Next Issue
Volume 3, December
Previous Issue
Volume 3, June
 
 

Systems, Volume 3, Issue 3 (September 2015) – 4 articles , Pages 62-151

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
Article
A Management Framework for Municipal Solid Waste Systems and Its Application to Food Waste Prevention
Systems 2015, 3(3), 133-151; https://doi.org/10.3390/systems3030133 - 21 Aug 2015
Cited by 24 | Viewed by 4861
Abstract
Waste management is a complex task involving numerous waste fractions, a range of technological treatment options, and many outputs that are circulated back into society. A systematic, interdisciplinary systems management framework was developed to facilitate the planning, implementation, and maintenance of sustainable waste [...] Read more.
Waste management is a complex task involving numerous waste fractions, a range of technological treatment options, and many outputs that are circulated back into society. A systematic, interdisciplinary systems management framework was developed to facilitate the planning, implementation, and maintenance of sustainable waste systems. It aims not to replace existing decision-making approaches, but rather to enable their integration to allow for inclusion of overall sustainability concerns and address the complexity of solid waste management. The framework defines key considerations for system design, steps for performance monitoring, and approaches for facilitating continual system improvements. It was developed by critically examining the literature to determine what aspects of a management framework would be most effective at improving systems management for complex waste systems. The framework was applied to food waste management as a theoretical case study to exemplify how it can serve as a systems management tool for complex waste systems, as well as address obstacles typically faced in the field. Its benefits include the integration of existing waste system assessment models; the inclusion of environmental, economic, and social priorities; efficient performance monitoring; and a structure to continually define, review, and improve systems. This framework may have broader implications for addressing sustainability in other disciplines. Full article
(This article belongs to the Special Issue Systems Thinking and Management Sciences Methodologies)
Article
Statistical Model Selection for Better Prediction and Discovering Science Mechanisms That Affect Reliability
Systems 2015, 3(3), 109-132; https://doi.org/10.3390/systems3030109 - 19 Aug 2015
Cited by 8 | Viewed by 3143
Abstract
Understanding the impact of production, environmental exposure and age characteristics on the reliability of a population is frequently based on underlying science and empirical assessment. When there is incomplete science to prescribe which inputs should be included in a model of reliability to [...] Read more.
Understanding the impact of production, environmental exposure and age characteristics on the reliability of a population is frequently based on underlying science and empirical assessment. When there is incomplete science to prescribe which inputs should be included in a model of reliability to predict future trends, statistical model/variable selection techniques can be leveraged on a stockpile or population of units to improve reliability predictions as well as suggest new mechanisms affecting reliability to explore. We describe a five-step process for exploring relationships between available summaries of age, usage and environmental exposure and reliability. The process involves first identifying potential candidate inputs, then second organizing data for the analysis. Third, a variety of models with different combinations of the inputs are estimated, and fourth, flexible metrics are used to compare them. Finally, plots of the predicted relationships are examined to distill leading model contenders into a prioritized list for subject matter experts to understand and compare. The complexity of the model, quality of prediction and cost of future data collection are all factors to be considered by the subject matter experts when selecting a final model. Full article
Show Figures

Figure 1

Article
Simulation-Based Approach for Studying the Balancing of Local Smart Grids with Electric Vehicle Batteries
Systems 2015, 3(3), 81-108; https://doi.org/10.3390/systems3030081 - 14 Jul 2015
Cited by 5 | Viewed by 3710
Abstract
Modern society is facing great challenges due to pollution and increased carbon dioxide (CO2) emissions. As part of solving these challenges, the use of renewable energy sources and electric vehicles (EVs) is rapidly increasing. However, increased dynamics have triggered problems in [...] Read more.
Modern society is facing great challenges due to pollution and increased carbon dioxide (CO2) emissions. As part of solving these challenges, the use of renewable energy sources and electric vehicles (EVs) is rapidly increasing. However, increased dynamics have triggered problems in balancing energy supply and consumption demand in the power systems. The resulting uncertainty and unpredictability of energy production, consumption, and management of peak loads has caused an increase in costs for energy market actors. Therefore, the means for studying the balancing of local smart grids with EVs is a starting point for this paper. The main contribution is a simulation-based approach which was developed to enable the study of the balancing of local distribution grids with EV batteries in a cost-efficient manner. The simulation-based approach is applied to enable the execution of a distributed system with the simulation of a local distribution grid, including a number of charging stations and EVs. A simulation system has been constructed to support the simulation-based approach. The evaluation has been carried out by executing the scenario related to balancing local distribution grids with EV batteries in a step-by-step manner. The evaluation results indicate that the simulation-based approach is able to facilitate the evaluation of smart grid– and EV-related communication protocols, control algorithms for charging, and functionalities of local distribution grids as part of a complex, critical cyber-physical system. In addition, the simulation system is able to incorporate advanced methods for monitoring, controlling, tracking, and modeling behavior. The simulation model of the local distribution grid can be executed with the smart control of charging and discharging powers of the EVs according to the load situation in the local distribution grid. The resulting simulation system can be applied to the study of balancing local smart grids with EV batteries. Based on the evaluation results, it is estimated that the simulation-based approach can provide an essential, safe, and cost-efficient method for the evaluation of complex, critical cyber-physical systems, such as smart grids. Full article
Show Figures

Figure 1

Article
Dealing with Multi-Level Governance and Wicked Problems in Urban Transportation Systems: The Case of Palermo Municipality
Systems 2015, 3(3), 62-80; https://doi.org/10.3390/systems3030062 - 30 Jun 2015
Cited by 12 | Viewed by 4064
Abstract
Italian New Public Management (NPM) has been mainly characterized by a political orientation toward power decentralization to local governments and privatization of public companies. Nowadays, local utilities in Italy are often run by joint stock companies controlled by public agencies such as Regional [...] Read more.
Italian New Public Management (NPM) has been mainly characterized by a political orientation toward power decentralization to local governments and privatization of public companies. Nowadays, local utilities in Italy are often run by joint stock companies controlled by public agencies such as Regional and Municipal Administrations. Due to this transformation, these companies must comply with a set of diverse expectations coming from a wide range of stakeholders, related to their financial, competitive and social performance. Such fragmented governance increases the presence of “wicked” problems in the decision-making sphere of these entities. Given this multi-level governance structure, how do these agents influence public services performance? In recent years, coordination and inter-institutional joint action have been identified as possible approaches for dealing with governance fragmentation and wicked problems deriving from it. How can we adapt a performance management perspective in order to help us reform the system and so have a better collaboration between the stakeholders involved? In order to address and discuss these research questions, a case study will be developed. The case concerns AMAT, the local utility providing the public transportation service in the Municipality of Palermo (Italy). The result of this study is a dynamic model including a set of performance indicators that help us in understanding the impact of the governing structure on the system’s performance. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop