Ultrasonic A-Scan Signals Data Augmentation Using Electromechanical System Modelling to Enhance Cataract Classification Methods
Abstract
:1. Introduction
2. Methodology
2.1. Acoustic Simulation Model
2.2. Electrical Modelling
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhavsar, K.; Singla, J.; Al-Otaibi, Y.; Song, O.; Zikria, Y.; Bashir, A. Medical Diagnosis Using Machine Learning: A Statistical Review. Comput. Mater. Contin. 2021, 67, 107–125. [Google Scholar] [CrossRef]
- Bull, D.R.; Zhang, F. Intelligent Image and Video Compression; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar] [CrossRef]
- Lashgari, E.; Liang, D.; Maoz, U. Data Augmentation for Deep-Learning-Based Electroencephalography. J. Neurosci. Methods. 2020, 346, 108885. [Google Scholar] [CrossRef] [PubMed]
- Krell, M.M.; Kim, S.K. Rotational Data Augmentation for Electroencephalographic Data. In Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017. [Google Scholar] [CrossRef]
- Wang, F.; Zhong, S.; Peng, J.; Jiang, J.; Liu, Y. Data Augmentation for EEG-Based Emotion Recognition with Deep Convolutional Neural Networks. MultiMedia Model. MMM 2018 Lect. Notes Comput. Sci. 2018, 10705, 82–93. [Google Scholar] [CrossRef]
- Atzori, M.; Cognolato, M.; Müller, H. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands. Front. Neur. 2016, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Geng, W.; Du, Y.; Jin, W.; Wei, W.; Hu, Y.; Li, J. Gesture recognition by instantaneous surface EMG images. Sci. Rep. 2016, 6, 36571. [Google Scholar] [CrossRef] [PubMed]
- Tsinganos, P.; Cornelis, B.; Cornelis, J.; Jansen, B.; Skodras, A. Data Augmentation of Surface Electromyography for Hand Gesture Recognition. Sensors 2020, 20, 4892. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Cui, J.; Chen, C.L.; Chen, X.; Ma, Y. An Effective Data Enhancement Method for Classification of ECG Arrhythmia. Measurement 2022, 203, 111978. [Google Scholar] [CrossRef]
- Wicaksono, P.; Philip, S.; Alam, I.N.; Isa, S.M. Dealing with Imbalanced Sleep Apnea Data Using DCGAN. Trait. Signal 2022, 39, 1527–1536. [Google Scholar] [CrossRef]
- Kinsler, L.; Frey, A.; Coppens, A.; Sanders, J. Fundamentals of Acoustics, 4th ed.; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Fa, L.; Liu, D.; Gong, H.; Chen, W.; Zhang, Y.; Wang, Y.; Liang, R.; Wang, B.; Shi, G.; Fang, X. A Frequency-Dependent Dynamic Electric–Mechanical Network for Thin-Wafer Piezoelectric Transducers Polarized in the Thickness Direction: Physical Model and Experimental Confirmation. Micromachines 2023, 14, 1641. [Google Scholar] [CrossRef] [PubMed]
- Gandole, Y. Computer Modeling and Simulation of Ultrasonic System for Material Characterization. Model. Numer. Simul. Mater. Sci. 2011, 1, 1–13. [Google Scholar] [CrossRef]
- Petrella, L.; Fernandes, P.; Santos, M.; Caixinha, M.; Nunes, S.; Pinto, C.; Morgado, M.; Santos, J.; Perdigão, F.; Gomes, M. Safety Assessment of an A-Scan Ultrasonic System for Ophthalmic Use. J. Ultrasound Med. 2020, 39, 2143–2150. [Google Scholar] [CrossRef] [PubMed]
- Oppenheim, A.V. Signals and Systems, 2nd ed.; Willsky, A.S., Ed.; Prentice-Hall: Rutherford, NJ, USA, 1997. [Google Scholar]
- Treeby, B.; Cox, B. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 2010, 15, 021314. [Google Scholar] [CrossRef] [PubMed]
- Petrella, L.; Perdigão, F.; Caixinha, M.; Santos, M.; Lopes, M.; Gomes, M.; Santos, J. A-scan ultrasound in ophthalmology: A simulation tool. Med. Eng. Phys. 2021, 97, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Bessonova, O.V.; Khokhlova, V.A.; Bailey, M.R.; Canney, M.S.; Crum, L.A. Focusing of high power ultrasound beams and limiting values of shock wave parameters. Acoust. Phys. 2009, 55, 463–476. [Google Scholar] [CrossRef] [PubMed]
- EN 61102; Measurement and Characterization of Ultrasonic Fields Using Hydrophones in the Frequency Range 0.5 MHz to 15 MHz. International Electrotechnical Commission: Geneva, Switzerland, 1993.
- EN 62127; Ultrasonics—Hydrophones—Part 1: Measurement and Characterization of Medical Ultrasonic Fields up to 40 MHz. International Electrotechnical Commission: Geneva, Switzerland, 2017.
Eye Structure | Radius of Curvature (mm) | Thickness (mm) | Sound Speed (m/s) | Density (kg/m3) | Attenuation Coefficient (dB/cm·MHz) |
---|---|---|---|---|---|
Water | - | - | 1494 | 997 | 0.0022 |
Cornea | 7.259 | 0.449 | 1553 | 1024 | 0.78 |
Aqueous humor | 5.585 | 2.794 | 1495 | 1007 | 0.003 |
Lens | 8.672 | 4.979 | 1649 | 1090 | 0.42 |
Vitreous humor | 6.328 | 1.000 | 1506 | 1003 | 0.0022 |
Pulse | 10% psi | 90% psi | Energy |
---|---|---|---|
Anterior lens’ pulse | ta1 = 4.47 μs tb1 = 4.59 μs | ta2 = 8.78 μs tb2 = 8.90 μs | psi1 = 0.1024 μ V2s psi2 = 0.0331 μ V2s |
Posterior lens’ pulse | ta3 = 4.46 μs tb3 = 4.57 μs | ta4 = 8.79 μs tb4 = 8.90 μs | psi3 = 0.1028 μ V2s psi4 = 0.0661 μ V2s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, M.J.; Petrella, L.I.; Perdigão, F.; Santos, J. Ultrasonic A-Scan Signals Data Augmentation Using Electromechanical System Modelling to Enhance Cataract Classification Methods. Electronics 2024, 13, 4144. https://doi.org/10.3390/electronics13214144
Santos MJ, Petrella LI, Perdigão F, Santos J. Ultrasonic A-Scan Signals Data Augmentation Using Electromechanical System Modelling to Enhance Cataract Classification Methods. Electronics. 2024; 13(21):4144. https://doi.org/10.3390/electronics13214144
Chicago/Turabian StyleSantos, Mário J., Lorena I. Petrella, Fernando Perdigão, and Jaime Santos. 2024. "Ultrasonic A-Scan Signals Data Augmentation Using Electromechanical System Modelling to Enhance Cataract Classification Methods" Electronics 13, no. 21: 4144. https://doi.org/10.3390/electronics13214144
APA StyleSantos, M. J., Petrella, L. I., Perdigão, F., & Santos, J. (2024). Ultrasonic A-Scan Signals Data Augmentation Using Electromechanical System Modelling to Enhance Cataract Classification Methods. Electronics, 13(21), 4144. https://doi.org/10.3390/electronics13214144