Next Issue
Volume 87, September
Previous Issue
Volume 87, March

Table of Contents

Sci. Pharm., Volume 87, Issue 2 (June 2019) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
Evaluation of Natural Extracts in Animal Models of Pain and Inflammation for a Potential Therapy of Hemorrhoidal Disease
Sci. Pharm. 2019, 87(2), 14; https://doi.org/10.3390/scipharm87020014 - 11 Jun 2019
Cited by 2 | Viewed by 1429
Abstract
The aim of this work was to assess the analgesic effect of three Vitis vinifera L. leaf extracts and the anti-inflammatory effect of three gels obtained from Aesculus hippocastanum L. seed extracts using animal models, as a preliminary study for the future development [...] Read more.
The aim of this work was to assess the analgesic effect of three Vitis vinifera L. leaf extracts and the anti-inflammatory effect of three gels obtained from Aesculus hippocastanum L. seed extracts using animal models, as a preliminary study for the future development of topical preparations based on the combination of extracts with synergistic therapeutic effects on hemorrhoid disease. The analgesic effect was determined by means of the writhing test in mice. The anti-inflammatory effect was determined after administration of carrageenan or kaolin in the rat paw. Extraction using glycerol yielded the highest amounts of flavonoids for both V. vinifera leaves (37.27 ± 1.174 mg/L) and A. hippocastanum seeds (53.48 ± 0.212 mg/L). The highest total phenolic contents were registered for the V. vinifera 20% ethanolic extract (615.3 ± 34.44 mg/L) and for the A. hippocastanum glycerolic extract (247.8 ± 6.991 mg/L). The writhing test revealed that the V. vinifera ethanolic extract induced the most efficient analgesia (57.20%, p < 0.01), better than that induced by the positive control. In the carrageenan inflammation model, only the gel obtained from the A. hippocastanum glycerolic extract significantly reduced paw edema (17.27%, p < 0.05). An anti-inflammatory effect was also observed in the kaolin inflammation model but was not statistically significant (10.12%, p > 0.05). Our findings indicate that V. vinifera and A. hippocastanum extracts may have potential uses for the treatment of pain and inflammation associated with hemorrhoid disease. Full article
Show Figures

Figure 1

Open AccessArticle
Mechanism of Action of Mangifera indica Leaves for Anti-Diabetic Activity
Sci. Pharm. 2019, 87(2), 13; https://doi.org/10.3390/scipharm87020013 - 31 May 2019
Cited by 4 | Viewed by 1496
Abstract
Diabetes is a major metabolic disorder whose prevalence is increasing daily. Medicinal plants have played an important role in the prevention and treatment of type 2 diabetes via prophylactic and therapeutic management. In this study, Mangifera Indica leaf (MIL) extract was investigated for [...] Read more.
Diabetes is a major metabolic disorder whose prevalence is increasing daily. Medicinal plants have played an important role in the prevention and treatment of type 2 diabetes via prophylactic and therapeutic management. In this study, Mangifera Indica leaf (MIL) extract was investigated for its promising anti-diabetic activity via an in vitro model. It was found that MIL extract possessed significant inhibition on alpha-amylase activity up to (51.4 ± 2.7)% at a concentration of 200 µg/mL. Moreover, glucose adsorption capacity of MIL was identified at (2.7 ± 0.19) mM glucose/g extract. Furthermore, the extract caused a significant increase in glucose uptake up to (143 ± 9.3)% in LO-2 liver cells. Notably, MIL extract was effective in scavenging (63.3 ± 2.1)% 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and (71.6 ± 4.3)% 2,2-azinobis-3-ethyl benzothiazoline-6-sulfonic acid (ABTS)+ radicals and inhibiting (66 ± 4.9)% NO production from RAW264.7 cells without any cytotoxicity effects. Accordingly, M. indica leaves are suggested as a promising material for development of hypoglycemic products. Full article
Show Figures

Figure 1

Open AccessArticle
Synthesis and Regularities of the Structure–Activity Relationship in a Series of N-Pyridyl-4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamides
Sci. Pharm. 2019, 87(2), 12; https://doi.org/10.3390/scipharm87020012 - 15 May 2019
Cited by 1 | Viewed by 1161
Abstract
According to our quantum and chemical calculations 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylic acid imidazolide is theoretically almost as reactive as its 2-carbonyl analog, and it forms the corresponding N-pyridyl-4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamides with many aminopyridines. However, in practice, the sulfo group [...] Read more.
According to our quantum and chemical calculations 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylic acid imidazolide is theoretically almost as reactive as its 2-carbonyl analog, and it forms the corresponding N-pyridyl-4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamides with many aminopyridines. However, in practice, the sulfo group introduces significant changes at times and prevents the acylation of sterically hindered amines. One of these products was 2-amino-6-methylpyridine. Thus, it has been concluded that aminopyridines interact with imidazolide in aromatic form where the target for the initial electrophilic attack is the ring nitrogen. To confirm the structure of all substances synthesized, 1H-NMR spectroscopy and X-ray diffraction analysis were used. From X-ray diffraction data it follows that in the crystalline phase the carbonyl and sulfo group may occupy different positions with respect to the plane of the benzothiazine bicycle: this position may be unilateral, typical for 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamides, versatile, and not yet encountered in compounds of this type. A comparison of these data with the results of the pharmacological screening conducted on the standard model of carrageenan inflammation showed that the N-pyridylamides of the first group demonstrated a direct dependence of their analgesic and anti-inflammatory activity on the mutual arrangement of the planes of the benzothiazine and pyridine fragments. The new molecular conformation of the benzothiazine nucleus provides a sufficiently high level of analgesic (but not anti-inflammatory) properties in all N-pyridylamides of the second group with an extremely weak dependence on the spatial arrangement of the pyridine cycle. All substances presented this article proved themselves in varying degrees as analgesics and antiphlogistics. Moreover, two of them—N-(5-methylpyridin-2-yl)- and N-(pyridin-3-yl)-4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamides—exceeded the most effective drug of oxicam type Lornoxicam by these indicators. Full article
Show Figures

Figure 1

Open AccessArticle
Development of a Derivatization Method for Investigating Testosterone and Dehydroepiandrosterone Using Tandem Mass Spectrometry in Saliva Samples from Young Professional Soccer Players Pre- and Post-Training
Sci. Pharm. 2019, 87(2), 11; https://doi.org/10.3390/scipharm87020011 - 19 Apr 2019
Cited by 1 | Viewed by 1204
Abstract
In the last decade, high-performance liquid chromatography/tandem mass spectrometry (LC/MS/MS) combined with electrospray ionization (ESI) has been widely used for determining low concentrations of steroids, and derivatization has often been employed to enhance detection. In the present study, endogenous steroids were extracted using [...] Read more.
In the last decade, high-performance liquid chromatography/tandem mass spectrometry (LC/MS/MS) combined with electrospray ionization (ESI) has been widely used for determining low concentrations of steroids, and derivatization has often been employed to enhance detection. In the present study, endogenous steroids were extracted using a Strata-XL polymeric reverse phase cartridge. The isolated steroids were reacted with 2-hydrazino-1-methylpyridine (HMP) at 50 °C for 30 min. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used in a positive mode with multiple reaction monitoring (MRM) for the quantification of testosterone (T) and its precursor, dehydroepiandrosterone (DHEA), in saliva samples collected from twenty young Saudi professional soccer players. The analytes were separated on an ACE Ultracore 2.5 Superphenylhexyl column (150 × 3.0 mm id). The extraction recovery during the pre-treatment was >89% and gave <±20% for inter- and intra-assay precision and accuracy. The limits of quantification (LOQ) were found to be 20 pg/mL for (T and DHEA) and 50 pg/mL for Epitestosterone (EPI). The results showed no significant variation in the concentration of T between pre and post training, whereas DHEA was significantly increased after short-term exercise. These results could indicate that there is no correlation between T and its precursor DHEA level following short term physical activity. EPI concentrations could not be detected with a LOQ of 50 pg/mL in the saliva samples. Full article
Show Figures

Figure 1

Open AccessArticle
The Crystal Structure of N-(1-Arylethyl)-4-methyl- 2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamides as the Factor Determining Biological Activity Thereof
Sci. Pharm. 2019, 87(2), 10; https://doi.org/10.3390/scipharm87020010 - 19 Apr 2019
Cited by 2 | Viewed by 1090
Abstract
In order to detect new structural and biological patterns in a series of hetaryl-3-carboxylic acid derivatives, the optically pure (S)- and (R)-enantiomers of N-(1-arylethyl)-4-methyl- 2,2-dioxo-1H-6,1-benzothiazine-3-carboxamides, their true racemates, and mechanical racemic mixtures have been synthesized in independent [...] Read more.
In order to detect new structural and biological patterns in a series of hetaryl-3-carboxylic acid derivatives, the optically pure (S)- and (R)-enantiomers of N-(1-arylethyl)-4-methyl- 2,2-dioxo-1H-6,1-benzothiazine-3-carboxamides, their true racemates, and mechanical racemic mixtures have been synthesized in independent ways. The particular features of the 1Н- and 13С-NMR spectra of all synthesized substances, liquid chromato-mass spectrometric behavior thereof under electrospray ionization conditions, and also the results of polarimetric and X-ray diffraction studies have been discussed. Pharmacological screening on a model of carrageenan inflammation has found a clear relationship between the spatial structure of the studied objects and biological activity thereof. Enantiomers with chiral centers having (S)-configuration showed weak inhibition of pain and inflammatory reactions, while their mirror (R)-isomers exhibited very powerful analgesic and antiphlogistic properties under the same conditions, with the level of specific activity exceeding that of Lornoxicam and Diclofenac. Taking obtained data into account, a noticeable decrease in the activity of mechanical racemic mixtures, consisting of one-half of the “wrong” (S)-enantiomers, is quite natural. The true racemate of N-(1-phenylethyl)-amide proved itself in a similar way, while 4-methoxy-substituted analog thereof stood out against this background with unexpectedly high analgesic and anti-inflammatory activities. A comparative analysis of X-ray diffraction data has found that crystalline and molecular structure of racemic N-[1-(4-methoxyphenyl)ethyl]-4-methyl-2,2-dioxo-1H-6,1-benzothiazine-3-carboxamide is completely different from that of the original enantiomers and, moreover, very unusual for racemates. Obviously, it is the factor determining the unique character of the biological effects of the said substance. Full article
(This article belongs to the Special Issue Heterocyclic Chemistry in Drug Design)
Show Figures

Figure 1

Open AccessArticle
Acute and Subchronic (28-day) Oral Toxicity Studies on the Film Formulation of k-Carrageenan and Konjac Glucomannan for Soft Capsule Application
Sci. Pharm. 2019, 87(2), 9; https://doi.org/10.3390/scipharm87020009 - 31 Mar 2019
Cited by 1 | Viewed by 1366
Abstract
The aim of this study was to investigate the acute and subchronic toxicity of a film formulation that combines κ-Carrageenan and konjac glucomannan for soft capsule application. For the acute toxicity study, a dose of 2000 mg/kg body weight (bw) of the film [...] Read more.
The aim of this study was to investigate the acute and subchronic toxicity of a film formulation that combines κ-Carrageenan and konjac glucomannan for soft capsule application. For the acute toxicity study, a dose of 2000 mg/kg body weight (bw) of the film suspension was administered orally to rats. The animals were observed for toxic symptoms and mortality daily for 14 days. In a subchronic toxicity study, the film suspension, at doses of 10, 30 and 75 mg/kg bw for 28 days, were orally administered to rats. After 28 days, the rats were sacrificed for hematological, biochemical and histological examination. In the acute toxicity study, neither signs of toxicity nor death among the rats were observed for up to 14 days of the experimental period. The results of the subchronic toxicity study show that there were no significant changes observed in the hematology and organ histology. Some alterations to the relative organ weight and blood biochemistry were observed, but they were considered to be temporary effects and not an indication of toxic effects. The overall findings of this study indicate that the film formulation of κ-Carrageenan and konjac glucomannan is non-toxic up to a dose of 75 mg/kg bw, which could be considered a safe dose for soft capsule application. Full article
Show Figures

Figure 1

Open AccessArticle
Qualitative and Quantitative Analysis of Different Rhodiola rosea Rhizome Extracts by UHPLC-DAD-ESI-MSn
Sci. Pharm. 2019, 87(2), 8; https://doi.org/10.3390/scipharm87020008 - 29 Mar 2019
Cited by 5 | Viewed by 1281
Abstract
Rhodiola rosea has been used in folk medicine as ethanolic macerates for a long time. This study aims to provide a quantitative and qualitative analysis and comparison of different ethanolic Rhodiola rosea rhizome macerates (35%, 70%, and 96% v/v) and [...] Read more.
Rhodiola rosea has been used in folk medicine as ethanolic macerates for a long time. This study aims to provide a quantitative and qualitative analysis and comparison of different ethanolic Rhodiola rosea rhizome macerates (35%, 70%, and 96% v/v) and accelerated solvent extraction (ASE) extracts prepared with 85% methanol, in order to shed light on the effectivity of different extraction methods. Extract samples were analyzed by UHPLC-DAD-ESI-MSn on a ZORBAX SB-C18 column (100 × 2.1 mm, 1.8 μm) with a mobile phase consisting of water + 0.1% formic acid and acetonitrile. Qualitative analysis lead to the tentative identification of 18 compounds: Two cyanogenic glycosides (rhodiocyanoside A, lotaustralin), three phenylethanoids (salidroside, viridoside, 2-phenylethyl-vicianoside), two procyanidin and catechin derivatives (epigallocatechin-epigallocatechin gallate, epigallocatechin-3-O-gallate), five phenylpropanoids (cinnamyl alcohol, rosarin, rosavin, rosin, cinnamyl-(6’-O-β-d-xylopyranosyl)-O-β-glucopyranoside), two monoterpene alcohols (rhodioloside E, rosiridin) and four flavonols (rhodionidin, rhodiosin, rhodionin, kaempferol). Quantity was determined for salidroside, cinnamyl alcohol and its three major glycosides (rosarin, rosavin, rosin), as well as three flavonols (rhodionidin, rhodiosin, rhodionin). Methanolic ASE proved to be the superior extraction method for different substance groups. For macerates, high ethanol content increased yield and lowered hydrolysis of glycosides during extraction, but ethanolic macerates still showed low reproducibility and high fluctuations in quantity of marker compounds salidroside and rosavins, as well as flavonols. Rhodiola rosea rhizomes of wild origins seemed to underly great variability in chemical composition dependent on grow site. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop