Concentration-Dependent Rheological and Sensory Effects of Walnut Leaf Extract in Cosmetic Emulsion Creams
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Juglans regia Ethanolic Extract
2.3. HPLC Analysis of the Extract
2.4. Analysis of Total Phenolic Content
2.5. Determination of Total Flavonoid Content (TFC)
2.6. DPPH Radical Scavenging Assay
2.7. Preparation of o/w Emulsion Cream with J. regia Extract
2.8. Sensory Evaluation of Emulsion Creams with Walnut Leaf Extract
2.9. Rheological Characterization
2.9.1. Amplitude Sweep Test
2.9.2. Frequency Sweep Test
2.9.3. Flow Curve (Viscosity Test)
2.9.4. Thixotropy (Hysteresis Loop) Test
2.10. Microscopic Analysis
2.11. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Profile of Walnut Leaf Extract
3.2. Rheological Characterization of Cream Formulations
3.2.1. Amplitude Sweep and Mechanical Strength
3.2.2. Flow Behavior and Spreadability
3.2.3. Viscoelastic Properties and Structural Behavior
3.2.4. Thixotropic Behavior and Recovery
3.3. Microscopic Analysis
3.4. Sensory Evaluation
3.5. Summary of Sensory and Rheological Correlations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ISO | International Organization for Standardization |
| LVER | linear viscoelastic region |
| J. regia | Juglans regia |
References
- Akanny, E.; Kohlmann, C. Predicting Tactile Sensory Attributes of Personal Care Emulsions Based on Instrumental Characterizations: A Review. Int. J. Cosmet. Sci. 2024, 46, 1035–1063. [Google Scholar] [CrossRef]
- He, J.; Qian, X.; Huang, H.; Lin, B.; Zhang, J.; Zhang, C.; Chen, Y. Construction of a Model for Predicting Sensory Attributes of Cosmetic Creams Using Instrumental Parameters Based on Machine Learning. Appl. Rheol. 2025, 35, 20250044. [Google Scholar] [CrossRef]
- Evangelista, M.; Mota, S.; Almeida, I.F.; Pereira, M.G. Usage Patterns and Self-Esteem of Female Consumers of Antiaging Cosmetic Products. Cosmetics 2022, 9, 49. [Google Scholar] [CrossRef]
- Savary, G.; Gilbert, L.; Grisel, M.; Picard, C. Instrumental and Sensory Methodologies to Characterize the Residual Film of Topical Products Applied to Skin. Ski. Res. Technol. 2019, 25, 415–423. [Google Scholar] [CrossRef]
- ISO 6658:2017; Sensory Analysis—Methodology—General Guidance. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/65519.html (accessed on 20 October 2025).
- Huynh, A.; Garcia, A.G.; Young, L.K.; Szoboszlai, M.; Liberatore, M.W.; Baki, G. Measurements Meet Perceptions: Rheology-Texture-Sensory Relations When Using Green, Bio-Derived Emollients in Cosmetic Emulsions. Int. J. Cosmet. Sci. 2021, 43, 11–19. [Google Scholar] [CrossRef]
- Lee, H.-J.; Kim, S.R.; Kim, B.S.; Lee, S.; Yi, Y.J.; Jeon, H.B.; Son, M.; Park, K.; Park, C.H.; Oh, H.; et al. Prediction of Sensory Textures of Cosmetics Using Large Amplitude Oscillatory Shear and Extensional Rheology. Appl. Rheol. 2024, 34, 20240016. [Google Scholar] [CrossRef]
- Adejokun, D.A.; Dodou, K. Quantitative Sensory Interpretation of Rheological Parameters of a Cream Formulation. Cosmetics 2019, 7, 2. [Google Scholar] [CrossRef]
- Ali, A.; Skedung, L.; Burleigh, S.; Lavant, E.; Ringstad, L.; Anderson, C.; Wahlgren, M.; Engblom, J. Relationship between Sensorial and Physical Characteristics of Topical Creams: A Comparative Study on Effects of Excipients. Int. J. Pharm. 2022, 613, 121370. [Google Scholar] [CrossRef] [PubMed]
- Brummer, R.; Godersky, S. Rheological Studies to Objectify Sensations Occurring When Cosmetic Emulsions Are Applied to the Skin. Colloids Surf. A Physicochem. Eng. Asp. 1999, 152, 89–94. [Google Scholar] [CrossRef]
- Lukic, M.; Jaksic, I.; Krstonosic, V.; Cekic, N.; Savic, S. A Combined Approach in Characterization of an Effective w/o Hand Cream: The Influence of Emollient on Textural, Sensorial and in Vivo Skin Performance. Int. J. Cosmet. Sci. 2012, 34, 140–149. [Google Scholar] [CrossRef]
- Dubuisson, P.; Picard, C.; Grisel, M.; Savary, G. How Does Composition Influence the Texture of Cosmetic Emulsions? Colloids Surf. A Physicochem. Eng. Asp. 2018, 536, 38–46. [Google Scholar] [CrossRef]
- Lee, J.; Lu, J.; Potanin, A.; Boyke, C. Prediction of Tactile Sensory Attributes of Facial Moisturizers by Rheology and Tribology. Biotribology 2021, 28, 100201. [Google Scholar] [CrossRef]
- Adamovic, M.; Adamovic, A.; Andjic, M.; Dimitrijevic, J.; Zdravkovic, N.; Kostic, O.; Pecarski, D.; Pecarski, T.; Obradovic, D.; Tomovic, M. The Botany, Phytochemistry and the Effects of the Juglans Regia on Healthy and Diseased Skin. Cosmetics 2024, 11, 163. [Google Scholar] [CrossRef]
- Stojković, D.; Dragičević, N.; Ivanov, M.; Gajović, N.; Jurišević, M.; Jovanović, I.; Tomović, M.; Živković, J. New Evidence for Cotinus Coggygria Scop. Extracts Application in Gastrointestinal Ailments. Pharmaceuticals 2025, 18, 98. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of Total Phenolic Content and Other Oxidation Substrates in Plant Tissues Using Folin–Ciocalteu Reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef] [PubMed]
- Slinkard, K.; Singleton, V.L. Total Phenol Analysis: Automation and Comparison with Manual Methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colometric Methods. J. Food Drug Anal. 2020, 10, 3. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Chan, Y.-P.; Chang, J. Antioxidant Activity of Extract from Polygonum Cuspidatum. Biol. Res. 2007, 40, 13–21. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Stolić Jovanović, A.; Martinović, M.; Žugić, A.; Nešić, I.; Tosti, T.; Blagojević, S.; Tadić, V.M. Derivatives of L-Ascorbic Acid in Emulgel: Development and Comprehensive Evaluation of the Topical Delivery System. Pharmaceutics 2023, 15, 813. [Google Scholar] [CrossRef]
- Standard Guide for Two Sensory Descriptive Analysis Approaches for Skin Creams and Lotions. Available online: https://store.astm.org/e1490-19.html (accessed on 22 October 2025).
- Barjaktarević, A.; Coneac, G.; Cupara, S.; Kostić, O.; Kostić, M.; Olariu, I.; Vlaia, V.; Cotan, A.-M.; Neamu, Ş.; Vlaia, L. Novel Alkyl-Polyglucoside-Based Topical Creams Containing Basil Essential Oil (Ocimum basilicum L. Lamiaceae): Assessment of Physical, Mechanical, and Sensory Characteristics. Pharmaceutics 2025, 17, 934. [Google Scholar] [CrossRef]
- Chiarentin, L.; Cardoso, C.; Miranda, M.; Vitorino, C. Rheology of Complex Topical Formulations: An Analytical Quality by Design Approach to Method Optimization and Validation. Pharmaceutics 2023, 15, 1810. [Google Scholar] [CrossRef] [PubMed]
- Budai, L.; Budai, M.; Fülöpné Pápay, Z.E.; Vilimi, Z.; Antal, I. Rheological Considerations of Pharmaceutical Formulations: Focus on Viscoelasticity. Gels 2023, 9, 469. [Google Scholar] [CrossRef] [PubMed]
- Calienni, M.N.; Martínez, L.M.; Izquierdo, M.C.; Alonso, S.d.V.; Montanari, J. Rheological and Viscoelastic Analysis of Hybrid Formulations for Topical Application. Pharmaceutics 2023, 15, 2392. [Google Scholar] [CrossRef]
- Zhumabek, M.; Kachkinova, A.; Cochennec, M.; Colombano, S.; Amanbek, Y.; Wang, Y.; Omirbekov, S. Stability and Rheological Characterization of Colloidal Gas Aphrons: Influence of Xanthan Gum and Sodium Dodecyl Sulfate. Discov. Appl. Sci. 2025, 7, 432. [Google Scholar] [CrossRef]
- Khan, B.A.; Akhtar, N.; Khan, H.; Braga, V.d.A. Development, Characterization and Antioxidant Activity of Polysorbate Based O/W Emulsion Containing Polyphenols Derived from Hippophae Rhamnoides and Cassia Fistula. Braz. J. Pharm. Sci. 2013, 49, 763–773. [Google Scholar] [CrossRef]
- Tessaro, L.; Martelli-Tosi, M.; Sobral, P.J.D.A. Development of W/O Emulsion for Encapsulation of “Pitanga” (Eugenia uniflora L.) Leaf Hydroethanolic Extract: Droplet Size, Physical Stability and Rheology. Food Sci. Technol. 2022, 42, e65320. [Google Scholar] [CrossRef]
- Dabbaghi, M.; Namjoshi, S.; Panchal, B.; Grice, J.E.; Prakash, S.; Roberts, M.S.; Mohammed, Y. Viscoelastic and Deformation Characteristics of Structurally Different Commercial Topical Systems. Pharmaceutics 2021, 13, 1351. [Google Scholar] [CrossRef]
- Tang, S.; Yang, X.; Wang, C.; Wang, C. Effects of Polyphenols on the Structure, Interfacial Properties, and Emulsion Stability of Pea Protein: Different Polyphenol Structures and Concentrations. Molecules 2025, 30, 1674. [Google Scholar] [CrossRef]
- Mieles-Gómez, L.; Lastra-Ripoll, S.E.; Torregroza-Fuentes, E.; Quintana, S.E.; García-Zapateiro, L.A. Rheological and Microstructural Properties of Oil-in-Water Emulsion Gels Containing Natural Plant Extracts Stabilized with Carboxymethyl Cellulose/Mango (Mangiferaindica) Starch. Fluids 2021, 6, 312. [Google Scholar] [CrossRef]
- Serra, M.; Botelho, C.; Almeida, H.; Casas, A.; Teixeira, J.A.; Barros, A.N. Stable and Functional Cosmetic Creams Enriched with Grape Stem Extract: A Sustainable Skincare Strategy. Antioxidants 2025, 14, 784. [Google Scholar] [CrossRef]
- Romero-Peña, M.; Ghosh, S. Effect of Water Content and Pectin on the Viscoelastic Improvement of Water-in-Canola Oil Emulsions. Fluids 2021, 6, 228. [Google Scholar] [CrossRef]
- Tadros, T.F. Emulsion Formation, Stability, and Rheology. In Emulsion Formation and Stability; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 1–75. [Google Scholar]
- Tuyishime, M.A.; Hitabatuma, A.; Matabaro, E. Green Tea Polyphe Behavior, Nano; Academia: Hemel Hempstead, UK, 2016; Volume 5. [Google Scholar]
- Klimaszewska, E.; Seweryn, A.; Małysa, A.; Zięba, M.; Lipińska, J. The Effect of Chamomile Extract Obtained in Supercritical Carbon Dioxide Conditions on Physicochemical and Usable Properties of Pharmaceutical Ointments. Pharm. Dev. Technol. 2018, 23, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Fu, X.; Duan, D.; Xu, J.; Gao, X.; Zhao, L. Evaluation of Bioactivity of Phenolic Compounds from the Brown Seaweed of Sargassum Fusiforme and Development of Their Stable Emulsion. J. Appl. Phycol. 2018, 30, 1955–1970. [Google Scholar] [CrossRef]
- Nasiri, L.; Gavahian, M.; Majzoobi, M.; Farahnaky, A. Rheological Behavior of Glycyrrhiza Glabra (Licorice) Extract as a Function of Concentration and Temperature: A Critical Reappraisal. Foods 2020, 9, 1872. [Google Scholar] [CrossRef]
- Büyük, M.; Ata, A.; Yemenicioğlu, A. Application of Pectin-Grape Seed Polyphenol Combination Restores Consistency and Emulsion Stability and Enhances Antioxidant Capacity of Reduced Oil Aquafaba Vegan Mayonnaise. Food Bioprod. Process. 2024, 144, 123–131. [Google Scholar] [CrossRef]
- Bais, D.; Trevisan, A.; Lapasin, R.; Partal, P.; Gallegos, C. Rheological Characterization of Polysaccharide–Surfactant Matrices for Cosmetic O/W Emulsions. J. Colloid Interface Sci. 2005, 290, 546–556. [Google Scholar] [CrossRef]
- Dickinson, E. Biopolymer-Based Particles as Stabilizing Agents for Emulsions and Foams. Food Hydrocoll. 2017, 68, 219–231. [Google Scholar] [CrossRef]
- Chen, D.; Stone, S.; Ilavsky, J.; Campanella, O. Effect of Polyphenols on the Rheology, Microstructure and in Vitro Digestion of Pea Protein Gels at Various pH. Food Hydrocoll. 2024, 151, 109827. [Google Scholar] [CrossRef]
- Hayati, I.N.; Hui, C.H.; Ishak, W.R.W.; Yusof, H.M.; Hanidun, S.M. Effect of Black Seed Oil, Honey, Whey Protein Concentrate and Their Interaction on Antioxidant Activity, Elastic Modulus and Creaming Index of O/W Emulsions. J. Dispers. Sci. Technol. 2020, 41, 1925–1936. [Google Scholar] [CrossRef]
- Stabrauskiene, J.; Mazurkevičiūtė, A.; Majiene, D.; Balanaskiene, R.; Bernatoniene, J. Development and Evaluation of an Anti-Inflammatory Emulsion: Skin Penetration, Physicochemical Properties, and Fibroblast Viability Assessment. Pharmaceutics 2025, 17, 933. [Google Scholar] [CrossRef]
- Guo, L.-P.; Han, X.; Lei, Y.; Wang, L.; Yu, P.-F.; Shi, S. Study on the Thixotropy and Structural Recovery Characteristics of Waxy Crude Oil Emulsion. Pet. Sci. 2021, 18, 1195–1202. [Google Scholar] [CrossRef]
- Karazhiyan, H.; Razavi, S.M.A.; Phillips, G.O.; Fang, Y.; Al-Assaf, S.; Nishinari, K.; Farhoosh, R. Rheological Properties of Lepidium sativum Seed Extract as a Function of Concentration, Temperature and Time. Food Hydrocoll. 2009, 23, 2062–2068. [Google Scholar] [CrossRef]
- Pastrana-Pastrana, Á.J.; Flores-Gallegos, A.C.; Roa-Acosta, D.F.; Rodríguez-Herrera, R.; Solanilla-Duque, J.F. Rheological Behavior of Quinoa, Lentil, and Rice Flour Mixtures under Different pH Conditions. Food Hydrocoll. 2025, 158, 110457. [Google Scholar] [CrossRef]
- Di Mambro, V.M.; Fonseca, M.J.V. Assays of Physical Stability and Antioxidant Activity of a Topical Formulation Added with Different Plant Extracts. J. Pharm. Biomed. Anal. 2005, 37, 287–295. [Google Scholar] [CrossRef]
- Fanwa, M.N.; Hucher, N.; Cheumani, A.M.Y.; Ndikontar, M.K.; Malhiac, C.; Grisel, M. Rheological Properties of Triumfetta cordifolia Gum Solutions in the Concentrated Regime. Int. J. Biol. Macromol. 2024, 279, 135335. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Tsai, J.-C.; Lai, L.-S. Effect of Salts on the Rheology of Hydrocolloids from Mulberry (Morus alba L.) Leaves in Concentrated Domain. Food Hydrocoll. 2009, 23, 2331–2338. [Google Scholar] [CrossRef]
- Ribeiro, A.; Bravo, C.; Ramos, R.; Dias, R.; Mateus, N.; de Freitas, V.; Perez, R.; Soares, S. Polyphenols as Enhancers of Emulsifying and Antioxidant Properties of Egg and Yeast Protein Emulsions: Understanding the Molecular Interactions behind Their Technological and Functional Potential. Food Hydrocoll. 2025, 167, 111399. [Google Scholar] [CrossRef]
- Morávková, T.; Stern, P. Rheological and Textural Properties of Cosmetic Emulsions. Appl. Rheol. 2011, 21, 35200. [Google Scholar] [CrossRef]
- Garg, A.; Aggarwal, D.; Garg, S.; Singla, A.K. Spreading of Semisolid Formulations: An Update. Pharm. Technol. N. Am. 2002, 26, 84. [Google Scholar]
- Arct, J.; Oborska, A.; Mojski, M.; Binkowska, A.; Świdzikowska, B. Common Cosmetic Hydrophilic Ingredients as Penetration Modifiers of Flavonoids. Int. J. Cosmet. Sci. 2002, 24, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Bouftira, I.; Abdelly, C.; Sfar, S. Characterization of Cosmetic Cream with Mesembryanthemum Crystallinum Plant Extract: Influence of Formulation Composition on Physical Stability and Anti-Oxidant Activity. Int. J. Cosmet. Sci. 2008, 30, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Boinbaser, L.; Parente, M.E.; Castura, J.C.; Ares, G. Dynamic Sensory Characterization of Cosmetic Creams during Application Using Temporal Check-All-That-Apply (TCATA) Questions. Food Qual. Prefer. 2015, 45, 33–40. [Google Scholar] [CrossRef]
- Michelini, S.; Greco, M.E.; Vespasiani, G.; Trovato, F.; Chello, C.; Musolff, N.; Cantisani, C.; Pellacani, G. Non-Invasive Imaging for the Evaluation of a New Oral Supplement in Skin Aging: A Case-Controlled Study. Ski. Res. Technol. 2025, 31, e70171. [Google Scholar] [CrossRef]
- Imbart, S.; Laplanche, A.; Ruzic, C.; Lavarde, M.; Marull-Tufeu, S.; Bernard, C.; Pensé-Lhéritier, A.-M.; Aoussat, A. Design of a Sensorial-Instrumental Correlation Methodology for a Category of Cosmetic Products: O/W Emulsions. Cosmetics 2022, 9, 84. [Google Scholar] [CrossRef]
- Agyei-Amponsah, J. Sensory, Rheology, Tribology and Shelflife of Reduced Fat Mayonnaise-Type Emulsions Formulated with Lipid-Modified Maize Starch as Fat Replacer. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2019. [Google Scholar]
- Di Guardo, A.; Trovato, F.; Cantisani, C.; Dattola, A.; Nisticò, S.P.; Pellacani, G.; Paganelli, A. Artificial Intelligence in Cosmetic Formulation: Predictive Modeling for Safety, Tolerability, and Regulatory Perspectives. Cosmetics 2025, 12, 157. [Google Scholar] [CrossRef]





| Phase | Ingredient | F1 | F2 | F3 | F4 |
|---|---|---|---|---|---|
| Oil Phase | Olive Oil | 3 | 3 | 3 | 3 |
| Lingonberry Seed Oil | 5 | 5 | 5 | 5 | |
| Caprylic/Capric Triglyceride | 5 | 5 | 5 | 5 | |
| Cetearyl Alcohol | 3.5 | 3.5 | 3.5 | 3.5 | |
| Olivem 300 | 5 | 5 | 5 | 5 | |
| Olivem 1000 | 8 | 8 | 8 | 8 | |
| Aqueous Phase | Aloe Vera Juice | 10 | 10 | 10 | 10 |
| Hydrolyzed Wheat Protein | 1 | 1 | 1 | 1 | |
| Glycerol | 8 | 8 | 8 | 8 | |
| Vitamin E (Tokoferol) | 0.5 | 0.5 | 0.5 | 0.5 | |
| Euxyl PE 9010 | 1 | 1 | 1 | 1 | |
| Purified Water | ad 100 | ad 100 | ad 100 | ad 100 | |
| Active component | Dry walnut extract | 0 | 1 | 3 | 5 |
| Before the application | Consistency | liquid/semisolid |
| Gloss level | matte/pearl gloss/slightly glossy/gloss/very glossy | |
| Adhesion—The quantity of product remaining on the index finger after a brief 2-s contact (scale) | 1–10 | |
| Elasticity—the degree of stretching of the sample between the thumb and index finger. | slightly elastic/elastic/very elastic | |
| Texture—the perceived thickness of the sample when rubbed between the thumb and forefinger. (scale) | 1–10 | |
| During the application | Spreadability—the degree of spreadability and melting of the sample when rubbed on the skin of the palm in circular motions 2 times (scale) | 1–10 |
| Stickiness—the force required to separate the finger from the skin | not sticky/slightly sticky/sticky/very sticky | |
| Thickness—the degree of density during application | thin/slightly thick/thick/very thick | |
| Greasiness—the degree of grease during application | not greasy/slightly greasy/greasy/very greasy | |
| Gloss—the degree of gloss during application | not shiny/slightly shiny/shiny/very shiny | |
| Absorption—the impression of the sample absorption rate | slow/moderate/fast | |
| Residual film—the impression of residual film on the skin 10 min after application | no film/moderate/pronounced | |
| After application | Greasiness—the impression of skin being greasy 10 min after application | not greasy/slightly greasy/greasy/very greasy |
| Gloss—the degree of skin gloss after application | not shiny/slightly shiny/shiny/very shiny | |
| Stickiness—the impression of a sticky feeling on the skin 10 min after application | not sticky/slightly sticky/sticky/very sticky |
| Polyphenolic Compounds | Content |
|---|---|
| Gallic acid | 0.69 ± 0.03 |
| Ellagic acid | 23.05 ± 1.15 |
| Chlorogenic acid | 3.99 ± 0.23 |
| Neochlorogenic acid | 6.66 ± 0.32 |
| Hyperoside | 13.16 ± 0.62 |
| Miquellianin | 2.98 ± 0.08 |
| Quercetin | 0.71 ± 0.03 |
| Quercitrine | 6.31 ± 0.27 |
| TPC (mg GAE/g DE) | TFC (mg QE/g DE) | |
|---|---|---|
| JR | 75.42 ± 10.45 | 27.49 ± 3.79 |
| DPPH (IC50 µg/mL) | |
|---|---|
| JR | 27.15 ± 1.56 |
| BHT | 9.57 ± 0.64 |
| Sample | LVER—Limit % | G′ in LVER (Pa) | Flow Point τ (Pa) | Flow Point γ (%) |
|---|---|---|---|---|
| F1 | 0.13 ± 0.02 a | 345,000 ± 26,962.9 b | 17.48 ± 3.73 a | 0.69 ± 0.12 a |
| F2 | 0.06 ± 0.02 a | 488,333 ± 35,557.5 c | 12.28 ± 4.9 a | 0.33 ± 0.14 a |
| F3 | 0.12 ± 0.06 a | 357,333 ± 82,233.4 b | 10.33 ± 3.2 a | 0.595 ± 0.26 a |
| F4 | 0.12 ± 0.14 a | 117,667 ± 8082.9 a | 27.78 ± 3.2 b | 12.56 ± 1.45 b |
| Sample | Cross Model | Carreau-Yasuda Model | Carreau Model |
|---|---|---|---|
| Correlation Coefficient R2 | Correlation Coefficient R2 | Correlation Coefficient R2 | |
| F1 | 0.97 | 0.83 | 0.97 |
| F2 | 0.99 | 0.83 | 0.99 |
| F3 | 0.94 | 0.75 | 0.33 |
| F4 | 0.98 | 0.88 | 0.93 |
| Sample | Cross Model Fit | Ostwald Model Fit | ||||
|---|---|---|---|---|---|---|
| Viscosity (η) [Pa*s] 0.001 1/s | Zero-Shear Viscosity (η0) [Pa*s] | Infinite-Shear Viscosity (η∞) [Pa*s] | Consistency Index K (Pa s) | Fluidity Index n | Correlation coefficient R2 | |
| F1 | 8.5 × 103 ± 2.9 × 103 d | 5.66 × 104 ± 1.9 × 104 | 0.2 ± 0.01 a.b | 103.25 ± 13.7 c | 0.32 ± 0.02 | 0.94 |
| F2 | 2.5 × 103 ± 0.55 × 103 e | 2.4 × 104 ± 0.4 × 104 | 0.1 ± 0.02 a | 44.66 ± 2.3 | 0.38 ± 0.005 | 0.97 |
| F3 | 12.34 × 103 ± 1.1 × 103 f | / | 0.16 ± 0.01 a.b | 49.32 ± 6.19 | 0.33 ± 0.04 | 0.97 |
| F4 | 6.1 × 103 ± 0.54 × 103 d.e | 2.13 × 104 ± 0.2 × 104 | 0.28 ± 0.05 b | 66.16 ± 9.7 | 0.3 ± 0.04 | 0.97 |
| Sample | Maximum Value of G′ Pa | Maximum Value of G″ Pa | tan δ = G″/G′ |
|---|---|---|---|
| F1 | 3163.67 ± 570.8 b | 1161.43 ± 28.31 b | 0.37 ± 0.34 a |
| F2 | 3324.33 ± 223.55 b | 2482.33 ± 222.14 c | 0.75 ± 0.10 c |
| F3 | 4288.33 ± 37 c | 2424 ± 263 c | 0.57 ± 0.01 b |
| F4 | 1297 ± 70 a | 537 ± 23.76 a | 0.42 ± 0.02 a |
| Sample | Hysteresis Loop Area Pa/s |
|---|---|
| F1 | 4155.77 ± 349.91 b |
| F2 | 5446.17 ± 493.71 c |
| F3 | 3192.33 ± 118.90 a |
| F4 | 2850.77 ± 187.24 a |
| Sensory Attribute | χ2 | p | Rank Sum | |||
|---|---|---|---|---|---|---|
| F1 | F2 | F3 | F4 | |||
| Before the application Elasticity | ||||||
| 21.699 | <0.01 | 60 a | 65 b | 59 c | 66 b | |
| During the application Stickiness Greasiness Absorption | ||||||
| 9.596 12.559 12.613 | 0.022 * 0.006 ** 0.006 ** | 43 a 44 a 37 a | 35 a,b 38 a 41 a,b | 34 b 41 a 45 b | 29 b 29 b 53 c | |
| After the feel phase Greasiness | ||||||
| 11.373 | 0.01 * | 39 a | 38 a | 31 a,b | 26 b | |
| Sensory Attribute | Rheological Parameters | Formulation with the Most Pronounced Effect | Explanation of the Sensory–Rheology Link | Relevance for Cosmetic Texture |
|---|---|---|---|---|
| Consistency (Before Application) | G′ in LVER, η0.001 | F1, F3 | Higher low-shear viscosity and higher elastic response at rest correspond to a thicker, denser initial feel. | Determines perceived firmness |
| Elasticity before application | G′ in LVER, tan δ | F2 | The strongest elastic response is at small deformations due to compact droplet packing. | Affects early tactile perception |
| Spreadability during application | η∞ | F2 | The lowest value of η∞ allows for the easiest application. | Key for effortless application and consumer comfort |
| Stickiness during and after application | Hysteresis loop area | F2 (highest); F3/F4 (lowest) | Slow structural recovery (large loop) leads to tackiness; fast recovery reduces stickiness. | Affects user comfort, perceived absorption, and after-feel. |
| Greasiness during and after application | G″, tan δ | F1–F2 | Higher viscous component results in a thicker, richer film on the skin, perceived as greasier. | Important for determining “rich vs. light” formulation character. |
| Absorption during application | hysteresis loop area | F4 | Small hysteresis areas allow rapid film formation and faster disappearance from the skin. | Defines the sensory speed of drying |
| Residual film feel after application | G′, tan δ | F1 | Stronger elastic structure leaves a more persistent, perceptible layer on skin. | Influences long-lasting feel and user acceptance. |
| Gloss During and after application | G″ | F2 | Higher viscous dissipation correlates with a smoother surface | Governs visual shine and aesthetic appearance on skin. |
| Structural behavior during application | G′ G″ (frequency sweep) | F3 | The highest oscillatory G′ reflects the stiffest internal network under dynamic deformation. | Relates to resistance to collapse during manipulation. |
| Recovery after shear during application | Hysteresis loop area | F4 | A small loop area indicates the fastest recovery and smooth reformation of structure. | Controls final smoothness and non-tacky finish. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Adamovic, M.; Adamovic, A.; Barjaktarevic, A.; Kostic, M.; Kostic, O.; Pecarski, D.; Andjic, M.; Dimitrijevic, J.; Zivkovic, J.; Tomovic, M. Concentration-Dependent Rheological and Sensory Effects of Walnut Leaf Extract in Cosmetic Emulsion Creams. Cosmetics 2026, 13, 6. https://doi.org/10.3390/cosmetics13010006
Adamovic M, Adamovic A, Barjaktarevic A, Kostic M, Kostic O, Pecarski D, Andjic M, Dimitrijevic J, Zivkovic J, Tomovic M. Concentration-Dependent Rheological and Sensory Effects of Walnut Leaf Extract in Cosmetic Emulsion Creams. Cosmetics. 2026; 13(1):6. https://doi.org/10.3390/cosmetics13010006
Chicago/Turabian StyleAdamovic, Miljan, Ana Adamovic, Ana Barjaktarevic, Marina Kostic, Olivera Kostic, Danijela Pecarski, Marijana Andjic, Jovana Dimitrijevic, Jelena Zivkovic, and Marina Tomovic. 2026. "Concentration-Dependent Rheological and Sensory Effects of Walnut Leaf Extract in Cosmetic Emulsion Creams" Cosmetics 13, no. 1: 6. https://doi.org/10.3390/cosmetics13010006
APA StyleAdamovic, M., Adamovic, A., Barjaktarevic, A., Kostic, M., Kostic, O., Pecarski, D., Andjic, M., Dimitrijevic, J., Zivkovic, J., & Tomovic, M. (2026). Concentration-Dependent Rheological and Sensory Effects of Walnut Leaf Extract in Cosmetic Emulsion Creams. Cosmetics, 13(1), 6. https://doi.org/10.3390/cosmetics13010006

