation metrics index was used to analyze the global autocorrelation of the travel rates of tourist source regions and the geographical concentration index of the tourist destinations on five short-term national holidays. Finally, a heuristic unsupervised machine-learning method was used to analyze and map tourist sources and visited attractions by adopting the travel rate and the geographical concentration index accordingly as regionalized variables. The results indicate that both source and sink regions expressed distinctive regional differentiation patterns in the corresponding regional variables. This study method provides a practical tool for analyzing regionalization of big data in tourist flows, and it can also be applied to other origin-destination (OD) studies. Full article
(This article belongs to the Special Issue Smart Cartography for Big Data Solutions)
Show Figures

Figure 1

16 pages, 8419 KiB  
Article
An Agent-based Model Simulation of Human Mobility Based on Mobile Phone Data: How Commuting Relates to Congestion
by Hao Wu, Lingbo Liu, Yang Yu, Zhenghong Peng, Hongzan Jiao and Qiang Niu
ISPRS Int. J. Geo-Inf. 2019, 8(7), 313; https://doi.org/10.3390/ijgi8070313 - 23 Jul 2019
Cited by 27 | Viewed by 4457
Abstract
The commute of residents in a big city often brings tidal traffic pressure or congestions. Understanding the causes behind this phenomenon is of great significance for urban space optimization. Various spatial big data make the fine description of urban residents’ travel behaviors possible, [...] Read more.
The commute of residents in a big city often brings tidal traffic pressure or congestions. Understanding the causes behind this phenomenon is of great significance for urban space optimization. Various spatial big data make the fine description of urban residents’ travel behaviors possible, and bring new approaches to related studies. The present study focuses on two aspects: one is to obtain relatively accurate features of commuting behaviors by using mobile phone data, and the other is to simulate commuting behaviors of residents through the agent-based model and inducing backward the causes of congestion. Taking the Baishazhou area of Wuhan, a local area of a mega city in China, as a case study, we simulated the travel behaviors of commuters: the spatial context of the model is set up using the existing urban road network and by dividing the area into space units. Then, using the mobile phone call detail records of a month, statistics of residents’ travel during the four time slots in working day mornings are acquired and then used to generate the Origin-Destination matrix of travels at different time slots, and the data are imported into the model for simulation. Under the preset rules of congestion, the agent-based model can effectively simulate the traffic conditions of each traffic intersection, and can induce backward the causes of traffic congestion using the simulation results and the Origin-Destination matrix. Finally, the model is used for the evaluation of road network optimization, which shows evident effects of the optimizing measures adopted in relieving congestion, and thus also proves the value of this method in urban studies. Full article
Show Figures

Figure 1

15 pages, 3130 KiB  
Article
Identifying Alternative Wetting and Drying (AWD) Adoption in the Vietnamese Mekong River Delta: A Change Detection Approach
by Robin J. Lovell
ISPRS Int. J. Geo-Inf. 2019, 8(7), 312; https://doi.org/10.3390/ijgi8070312 - 22 Jul 2019
Cited by 6 | Viewed by 5182
Abstract
Alternative wetting and drying (AWD) is an increasingly popular water-saving practice in rice production in the Vietnamese Mekong River Delta, especially considering the impact of projected climate change and reduced water availability. Unfortunately, it is very difficult to determine adoption without deploying thousands [...] Read more.
Alternative wetting and drying (AWD) is an increasingly popular water-saving practice in rice production in the Vietnamese Mekong River Delta, especially considering the impact of projected climate change and reduced water availability. Unfortunately, it is very difficult to determine adoption without deploying thousands of costly household surveys. This research used European Space Agency Sentinel-1a and 1b radar data, combined with in-situ moisture readings, to determine AWD adoption through change detection of a time series wetness index (WI). By using a beta coefficient of the radar data, the WI avoided the pitfalls of cloud cover, surface roughness, and vegetative interference that arise from the sigma coefficient data. The analysis illustrated an AWD adoption likelihood scale across the delta and it showed potential for the use of remotely sensed data to detect adoption. Trends across the Vietnamese delta showed higher adoption rates inland, with lower adoption of AWD in the coastal provinces. These results were supported by a simultaneous effort to collect household level adoption data as part of the same project. However, correlation between the WI values and in situ soil moisture meter readings were most accurate in alluvial soils, illustrating a particularly strong relationship between soil type and WI model robustness. The research suggests that future change detection efforts should focus on retrieving a multi-season dataset and employing a power density analysis on the time series data to fully understand the periodicity of dry down patterns. Full article
Show Figures

Figure 1

21 pages, 30093 KiB  
Article
COMET’s Education and Training for the Worldwide Meteorological Satellite User Community: Meeting Evolving Needs with Innovative Instruction
by Patrick Dills, Amy Stevermer, Tony Mancus, Bryan Guarente, Tim Alberta and Elizabeth Page
ISPRS Int. J. Geo-Inf. 2019, 8(7), 311; https://doi.org/10.3390/ijgi8070311 - 20 Jul 2019
Cited by 4 | Viewed by 3696
Abstract
Since 1989, the COMET<sup>&#xAE;</sup> Program&#x2019;s staff of instructional designers, scientists, graphic artists, and web developers has been creating targeted, effective, and scientifically sound instructional materials for the geosciences in multiple languages and formats. The majority of COMET training materials and services are available [...] Read more.
Since 1989, the COMET<sup>&#xAE;</sup> Program&#x2019;s staff of instructional designers, scientists, graphic artists, and web developers has been creating targeted, effective, and scientifically sound instructional materials for the geosciences in multiple languages and formats. The majority of COMET training materials and services are available via COMET&#x2019;s online training portal, MetEd. MetEd hosts over 500 self-paced English-language lessons, which are freely available to registered users. The lessons cover a broad array of topics, including satellite meteorology, numerical weather prediction, hydrometeorology, oceanography, aviation weather, climate science, and decision support. Nearly 300 lessons have been translated to other languages. NOAA NESDIS, EUMETSAT, the Meteorological Service of Canada, and the US National Weather Service all provide funding and subject matter expertise for satellite training efforts at COMET. The COMET team is focused on helping our sponsors refine their learning objectives and produce instructional material that is focused on learner engagement, knowledge retention, and measurable performance improvement. The COMET Program has continually transformed its instructional approach to better meet the shifting needs of learners. Our satellite remote sensing educational and training materials provide sound foundational knowledge for existing and new satellite products paired with increasing opportunities to apply that knowledge. Full article
(This article belongs to the Special Issue Education and Training in Applied Remote Sensing)
Show Figures

Graphical abstract

19 pages, 1000 KiB  
Article
Assessment and Benchmarking of Spatially Enabled RDF Stores for the Next Generation of Spatial Data Infrastructure
by Weiming Huang, Syed Amir Raza, Oleg Mirzov and Lars Harrie
ISPRS Int. J. Geo-Inf. 2019, 8(7), 310; https://doi.org/10.3390/ijgi8070310 - 19 Jul 2019
Cited by 18 | Viewed by 4526
Abstract
Geospatial information is indispensable for various real-world applications and is thus a prominent part of today’s data science landscape. Geospatial data is primarily maintained and disseminated through spatial data infrastructures (SDIs). However, current SDIs are facing challenges in terms of data integration and [...] Read more.
Geospatial information is indispensable for various real-world applications and is thus a prominent part of today’s data science landscape. Geospatial data is primarily maintained and disseminated through spatial data infrastructures (SDIs). However, current SDIs are facing challenges in terms of data integration and semantic heterogeneity because of their partially siloed data organization. In this context, linked data provides a promising means to unravel these challenges, and it is seen as one of the key factors moving SDIs toward the next generation. In this study, we investigate the technical environment of the support for geospatial linked data by assessing and benchmarking some popular and well-known spatially enabled RDF stores (RDF4J, GeoSPARQL-Jena, Virtuoso, Stardog, and GraphDB), with a focus on GeoSPARQL compliance and query performance. The tests were performed in two different scenarios. In the first scenario, geospatial data forms a part of a large-scale data infrastructure and is integrated with other types of data. In this scenario, we used ICOS Carbon Portal’s metadata—a real-world Earth Science linked data infrastructure. In the second scenario, we benchmarked the RDF stores in a dedicated SDI environment that contains purely geospatial data, and we used geospatial datasets with both crowd-sourced and authoritative data (the same test data used in a previous benchmark study, the Geographica benchmark). The assessment and benchmarking results demonstrate that the GeoSPARQL compliance of the RDF stores has encouragingly advanced in the last several years. The query performances are generally acceptable, and spatial indexing is imperative when handling a large number of geospatial objects. Nevertheless, query correctness remains a challenge for cross-database interoperability. In conclusion, the results indicate that the spatial capacity of the RDF stores has become increasingly mature, which could benefit the development of future SDIs. Full article
(This article belongs to the Special Issue SDI and the Revolutionary Technological Trends)
Show Figures

Figure 1

18 pages, 5705 KiB  
Article
VS30 Seismic Microzoning Based on a Geomorphology Map: Experimental Case Study of Chiang Mai, Chiang Rai, and Lamphun, Thailand
by Patcharavadee Thamarux, Masashi Matsuoka, Nakhorn Poovarodom and Junko Iwahashi
ISPRS Int. J. Geo-Inf. 2019, 8(7), 309; https://doi.org/10.3390/ijgi8070309 - 18 Jul 2019
Cited by 5 | Viewed by 3956
Abstract
Thailand is not known to be an earthquake-prone country; however, in 2014, an unexpected moderate earthquake caused severe damage to infrastructure and resulted in public panic. This event caught public attention and raised awareness of national seismic disaster management. However, the expertise and [...] Read more.
Thailand is not known to be an earthquake-prone country; however, in 2014, an unexpected moderate earthquake caused severe damage to infrastructure and resulted in public panic. This event caught public attention and raised awareness of national seismic disaster management. However, the expertise and primary data required for implementation of seismic disaster management are insufficient, including data on soil character which are used in amplification analyses for further ground motion prediction evaluations. Therefore, in this study, soil characterization was performed to understand the seismic responses of soil rigidity. The final output is presented in a seismic microzoning map. A geomorphology map was selected as the base map for the analysis. The geomorphology units were assigned with a time-averaged shear wave velocity of 30 m (VS30), which was collected by the spatial autocorrelation (SPAC) method of microtremor array measurements. The VS30 values were obtained from the phase velocity of the Rayleigh wave corresponding to a 40 m wavelength (C(40)). From the point feature, the VS30 values were transformed into polygonal features based on the geomorphological characteristics. Additionally, the automated geomorphology classification was explored in this study. Then, the seismic microzones were compared with the locations of major damage from the 2014 records for validation. The results from this study include geomorphological classification and seismic microzoning. The results suggest that the geomorphology units obtained from a pixel-based classification can be recommended for use in seismic microzoning. For seismic microzoning, the results show mainly stiff soil and soft rocks in the study area, and these geomorphological units have relatively high amplifications. The results of this study provide a valuable base map for further disaster management analyses. Full article
(This article belongs to the Special Issue Geomatics and Geo-Information in Earthquake Studies)
Show Figures

Figure 1

20 pages, 3645 KiB  
Article
Anomalous Urban Mobility Pattern Detection Based on GPS Trajectories and POI Data
by Zhenzhou Xu, Ge Cui, Ming Zhong and Xin Wang
ISPRS Int. J. Geo-Inf. 2019, 8(7), 308; https://doi.org/10.3390/ijgi8070308 - 17 Jul 2019
Cited by 20 | Viewed by 4572
Abstract
Anomalous urban mobility pattern refers to abnormal human mobility flow in a city. Anomalous urban mobility pattern detection is important in the study of urban mobility. In this paper, a framework is proposed to identify anomalous urban mobility patterns based on taxi GPS [...] Read more.
Anomalous urban mobility pattern refers to abnormal human mobility flow in a city. Anomalous urban mobility pattern detection is important in the study of urban mobility. In this paper, a framework is proposed to identify anomalous urban mobility patterns based on taxi GPS trajectories and Point of Interest (POI) data. In the framework, functional regions are first generated based on the distribution of POIs by the DBSCAN clustering algorithm. A Weighted Term Frequency-Inverse Document Frequency (WTF-IDF) method is proposed to identify function values in each region. Then, the Origin-Destination (OD) of trips between functional regions is extracted from GPS trajectories to detect anomalous urban mobility patterns. Mobility vectors are established for each time interval based on the OD of trips and are classified into clusters by the mean shift algorithm. Abnormal urban mobility patterns are identified by processing the mobility vectors. A case study in the city of Wuhan, China, is conducted; the experimental results show that the proposed method can effectively identify daily and hourly anomalous urban mobility patterns. Full article
Show Figures

Figure 1

24 pages, 7617 KiB  
Article
Monitoring Ground Instabilities Using SAR Satellite Data: A Practical Approach
by Matteo Del Soldato, Lorenzo Solari, Federico Raspini, Silvia Bianchini, Andrea Ciampalini, Roberto Montalti, Alessandro Ferretti, Vania Pellegrineschi and Nicola Casagli
ISPRS Int. J. Geo-Inf. 2019, 8(7), 307; https://doi.org/10.3390/ijgi8070307 - 17 Jul 2019
Cited by 45 | Viewed by 5477
Abstract
Satellite interferometric data are widely exploited for ground motion monitoring thanks to their wide area coverage, cost efficiency and non-invasiveness. The launch of the Sentinel-1 constellation opened new horizons for interferometric applications, allowing the scientists to rethink the way in which these data [...] Read more.
Satellite interferometric data are widely exploited for ground motion monitoring thanks to their wide area coverage, cost efficiency and non-invasiveness. The launch of the Sentinel-1 constellation opened new horizons for interferometric applications, allowing the scientists to rethink the way in which these data are delivered, passing from a static view of the territory to a continuous streaming of ground motion measurements from space. Tuscany Region is the first worldwide example of a regional scale monitoring system based on satellite interferometric data. The processing chain here exploited combines a multi-interferometric approach with a time-series data mining algorithm aimed at recognizing benchmarks with significant trend variations. The system is capable of detecting the temporal changes of a wide variety of phenomena such as slow-moving landslides and subsidence, producing a high amount of data to be interpreted in a short time. Bulletins and reports are derived to the hydrogeological risk management actors at regional scale. The final output of the project is a list of potentially hazardous and accelerating phenomena that are verified on site by field campaign by completing a sheet survey in order to qualitatively estimate the risk and to suggest short-term actions to be taken by local entities. Two case studies, one related to landslides and one to subsidence, are proposed to highlight the potential of the monitoring system to early detect anomalous ground changes. Both examples represent a successful implementation of satellite interferometric data as monitoring and risk management tools, raising the awareness of local and regional authorities to geohazards. Full article
(This article belongs to the Special Issue Geospatial Approaches to Landslide Mapping and Monitoring)
Show Figures

Graphical abstract

14 pages, 3657 KiB  
Article
Modeling the Vagueness of Areal Geographic Objects: A Categorization System
by Yu Liu, Yihong Yuan and Song Gao
ISPRS Int. J. Geo-Inf. 2019, 8(7), 306; https://doi.org/10.3390/ijgi8070306 - 17 Jul 2019
Cited by 11 | Viewed by 3629
Abstract
Modeling vague objects with indeterminate boundaries has drawn much attention in geographic information science. Because fields and objects are two perspectives in modeling geographic phenomena, this paper investigates the characteristics of vague regions from the perspective of the field/object dichotomy. Based on the [...] Read more.
Modeling vague objects with indeterminate boundaries has drawn much attention in geographic information science. Because fields and objects are two perspectives in modeling geographic phenomena, this paper investigates the characteristics of vague regions from the perspective of the field/object dichotomy. Based on the assumption that a vague object can be viewed as the conceptualization of a field, we defined five categories of vague objects: direct field-cutting objects, focal operation-based field-cutting objects, element-clustering objects, object-referenced objects, and dynamic boundary objects. We then established a categorization system to formalize the semantic differences between vague objects using the fuzzy set theory. The proposed framework provides valuable input for the conceptualization, interpretation, and modeling of vague geographical objects. Full article
Show Figures

Figure 1

23 pages, 3425 KiB  
Article
Assessing Spatial Information Themes in the Spatial Information Infrastructure for Participatory Urban Planning Monitoring: Indonesian Cities
by Agung Indrajit, Bastiaan Van Loenen and Peter Van Oosterom
ISPRS Int. J. Geo-Inf. 2019, 8(7), 305; https://doi.org/10.3390/ijgi8070305 - 17 Jul 2019
Cited by 9 | Viewed by 4586
Abstract
Most urban planning monitoring activities were designed to monitor implementation of aggregated sectors from different initiatives into practical and measurable indicators. Today, cities utilize spatial information in monitoring and evaluating urban planning implementation for not only national or local goals but also for [...] Read more.
Most urban planning monitoring activities were designed to monitor implementation of aggregated sectors from different initiatives into practical and measurable indicators. Today, cities utilize spatial information in monitoring and evaluating urban planning implementation for not only national or local goals but also for the 2030 Agenda of Sustainable Development Goals (SDGs). Modern cities adopt Participatory Geographic Information System (PGIS) initiative for their urban planning monitoring. Cities provide spatial information and online tools for citizens to participate. However, the selection of spatial information services for participants is made from producers’ perception and often disregards requirements from the regulation, functionalities, and broader user’s perception. By providing appropriate spatial information, the quality of participatory urban monitoring can be improved. This study presents a method for selecting appropriate spatial information for urban planning monitoring. It considers regulation, urban planning, and spatial science theories, as well as citizens’ requirements, to support participatory urban planning monitoring as a way to ensure the success of providing near real-time urban information to planners and decision-makers. Full article
(This article belongs to the Special Issue Algorithms and Techniques in Urban Monitoring)
Show Figures

Graphical abstract

23 pages, 4400 KiB  
Article
A New Algorithms of Stroke Generation Considering Geometric and Structural Properties of Road Network
by Yi Liu and Wenjing Li
ISPRS Int. J. Geo-Inf. 2019, 8(7), 304; https://doi.org/10.3390/ijgi8070304 - 16 Jul 2019
Cited by 7 | Viewed by 3364
Abstract
Strokes are considered an elementary unit of road networks and have been widely used in their analysis and application. However, most conventional stroke generation methods are based solely on a fixed angle threshold, which ignores road networks’ geometric and structural properties. To remedy [...] Read more.
Strokes are considered an elementary unit of road networks and have been widely used in their analysis and application. However, most conventional stroke generation methods are based solely on a fixed angle threshold, which ignores road networks’ geometric and structural properties. To remedy this, this paper proposes an algorithm for generating strokes that takes into account these additional geometric and structural road network properties and that reduces the impact of stroke generation on road network quality. To this end, we introduce a model of feature-based information entropy and then utilize this model to calculate road networks’ information volume and both the elemental and neighborhood level. To make our experimental results more objective, we use the Douglas-Peucker algorithm to simplify the information change curve and to obtain the optimal angle threshold range for generating strokes for different road network structures. Finally, we apply this model to three different road networks, and the optimal threshold ranges are 54°–63° (Chicago), 61°–63° (Moscow), 45°–48° (Monaco). And taking Monaco as an example, this paper conducts stroke selection experiments. The results demonstrate that our proposed algorithm has better connectivity and wider coverage than those based on a common angle threshold (60°). Full article
(This article belongs to the Special Issue Map Generalization)
Show Figures

Figure 1

13 pages, 4743 KiB  
Article
Skeleton Line Extraction Method in Areas with Dense Junctions Considering Stroke Features
by Chengming Li, Yong Yin, Pengda Wu and Wei Wu
ISPRS Int. J. Geo-Inf. 2019, 8(7), 303; https://doi.org/10.3390/ijgi8070303 - 16 Jul 2019
Cited by 8 | Viewed by 2814
Abstract
Extraction of the skeleton line of complex polygons is difficult, and a hot topic in map generalization study. Due to the irregularity and complexity of junctions, it is difficult for traditional methods to maintain main structure and extension characteristics when dealing with dense [...] Read more.
Extraction of the skeleton line of complex polygons is difficult, and a hot topic in map generalization study. Due to the irregularity and complexity of junctions, it is difficult for traditional methods to maintain main structure and extension characteristics when dealing with dense junction areas, so a skeleton line extraction method considering stroke features has been proposed in this paper. Firstly, we put forward a long-edge adaptive node densification algorithm, which is used to construct boundary-constrained Delaunay triangulation to uniformly divide the polygon and extract the initial skeleton line. Secondly, we defined the triangles with three adjacent triangles (Type III) as the basic unit of junctions, then obtained the segmented areas with dense junctions on the basis of local width characteristics and correlation relationships of each Type III triangle. Finally, we concatenated the segments into strokes and corrected the initial skeleton lines based on the extension direction features of each stroke. The actual water network data of Jiangsu Province in China were used to verify the method. Experimental results show that the proposed method can better identify the areas with dense junctions and that the extracted skeleton line is naturally smooth and well-connected, which accurately reflects the main structure and extension characteristics of these areas. Full article
Show Figures

Figure 1

13 pages, 1232 KiB  
Article
Areal Interpolation Using Parcel and Census Data in Highly Developed Urban Environments
by XiaoHang Liu and Alexis Martinez
ISPRS Int. J. Geo-Inf. 2019, 8(7), 302; https://doi.org/10.3390/ijgi8070302 - 16 Jul 2019
Cited by 8 | Viewed by 3931
Abstract
Areal interpolation is routinely used when spatial data are unavailable at desired geographical units. While many methods are available, few of them were developed specifically for and tested in highly developed urban cores. Even fewer studied subpopulation or population characteristics. This paper explores [...] Read more.
Areal interpolation is routinely used when spatial data are unavailable at desired geographical units. While many methods are available, few of them were developed specifically for and tested in highly developed urban cores. Even fewer studied subpopulation or population characteristics. This paper explores both issues using parcel map and decennial census data as ancillary information. Using census blocks as intermediate zones, the method first disaggregates source-zone data to intermediate zones, then disaggregates data to parcel level in intermediate zones intersecting target zones, and finally aggregates intermediate-zone and parcel-level estimates to obtain target-zone estimates. Compared to areal weighting and residential proportion, the proposed method is significantly more accurate. All three methods perform the best on population count, and worst on spatially clustered subpopulations such as black/African American population. Quotient variables are more difficult to interpolate than count variables. The research demonstrates the utility of parcel and decennial census data for areal interpolation in highly developed urban cores, and calls for future research on subpopulation and population characteristics. Full article
Show Figures

Figure 1

17 pages, 5641 KiB  
Article
HBIM Modeling from the Surface Mesh and Its Extended Capability of Knowledge Representation
by Xiucheng Yang, Yi-Chou Lu, Arnadi Murtiyoso, Mathieu Koehl and Pierre Grussenmeyer
ISPRS Int. J. Geo-Inf. 2019, 8(7), 301; https://doi.org/10.3390/ijgi8070301 - 15 Jul 2019
Cited by 69 | Viewed by 6713
Abstract
Built heritage has been documented by reality-based modeling for geometric description and by ontology for knowledge management. The current challenge still involves the extraction of geometric primitives and the establishment of their connection to heterogeneous knowledge. As a recently developed 3D information modeling [...] Read more.
Built heritage has been documented by reality-based modeling for geometric description and by ontology for knowledge management. The current challenge still involves the extraction of geometric primitives and the establishment of their connection to heterogeneous knowledge. As a recently developed 3D information modeling environment, building information modeling (BIM) entails both graphical and non-graphical aspects of the entire building, which has been increasingly applied to heritage documentation and generates a new issue of heritage/historic BIM (HBIM). However, HBIM needs to additionally deal with the heterogeneity of geometric shape and semantic knowledge of the heritage object. This paper developed a new mesh-to-HBIM modeling workflow and an integrated BIM management system to connect HBIM elements and historical knowledge. Using the St-Pierre-le-Jeune Church, Strasbourg, France as a case study, this project employs Autodesk Revit as a BIM environment and Dynamo, a built-in visual programming tool of Revit, to extend the new HBIM functions. The mesh-to-HBIM process segments the surface mesh, thickens the triangle mesh to 3D volume, and transfers the primitives to BIM elements. The obtained HBIM is then converted to the ontology model to enrich the heterogeneous knowledge. Finally, HBIM geometric elements and ontology semantic knowledge is joined in a unified BIM environment. By extending the capability of the BIM platform, the HBIM modeling process can be conducted in a time-saving way, and the obtained HBIM is a semantic model with object-oriented knowledge. Full article
(This article belongs to the Special Issue BIM for Cultural Heritage (HBIM))
Show Figures

Figure 1

25 pages, 13682 KiB  
Article
A Convolutional Neural Network Architecture for Auto-Detection of Landslide Photographs to Assess Citizen Science and Volunteered Geographic Information Data Quality
by Recep Can, Sultan Kocaman and Candan Gokceoglu
ISPRS Int. J. Geo-Inf. 2019, 8(7), 300; https://doi.org/10.3390/ijgi8070300 - 15 Jul 2019
Cited by 55 | Viewed by 6784
Abstract
Several scientific processes benefit from Citizen Science (CitSci) and VGI (Volunteered Geographical Information) with the help of mobile and geospatial technologies. Studies on landslides can also take advantage of these approaches to a great extent. However, the quality of the collected data by [...] Read more.
Several scientific processes benefit from Citizen Science (CitSci) and VGI (Volunteered Geographical Information) with the help of mobile and geospatial technologies. Studies on landslides can also take advantage of these approaches to a great extent. However, the quality of the collected data by both approaches is often questionable, and automated procedures to check the quality are needed for this purpose. In the present study, a convolutional neural network (CNN) architecture is proposed to validate landslide photos collected by citizens or nonexperts and integrated into a mobile- and web-based GIS environment designed specifically for a landslide CitSci project. The VGG16 has been used as the base model since it allows finetuning, and high performance could be achieved by selecting the best hyper-parameters. Although the training dataset was small, the proposed CNN architecture was found to be effective as it could identify the landslide photos with 94% precision. The accuracy of the results is sufficient for purpose and could even be improved further using a larger amount of training data, which is expected to be obtained with the help of volunteers. Full article
Show Figures

Figure 1

14 pages, 3748 KiB  
Article
Collision Detection for UAVs Based on GeoSOT-3D Grids
by Weixin Zhai, Xiaochong Tong, Shuangxi Miao, Chengqi Cheng and Fuhu Ren
ISPRS Int. J. Geo-Inf. 2019, 8(7), 299; https://doi.org/10.3390/ijgi8070299 - 15 Jul 2019
Cited by 14 | Viewed by 3923
Abstract
The increasing number of unmanned aerial vehicles (UAVs) has led to challenges related to solving the collision problem to ensure air traffic safety. The traditional approaches employed for collision detection suffer from two main drawbacks: first, the computational burden of a pairwise calculation [...] Read more.
The increasing number of unmanned aerial vehicles (UAVs) has led to challenges related to solving the collision problem to ensure air traffic safety. The traditional approaches employed for collision detection suffer from two main drawbacks: first, the computational burden of a pairwise calculation increases exponentially with an increasing number of spatial entities; second, existing grid-based approaches are unsuitable for complicated scenarios with a large number of objects moving at high speeds. In the proposed model, we first identified UAVs and other spatial objects with GeoSOT-3D grids. Second, the nonrelational spatial database was initialized with a multitable strategy, and spatiotemporal data were inserted with the GeoSOT-3D grid codes as the primary key. Third, the collision detection procedure was transformed from a pairwise calculation to a multilevel query. Four simulation experiments were conducted to verify the feasibility and efficiency of the proposed collision detection model for UAVs in different environments. The results also indicated that 64 m GeoSOT-3D grids are the most suitable basic grid size, and the reduction in the time consumption compared with traditional methods reached approximately 50–80% in different scenarios. Full article
(This article belongs to the Special Issue Global Grid Systems)
Show Figures

Figure 1

17 pages, 15310 KiB  
Article
City Maker: Reconstruction of Cities from OpenStreetMap Data for Environmental Visualization and Simulations
by I. Alihan Hadimlioglu and Scott A. King
ISPRS Int. J. Geo-Inf. 2019, 8(7), 298; https://doi.org/10.3390/ijgi8070298 - 15 Jul 2019
Cited by 12 | Viewed by 6330
Abstract
Recent innovations in 3D processing and availability of geospatial data have contributed largely to more comprehensive solutions to data visualization. As various data formats are utilized to describe the data, a combination of layers from different sources allow us to represent 3D urban [...] Read more.
Recent innovations in 3D processing and availability of geospatial data have contributed largely to more comprehensive solutions to data visualization. As various data formats are utilized to describe the data, a combination of layers from different sources allow us to represent 3D urban areas, contributing to ideas of emergency management and smart cities. This work focuses on 3D urban environment reconstruction using crowdsourced OpenStreetMap data. Once the data are extracted, the visualization pipeline draws features using coloring for added context. Moreover, by structuring the layers and entities through the addition of simulation parameters, the generated environment is made simulation ready for further use. Results show that urban areas can be properly visualized in 3D using OpenStreetMap data given data availability. The simulation-ready environment was tested using hypothetical flooding scenarios, which demonstrated that the added parameters can be utilized in environmental simulations. Furthermore, an efficient restructuring of data was implemented for viewing the city information once the data are parsed. Full article
Show Figures

Figure 1

23 pages, 3581 KiB  
Article
A GIS-Based Support Vector Machine Model for Flash Flood Vulnerability Assessment and Mapping in China
by Junnan Xiong, Jin Li, Weiming Cheng, Nan Wang and Liang Guo
ISPRS Int. J. Geo-Inf. 2019, 8(7), 297; https://doi.org/10.3390/ijgi8070297 - 12 Jul 2019
Cited by 56 | Viewed by 6108
Abstract
Flash floods are one of the natural disasters that threaten the lives of many people all over the world every year. Flash floods are significantly affected by the intensification of extreme climate events and interactions with exposed and vulnerable socio-economic systems impede regional [...] Read more.
Flash floods are one of the natural disasters that threaten the lives of many people all over the world every year. Flash floods are significantly affected by the intensification of extreme climate events and interactions with exposed and vulnerable socio-economic systems impede regional development processes. Hence, it is important to estimate the loss due to flash floods before the disaster occurs. However, there are no comprehensive vulnerability assessment results for flash floods in China. Fortunately, the National Mountain Flood Disaster Investigation Project provided a foundation to develop this proposed assessment. In this study, an index system was established from the exposure and disaster reduction capability categories, and is based on analytic hierarchy process (AHP) methods. We evaluated flash flood vulnerability by adopting the support vector machine (SVM) model. Our results showed 439 counties with high and extremely high vulnerability (accounting for 10.5% of the land area and corresponding to approximately 100 million hectares (ha)), 571 counties with moderate vulnerability (accounting for 19.18% of the land area and corresponding to approximately 180 million ha), and 1128 counties with low and extremely low vulnerability (accounting for 39.43% of the land area and corresponding to approximately 370 million ha). The highly-vulnerable counties were mainly concentrated in the south and southeast regions of China, moderately-vulnerable counties were primarily concentrated in the central, northern, and southwestern regions of China, and low-vulnerability counties chiefly occurred in the northwest regions of China. Additionally, the results of the spatial autocorrelation suggested that the “High-High” values of spatial agglomeration areas mainly occurred in the Zhejiang, Fujian, Jiangxi, Hunan, Guangxi, Chongqing, and Beijing areas. On the basis of these results, our study can be used as a proposal for population and building distribution readjustments, and the management of flash floods in China. Full article
Show Figures

Figure 1

24 pages, 4108 KiB  
Review
Application of Remote Sensing to the Investigation of Rock Slopes: Experience Gained and Lessons Learned
by Doug Stead, Davide Donati, Andrea Wolter and Matthieu Sturzenegger
ISPRS Int. J. Geo-Inf. 2019, 8(7), 296; https://doi.org/10.3390/ijgi8070296 - 27 Jun 2019
Cited by 28 | Viewed by 6417
Abstract
The stability and deformation behavior of high rock slopes depends on many factors, including geological structures, lithology, geomorphic processes, stress distribution, and groundwater regime. A comprehensive mapping program is, therefore, required to investigate and assess the stability of high rock slopes. However, slope [...] Read more.
The stability and deformation behavior of high rock slopes depends on many factors, including geological structures, lithology, geomorphic processes, stress distribution, and groundwater regime. A comprehensive mapping program is, therefore, required to investigate and assess the stability of high rock slopes. However, slope steepness, rockfalls and ongoing instability, difficult terrain, and other safety concerns may prevent the collection of data by means of traditional field techniques. Therefore, remote sensing methods are often critical to perform an effective investigation. In this paper, we describe the application of field and remote sensing approaches for the characterization of rock slopes at various scale and distances. Based on over 15 years of the experience gained by the Engineering Geology and Resource Geotechnics Research Group at Simon Fraser University (Vancouver, Canada), we provide a summary of the potential applications, advantages, and limitations of varied remote sensing techniques for comprehensive characterization of rock slopes. We illustrate how remote sensing methods have been critical in performing rock slope investigations. However, we observe that traditional field methods still remain indispensable to collect important intact rock and discontinuity condition data. Full article
(This article belongs to the Special Issue Applications of Photogrammetry for Environmental Research)
Show Figures

Figure 1

15 pages, 2917 KiB  
Article
Predicting the Upcoming Services of Vacant Taxis near Fixed Locations Using Taxi Trajectories
by Chunchun Hu and Jean-Claude Thill
ISPRS Int. J. Geo-Inf. 2019, 8(7), 295; https://doi.org/10.3390/ijgi8070295 - 27 Jun 2019
Cited by 4 | Viewed by 3108
Abstract
Emerging on-line reservation services and special car services have greatly affected the development of the taxi industry. Surprisingly, taking a taxi is still a significant problem in many large cities. In this paper, we present an effective solution based on the Hidden Markov [...] Read more.
Emerging on-line reservation services and special car services have greatly affected the development of the taxi industry. Surprisingly, taking a taxi is still a significant problem in many large cities. In this paper, we present an effective solution based on the Hidden Markov Model to predict the upcoming services of vacant taxis that appear at some fixed locations and at specific times. The model introduces a weighted confusion matrix and a modified Viterbi algorithm, combining the factors of time of day and traffic conditions. In our framework, the hotspot or hidden states extraction is implemented through kernel density estimation (KDE) and fuzzy partitioning of traffic zones is done via a Fuzzy C Means (FCM) algorithm. We implement the proposed model on a large-scale dataset of taxi trajectories in Beijing. In this use case, tests demonstrate the high accuracy of the modeling framework in predicting the upcoming services of vacant taxis. We further analyze the factors affecting the predictive accuracy via a prediction accuracy analysis and prediction location evaluation. The findings of this paper can provide intelligence for the improvement of taxi services, to increase the passenger capacity of taxis and also to improve the probability of passengers finding taxis. Full article
Show Figures

Figure 1

34 pages, 8019 KiB  
Article
Automatic Discovery of Railway Train Driving Modes Using Unsupervised Deep Learning
by Han Zheng, Zanyang Cui and Xingchen Zhang
ISPRS Int. J. Geo-Inf. 2019, 8(7), 294; https://doi.org/10.3390/ijgi8070294 - 27 Jun 2019
Cited by 2 | Viewed by 2709
Abstract
Driving modes play vital roles in understanding the stochastic nature of a railway system and can support studies of automatic driving and capacity utilization optimization. Integrated trajectory data containing information such as GPS trajectories and gear changes can be good proxies in the [...] Read more.
Driving modes play vital roles in understanding the stochastic nature of a railway system and can support studies of automatic driving and capacity utilization optimization. Integrated trajectory data containing information such as GPS trajectories and gear changes can be good proxies in the study of driving modes. However, in the absence of labeled data, discovering driving modes is challenging. In this paper, instead of classical models (railway-specified feature extraction and classical clustering), we used five deep unsupervised learning models to overcome this difficulty. In these models, adversarial autoencoders and stacked autoencoders are used as feature extractors, along with generative adversarial network-based and Kullback–Leibler (KL) divergence-based networks as clustering models. An experiment based on real and artificial datasets showed the following: (i) The proposed deep learning models outperform the classical models by 27.64% on average. (ii) Integrated trajectory data can improve the accuracy of unsupervised learning by approximately 13.78%. (iii) The different performance rankings of models based on indices with labeled data and indices without labeled data demonstrate the insufficiency of people’s understanding of the existing modes. This study also analyzes the relationship between the discovered modes and railway carrying capacity. Full article
Show Figures

Figure 1

25 pages, 2487 KiB  
Review
Automatic (Tactile) Map Generation—A Systematic Literature Review
by Jakub Wabiński and Albina Mościcka
ISPRS Int. J. Geo-Inf. 2019, 8(7), 293; https://doi.org/10.3390/ijgi8070293 - 27 Jun 2019
Cited by 25 | Viewed by 5345
Abstract
This paper presents a systematic literature review that reflects the current state of research in the field of algorithms and models for map generalization, the existing solutions for automatic (tactile) map generation, as well as good practices for designing spatial databases for the [...] Read more.
This paper presents a systematic literature review that reflects the current state of research in the field of algorithms and models for map generalization, the existing solutions for automatic (tactile) map generation, as well as good practices for designing spatial databases for the purposes of automatic map development. A total number of over 500 primary studies were screened in order to identify the most relevant research on automatic (tactile) map generation from the last decade. The reviewed papers revealed many existing solutions in the field of automatic map production, as well as algorithms (e.g., Douglas–Peucker, Visvalingam–Whyatt) and models (e.g., GAEL, CartACom) for data generalization that might be used to transform traditional spatial data into the haptic form, suitable for blind and visually impaired people. However, it turns out that a comprehensive solution for automatic tactile map generation does not exist. Full article
Show Figures

Figure 1

22 pages, 4611 KiB  
Article
The Role of African Emerging Space Agencies in Earth Observation Capacity Building for Facilitating the Implementation and Monitoring of the African Development Agenda: The Case of African Earth Observation Program
by Mahlatse Kganyago and Paidamwoyo Mhangara
ISPRS Int. J. Geo-Inf. 2019, 8(7), 292; https://doi.org/10.3390/ijgi8070292 - 27 Jun 2019
Cited by 17 | Viewed by 4771
Abstract
AU-Agenda 2063 was adopted at the 24th Ordinary Session of the African Heads of State and Government in 2015 as the blueprint for the future development of the continent. Built upon the continent’s past experiences, challenges, and successes, AU-Agenda 2063 comprehensively describes the [...] Read more.
AU-Agenda 2063 was adopted at the 24th Ordinary Session of the African Heads of State and Government in 2015 as the blueprint for the future development of the continent. Built upon the continent’s past experiences, challenges, and successes, AU-Agenda 2063 comprehensively describes the strategic path for Africa’s future development in the next 50 years. Thus, the monitoring of its implementation in various African states is critical for ensuring sustainable development and track progress. However, the higher cost of collecting data for accurately and reliably monitoring the implementation of Agenda 2063 may hinder the progress towards achieving these goals. Satellite Earth observation provides ample data, and thus has provided opportunities for the development of novel products and services with the potential to support implementation, monitoring and reporting for AU-Agenda 2063 development imperatives. However, it has been limitedly exploited in Africa, as evidenced by lower research outputs and investments. This calls for increased capacity building in the use of available EO data and products for various users including decision makers to advance national, regional and continental priorities. The use of such data products is often hampered by the capability to understand the products and thus their value for addressing socio-economic challenges. This paper discusses the potential of Earth observation capacity building for supporting the implementation, monitoring of, and reporting towards achieving AU-Agenda 2063 development imperatives. Specifically, this paper identifies existing capacity building resources, including the role of open and free Earth observation data, open-source software, and product dissemination platforms that can be leveraged for supporting national development, service delivery and the achievement of AU-Agenda 2063 targets. Furthermore, the paper recognizes the importance of bilateral and multilateral partnerships in leveraging existing know-how, technology and other resources for advancing strategic goals of African emerging space agencies and promoting sustainable development, with examples from South African National Space Agency (SANSA). Then, the challenges and opportunities for capacity building and the wide adoption of EO in Africa are discussed in the context of AU-Agenda 2063. The paper thus concludes that EO capacity building is essential to address the skills and data gaps and increase the use of EO-based solutions for decision making in various sectors, critical for achieving AU-A2063. Full article
Show Figures

Figure 1

21 pages, 20916 KiB  
Article
Evaluating the Suitability of Urban Expansion Based on the Logic Minimum Cumulative Resistance Model: A Case Study from Leshan, China
by Haijun Wang, Peihao Peng, Xiangdong Kong, Tingbin Zhang and Guihua Yi
ISPRS Int. J. Geo-Inf. 2019, 8(7), 291; https://doi.org/10.3390/ijgi8070291 - 26 Jun 2019
Cited by 5 | Viewed by 3152
Abstract
This paper focuses on the suitability of urban expansion in mountain areas against the background of accelerated urban development. Urbanization is accompanied by conflict and intense transformations of various landscapes, and is accompanied by social, economic, and ecological impacts. Evaluating the suitability of [...] Read more.
This paper focuses on the suitability of urban expansion in mountain areas against the background of accelerated urban development. Urbanization is accompanied by conflict and intense transformations of various landscapes, and is accompanied by social, economic, and ecological impacts. Evaluating the suitability of urban expansion (UE) and determining an appropriate scale is vital to solving urban environmental issues and realizing sustainable urban development. In mountain areas, the natural and social environments are different from those in the plains; the former is characterized by fragile ecology and proneness to geological disasters. Therefore, when evaluating the expansion of a mountain city, more factors need to be considered. Moreover, we need to follow the principle of harmony between nature and society according to the characteristics of mountain cities. Thus, when we evaluate the expansion of a mountain city, the key procedure is to establish a scientific evaluation system and explore the relationship between each evaluation factor and the urban expansion process. Taking Leshan (LS), China—a typical mountain city in the upper Yangtze River which has undergone rapid growth—as a case study, the logic minimum cumulative resistance (LMCR) model was applied to evaluate the suitability of UE and to simulate its direction and scale. The results revealed that: An evaluation system of resistance factors (ESRFs) was established according to the principle of natural and social harmony; the logic resistance surface (LRS) scientifically integrated multiple resistance factors based on the ESRF and a logic regression analysis. LRS objectively and effectively reflected the contribution and impact of each resistance factor to urban expansion. We found that landscape, geological hazards and GDP have had a great impact on urban expansion in LS. The expansion space of the mountain city is limited; the area of suitable expansion is only 23.5%, while the area which is unsuitable for expansion is 39.3%. In addition, it was found that setting up ecological barriers is an effective way to control unreasonable urban expansion in mountain cities. There is an obvious scale (grid size) effect in the evaluation of urban expansion in mountain cities; an evaluation of the suitable scale yielded the result of 90 m × 90 m. On this scale, taking the central district as the center, the urban expansion process will extend to the neighboring towns of Mianzhu, Suji, Juzi and Mouzi. Urban expansion should be controlled in terms of scale, especially in mountain cities. The most suitable urban size of LS is 132 km2.This would allow for high connectivity of urban-rural areas with the occupation of relatively few green spaces. Full article
Show Figures

Graphical abstract

19 pages, 4004 KiB  
Article
High-Performance Overlay Analysis of Massive Geographic Polygons That Considers Shape Complexity in a Cloud Environment
by Kang Zhao, Baoxuan Jin, Hong Fan, Weiwei Song, Sunyu Zhou and Yuanyi Jiang
ISPRS Int. J. Geo-Inf. 2019, 8(7), 290; https://doi.org/10.3390/ijgi8070290 - 26 Jun 2019
Cited by 16 | Viewed by 4362
Abstract
Overlay analysis is a common task in geographic computing that is widely used in geographic information systems, computer graphics, and computer science. With the breakthroughs in Earth observation technologies, particularly the emergence of high-resolution satellite remote-sensing technology, geographic data have demonstrated explosive growth. [...] Read more.
Overlay analysis is a common task in geographic computing that is widely used in geographic information systems, computer graphics, and computer science. With the breakthroughs in Earth observation technologies, particularly the emergence of high-resolution satellite remote-sensing technology, geographic data have demonstrated explosive growth. The overlay analysis of massive and complex geographic data has become a computationally intensive task. Distributed parallel processing in a cloud environment provides an efficient solution to this problem. The cloud computing paradigm represented by Spark has become the standard for massive data processing in the industry and academia due to its large-scale and low-latency characteristics. The cloud computing paradigm has attracted further attention for the purpose of solving the overlay analysis of massive data. These studies mainly focus on how to implement parallel overlay analysis in a cloud computing paradigm but pay less attention to the impact of spatial data graphics complexity on parallel computing efficiency, especially the data skew caused by the difference in the graphic complexity. Geographic polygons often have complex graphical structures, such as many vertices, composite structures including holes and islands. When the Spark paradigm is used to solve the overlay analysis of massive geographic polygons, its calculation efficiency is closely related to factors such as data organization and algorithm design. Considering the influence of the shape complexity of polygons on the performance of overlay analysis, we design and implement a parallel processing algorithm based on the Spark paradigm in this paper. Based on the analysis of the shape complexity of polygons, the overlay analysis speed is improved via reasonable data partition, distributed spatial index, a minimum boundary rectangular filter and other optimization processes, and the high speed and parallel efficiency are maintained. Full article
(This article belongs to the Special Issue Big Data Computing for Geospatial Applications)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop