Design and Optimization of High Performance Multi-Step Separated Trench 4H-SiC JBS Diode
Abstract
:1. Introduction
2. Device Design and Simulation
3. Results and Discussion
4. Termination Design and Analyze
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Lu, X.; Wu, X.; Zhang, Y.; Wang, R.; Yang, D.; Pi, X. Chemical–mechanical polishing of 4H silicon carbide wafers. Adv. Mater. Inter. 2023, 10, 2202369. [Google Scholar] [CrossRef]
- Takaya, H.; Misumi, T.; Fujiwara, H.; Ito, T. 4H-SiC Trench MOSFET with low on-resistance at high temperature. In Proceedings of the 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 13–18 September 2020; pp. 118–121. [Google Scholar]
- Wu, J.P.; Ren, N.; Sheng, K. Design and experimental study of 1.2 kV 4H-SiC merged PiN Schottky diode. In Proceedings of the 2019 31st International Symposium on Power Semiconductor Devices and ICs(ISPSD), Shanghai, China, 19–23 May 2019; pp. 203–206. [Google Scholar]
- Deng, X.; Xu, X.; Li, X.; Li, X.; Wen, Y.; Chen, W. A novel SiC MOSFET embedding low barrier diode with enhanced third quadrant and switching performance. IEEE Electron. Device Lett. 2020, 41, 1472–1475. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zhang, J.; Ma, H.P.; Chi, Y.Q.; Tian, H.R.; Liu, J.H.; Liu, Q.B.; Chen, Z.G.; Zhang, Q.J. Failure mechanism of 4H-SiC junction barrier Schottky diodes under harsh thermal cycling stress. Microelectron. Reliab. 2022, 136, 114630. [Google Scholar] [CrossRef]
- Yue, Y.; Zhu, H.; Liu, X.; Song, Y.; Zuo, X. First-principles study on non-radiative carrier captures of point defects associated with proton generation in silica. Aip. Adv. 2021, 11, 015214. [Google Scholar] [CrossRef]
- Li, M.B.; Cao, F.; Hu, H.F.; Li, X.J.; Yang, J.Q.; Wang, Y. High single-event burnout resistance 4H-SiC junction barrier Schottky diode. IEEE J. Electron. Devices Soc. 2021, 9, 591–598. [Google Scholar] [CrossRef]
- Meli, A.; Muoio, A.; Trotta, A.; Meda, L.; Parisi, M.; La Via, F. Epitaxial growth and characterization of 4H-SiC for neutron detection applications. Materials 2021, 14, 976. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.; Yun, N.; Sung, W. Design considerations for high voltage SiC power devices: An experimental investigation into channel pinching of 10kV SiC junction barrier schottky (JBS) diodes. In Proceedings of the 2019 31st International Symposium on Power Semiconductor Devices and ICs(ISPSD), Shanghai, China, 19–23 May 2019; pp. 223–226. [Google Scholar]
- Tiwari, A.K.; Antoniou, M.; Lophitis, N.; Perkins, S.; Trajkovic, T.; Udrea, F. Retrograde p-well for 10-kV class SiC IGBTs. IEEE Trans. Electron. Devices 2019, 66, 3066–3072. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Liu, P.; Lei, G.Y.; Zhang, Q.J. 1.2-kV Low-Barrier 4H-SiC JBS Diodes by Virtue of P-Implants Across Dead Field of Current Flow. IEEE Trans. Electron. Devices 2023, 70, 4293–4302. [Google Scholar] [CrossRef]
- Niu, X.; Sang, L.; An, Y.; Wu, P.; Zhang, W.; Liu, R.; Du, Z.; Li, C.; Wei, X.; Yang, Y. Effect of overlap region for schottky metal and field oxide on the electrical characteristics of 6500 V/50A 4H-SiC JBS diodes. J. Cryst. Growth 2023, 603, 127009. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, C.; Tang, X.; Song, Q.; He, Y.; Zhang, Y.; Zhang, Y.; Xiao, L.; Wang, Y.; Wu, Y.; et al. Experimental study of high performance 4H-SiC floating junction jbs diodes. IEEE Access 2020, 8, 93039–93047. [Google Scholar] [CrossRef]
- Wang, B.; Wang, H.; Wang, C.; Ren, N.; Guo, Q.; Sheng, K. Design and fabrication of 1.92 kV 4H-SiC super-junction SBD with wide-trench termination. IEEE Trans. Electron. Devices 2021, 68, 5674–5681. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Liu, P.F.; Zhang, J.; Ma, H.P.; Liu, J.H.; Liu, Q.B.; Chen, Z.G.; Zhang, Q.J. 1.2-kV 4H-SiC JBS diodes engaging p-type retrograde implants. IEEE Trans. Electron. Devices 2022, 69, 6963–6970. [Google Scholar] [CrossRef]
- Yuan, J.; Guo, F.; Wang, K.; Liu, N.; Wu, C.; Yang, B. Demonstration of an 1200V/20A 4H-SiC Multi-Step Trenched Junction Barrier Schottky Diode. In Proceedings of the 19th China International Forum on Solid State Lighting & 2022 8th International Forum on Wide Bandgap Semiconductors (SSLCHINA: IFWS), Suzhou, China, 7–10 February 2023; pp. 1–3. [Google Scholar]
- Dou, W.; Song, Q.; Yuan, H.; Tang, X.; Zhang, Y.; Zhang, Y.; Xiao, L.; Wang, L. Design and fabrication of high performance 4H-SiC TJBS diodes. J. Cryst. Growth 2020, 533, 125421. [Google Scholar] [CrossRef]
- Yin, J.; Chen, S.; Chen, H.; Li, S.; Fu, H.; Liu, C. Design space of GaN vertical trench junction barrier schottky diodes: Comprehensive study and analytical modeling. Electronics 2022, 11, 1972. [Google Scholar] [CrossRef]
- Pan, Y.; Tian, L.; Wu, H.; Li, Y.; Yang, F. 3.3 kV 4H-SiC JBS diodes with single-zone JTE termination. Microelectron. Eng. 2017, 181, 10–15. [Google Scholar] [CrossRef]
- Deng, X.; Xu, S.; Zhang, B.; Zeng, L.; Li, C.; Wu, J.; Li, J. A near ideal edge termination technique for ultrahigh-voltage 4H-SiC devices with multi-zone gradient field limiting ring. In Proceedings of the 2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), Xi’an, China, 16–18 May 2018; pp. 144–148. [Google Scholar]
- Yuan, H.; Liu, Y.; He, Y.; Hu, Y.; Zhang, T.; Tang, X.; Song, Q.; Zhnag, Y.; Zhnag, Y.; He, X.; et al. Characteristic and robustness of trench floating limiting rings for 4H-SiC junction barrier Schottky rectifiers. IEEE Electron. Device Lett. 2020, 41, 1056–1059. [Google Scholar] [CrossRef]
- Donato, N.; Udrea, F.; Mihaila, A.; Knoll, L.; Romano, G.; Kranz, L.; Antoniou, M. Single and repetitive surge current events of 3.3 kV-20 a 4H-SiC JBS rectifiers: The impact of the anode layout. In Proceedings of the 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 13–18 September 2020; pp. 198–201. [Google Scholar]
- Mancini, S.A.; Jang, S.Y.; Chen, Z.; Kim, D.; Lynch, J.; Liu, Y.; Raghothamachar, B.; Kang, M.; Agarwal, A.; Mahadik, N.; et al. Static Performance and Reliability of 4H-SiC Diodes with P+ Regions Formed by Various Profiles and Temperatures. In Proceedings of the 2022 IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 27–31 March 2022; Volume 62. [Google Scholar]
- Liu, K.; Zhang, Z.; Tang, X.; Yuan, H.; Zhang, Y.; Liu, Y.; Han, C.; Zhou, Y.; Du, F.; Wang, Z.; et al. Experimental and Simulation Study of Single-Event Leakage Current Degradation and Damage Mechanism in 4H-SiC PiN Diodes. IEEE Trans. Electron. Devices 2024, 71, 4891–4896. [Google Scholar] [CrossRef]
- Sang, L.; Tian, L.; Li, J.; Niu, Y.; Jin, R. Effect of P+ region design on the fabrication of 6500 V 4H-SiC JBS diodes. J. Cryst. Growth 2020, 530, 125317. [Google Scholar] [CrossRef]
- Kang, I.H.; Seok, O.; Moon, J.H.; Na, M.K.; Kim, H.W.; Kim, S.C.; Bahng, W.; Kim, N.K. Design and Fabrication of 1.2 kV/10A 4H-SiC Junction Barrier Schottky Diodes with High Current Density. Trans. Electr. Electron. Mater. 2021, 22, 115–120. [Google Scholar] [CrossRef]
- Kim, D.; Jang, S.Y.; DeBoer, S.; Morgan, A.J.; Sung, W. An optimal design for 1.2 kV 4H-SiC JBSFET (junction barrier Schottky diode integrated MOSFET) with deep P-well. IEEE Electron. Device Lett. 2022, 43, 785–788. [Google Scholar] [CrossRef]
ND | Epilayer doping | 2 × 1015 cm−3 |
NP | P+ region doping | 1 × 1018 cm−3 |
T | Epilayer thickness | 35 μm |
ds | Depth of each step | 0.2–0.6 μm |
ws | Width of each step | 0.5 μm |
wm | Width of middle P+ region | 0–1 μm |
Reference | Device Structure | VF (V) | VBR (kV) | Ron,sp (mΩ·cm2) | BFOM (GW/cm2) |
---|---|---|---|---|---|
[19] | JBS | 1.8 (30 A) | 4 | 23.98 | 2.67 |
[22] | JBS | 2.0 (20 A) | 3.3 | 25 | 1.74 |
[23] | JBS | 1.73 (10 A) | 1.59 | 7.79 | 1.31 |
[24] | PiN | 3.58 (100 A/cm2) | 2.63 | 35.8 | 0.77 |
[25] | JBS | / | 7 | 51.2 | 3.83 |
[26] | JBS | 1.9 (370 A/cm2) | 1.4 | 5.14 | 1.53 |
[27] | JBSFET | / | 1.6 | 4.24 | 2.42 |
Our work | MST-JBS | 2.4 (40 A) | 4.48 | 15.4 | 5.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wu, Z.; Sheng, H.; Xu, Y.; Zhou, L. Design and Optimization of High Performance Multi-Step Separated Trench 4H-SiC JBS Diode. Electronics 2024, 13, 4143. https://doi.org/10.3390/electronics13214143
Li J, Wu Z, Sheng H, Xu Y, Zhou L. Design and Optimization of High Performance Multi-Step Separated Trench 4H-SiC JBS Diode. Electronics. 2024; 13(21):4143. https://doi.org/10.3390/electronics13214143
Chicago/Turabian StyleLi, Jinlan, Ziheng Wu, Huaren Sheng, Yan Xu, and Liming Zhou. 2024. "Design and Optimization of High Performance Multi-Step Separated Trench 4H-SiC JBS Diode" Electronics 13, no. 21: 4143. https://doi.org/10.3390/electronics13214143
APA StyleLi, J., Wu, Z., Sheng, H., Xu, Y., & Zhou, L. (2024). Design and Optimization of High Performance Multi-Step Separated Trench 4H-SiC JBS Diode. Electronics, 13(21), 4143. https://doi.org/10.3390/electronics13214143