Gemmotherapy Extracts Like the Dog Rose, Lingonberry, Sea Buckthorn, Blackthorn, Common Grape, Hawthorn, Raspberry and Boxwood Feature Variable Yet Excelling Antimicrobial Effects
Abstract
1. Introduction
2. Results
2.1. Comparative Analyses of GTEs Specific Total Phenolic Content (TPC), Total Flavonoid Content (TFC) and Condensed Tannin Content (CTC)
2.2. The Specific Antioxidant Potential Evaluation of the Investigated GTEs
2.3. Phytochemical Composition of GTEs
2.4. Antimicrobial Activity Evaluation of GTEs
2.4.1. Antimicrobial Activity of GTEs as Revealed by the Agar Diffusion Method (ADM)
2.4.2. Testing of the Antimicrobial Activity of GTEs Against Yeast and Mold Using the Agar Diffusion Method (ADM)
2.4.3. Assessing GTEs Minimum Inhibitory Concentration (MIC) and Minimum Microbicidal Concentrations (MMC)
Minimum Inhibitory Concentrations (MIC) of GTEs
Minimum Microbicidal Concentrations (MMC) of the Studied GTEs
2.4.4. Antimicrobial Susceptibility of Studied Microbial Strains
3. Discussion
3.1. The Dog Rose (Rca), Sea Buckthorn (Hrh), and Lingonberry (Vid) GTEs Present Substantial Polyphenol Content and Antioxidant Activity, While Other GTEs, Including Blackthorn (Psp) and Common Grape, Lag Behind
3.2. Antimicrobial Activity of GTEs Varies Along a Broad Spectrum
3.2.1. The Dog Rose (Rca) GTE Appears to Be an Efficient Bacteriostatic Antimicrobial
3.2.2. The Lingonberry (Vid) GTE Features the Most Pronounced Antimicrobial Effect
3.2.3. The Sea Buckthorn (Hrh) GTE Acts Like Another Efficient Antimicrobial
3.2.4. Blackthorn (Psp) and Common Grape (Vvi) GTEs Are Potent Antimicrobials That Exhibit Microbiostatic and Bactericidal Activities
3.2.5. Boxwood (Bsv), Hawthorn (Cox), and Raspberry (Rid) GTEs Exhibit Moderate Antimicrobial Activity
3.3. A Comprehensive Antimicrobial Assessment Should Be Based on a Combination of Several Methods and Microbes
3.4. The Antimicrobial Properties of GTEs Cannot Be Explained Solely by Their Total Polyphenol Content
4. Materials and Methods
4.1. Sample Collection
4.2. Sample Preparation and Extraction
4.3. Determination of Total Phenolic Content (TPC)
4.4. Determination of Total Flavonoid Content (TFC)
4.5. Determination of Condensed Tannin Content (CTC)
4.6. Determination of Antioxidant Activity Using DPPH Assay
4.7. Determination of Antioxidant Activity Using TEAC Assay
4.8. Ferric Reducing Antioxidant Power (FRAP) Assay
4.9. LC/MS Determination of Polyphenols Profile
4.10. Studied Microorganisms
4.11. Antimicrobial Activity Assessment
4.12. Antimicrobial Susceptibility Test Assay
4.13. Broth Microdilution Method (BMM)
4.14. Minimum Inhibitory and Minimum Microbicidal Concentration Assay (MIC and MMC)
4.15. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AAE | Ascorbic acid equivalent |
| ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
| ADM | Agar diffusion method |
| BMM | Broth microdilution method |
| Bsv | Buxus sempervirens L. (boxwood) |
| CE | Catechin equivalent |
| Cox | Crataegus oxyacantha L. (hawthorn) |
| CT | Condensed tannins |
| CTC | Condensed tannin content |
| DPPH | 2,2-diphenyl-1-picrylhydrazyl |
| GAE | Gallic acid equivalent |
| GTE | Gemmotherapy extract |
| Hrh | Hippophae rhamnoides L. (sea buckthorn) |
| MBC | Minimum bactericidal concentration |
| MFC | Minimum fungicidal concentration |
| MIC | Minimum inhibitory concentration |
| MMC | Minimum microbicidal concentration |
| OD | Optical density |
| Psp | Prunus spinosa L. (blackthorn) |
| Rca | Rosa canina L. (dog rose) |
| Rid | Rubus idaeus L. (raspberry) |
| TE | Trolox equivalent |
| TEAC | Trolox Equivalent Antioxidant Capacity |
| TFC | Total flavonoid content |
| TPC | Total phenolic content |
| TPTZ | 2,4,6-tri(2-pyridinyl)-1,3,5-triazine |
| Vid | Vaccinium vitis-idaea L. (lingonberry) |
| Vvi | Vitis vinifera L. (common grape) |
Appendix A
| Name | Sensitive | Intermediate | Resistant | Source |
|---|---|---|---|---|
| Tetracycline 30 mcg | ||||
| Enterobacteriaceae | >15 | 12–14 | <11 | HiMedia |
| Staphylococcus, Enterococcus spp. | >19 | 15–18 | <14 | HiMedia |
| Listeria | >13.8 | <13.8 | [147] | |
| Bacillus | >23 | 19–22 | <18 | [148] |
| Kanamycin 30 mcg | ||||
| Enterobacteriaceae, Staphylococcus | >18 | 14–17 | <13 | HiMedia |
| Listeria | >11 | <11 | [147] | |
| Bacillus | No data | |||
| Cefotaxime 30 mcg | ||||
| Enterobacteriaceae | >26 | 23–25 | <22 | HiMedia |
| P. aeruginosa, Staphylococcus | >23 | 15–22 | <14 | HiMedia |
| Listeria | No data | |||
References
- Angelini, P. Plant-Derived Antimicrobials and Their Crucial Role in Combating Antimicrobial Resistance. Antibiotics 2024, 13, 746. [Google Scholar] [CrossRef] [PubMed]
- Popović, M.; Burčul, F.; Veršić Bratinčević, M.; Režić Mužinić, N.; Skroza, D.; Frleta Matas, R.; Nazlić, M.; Ninčević Runjić, T.; Jukić Špika, M.; Bego, A.; et al. In the Beginning Was the Bud: Phytochemicals from Olive (Olea europaea L.) Vegetative Buds and Their Biological Properties. Metabolites 2023, 13, 237. [Google Scholar] [CrossRef]
- Nicoletti, M.; Piterà di Clima, F. Gemmotherapy, and the Scientific Foundations of a Modern Meristemotherapy; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2020. [Google Scholar]
- Aleya, A.; Mihok, E.; Pecsenye, B.; Jolji, M.; Kertész, A.; Bársony, P.; Vígh, S.; Cziaky, Z.; Máthé, A.-B.; Burtescu, R.F.; et al. Phytoconstituent Profiles Associated with Relevant Antioxidant Potential and Variable Nutritive Effects of the Olive, Sweet Almond, and Black Mulberry Gemmotherapy Extracts. Antioxidants 2023, 12, 1717. [Google Scholar] [CrossRef]
- Héjja, M.; Mihok, E.; Alaya, A.; Jolji, M.; György, É.; Meszaros, N.; Turcus, V.; Oláh, N.K.; Máthé, E. Specific Antimicrobial Activities Revealed by Comparative Evaluation of Selected Gemmotherapy Extracts. Antibiotics 2024, 13, 181. [Google Scholar] [CrossRef]
- Tabart, J.; Franck, T.; Kevers, C.; Pincemail, J.; Serteyn, D.; Defraigne, J.-O.; Dommes, J. Antioxidant and Anti-Inflammatory Activities of Ribes nigrum Extracts. Food Chem. 2012, 131, 1116–1122. [Google Scholar] [CrossRef]
- Téglás, T.; Mihok, E.; Cziáky, Z.; Oláh, N.-K.; Nyakas, C.; Máthé, E. The Flavonoid Rich Black Currant (Ribes nigrum) Ethanolic Gemmotherapy Extract Elicits Neuroprotective Effect by Preventing Microglial Body Swelling in Hippocampus and Reduces Serum TNF-α Level: Pilot Study. Molecules 2023, 28, 3571. [Google Scholar] [CrossRef]
- Okińczyc, P.; Widelski, J.; Nowak, K.; Radwan, S.; Włodarczyk, M.; Kuś, P.M.; Susniak, K.; Korona-Głowniak, I. Phytochemical Profiles and Antimicrobial Activity of Selected Populus spp. Bud Extracts. Molecules 2024, 29, 437. [Google Scholar] [CrossRef]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Roseaceae to Umbelliferae. In Flora Europaea; Cambridge University Press: London, UK, 1968; Volume 2. [Google Scholar]
- Marčetić, M.; Samardžić, S.; Ilić, T.; Božić, D.D.; Vidović, B. Phenolic Composition, Antioxidant, Anti-Enzymatic, Antimicrobial and Prebiotic Properties of Prunus spinosa L. Fruits. Foods 2022, 11, 3289. [Google Scholar] [CrossRef] [PubMed]
- Elez Garofulić, I.; Zorić, Z.; Pedisić, S.; Brnčić, M.; Dragović-Uzelac, V. UPLC-MS2 Profiling of Blackthorn Flower Polyphenols Isolated by Ultrasound-Assisted Extraction. J. Food Sci. 2018, 83, 2782–2789. [Google Scholar] [CrossRef] [PubMed]
- Menković, N.; Šavikin, K.; Tasić, S.; Zdunić, G.; Stešević, D.; Milosavljević, S.; Vincek, D. Ethnobotanical Study on Traditional Uses of Wild Medicinal Plants in Prokletije Mountains (Montenegro). J. Ethnopharmacol. 2011, 133, 97–107. [Google Scholar] [CrossRef]
- Güneş, F. Medicinal Plants Used in the Uzunköprü District of Edirne, Turkey. Acta Soc. Bot. Pol. 2017, 86, 3565. [Google Scholar] [CrossRef]
- Bei, M.F.; Apahidean, A.I.; Budău, R.; Rosan, C.A.; Popovici, R.; Memete, A.R.; Domocoș, D.; Vicas, S.I. An Overview of the Phytochemical Composition of Different Organs of Prunus spinosa L., Their Health Benefits and Application in Food Industry. Horticulturae 2023, 10, 29. [Google Scholar] [CrossRef]
- Marchelak, A.; Owczarek, A.; Matczak, M.; Pawlak, A.; Kolodziejczyk-Czepas, J.; Nowak, P.; Olszewska, M.A. Bioactivity Potential of Prunus spinosa L. Flower Extracts: Phytochemical Profiling, Cellular Safety, Pro-Inflammatory Enzymes Inhibition and Protective Effects Against Oxidative Stress In Vitro. Front. Pharmacol. 2017, 8, 680. [Google Scholar] [CrossRef] [PubMed]
- Li, T.S.C.; Schroeder, W.R. Sea buckthorn (Hippophae rhamnoides L.): A Multipurpose Plant. Horttech 1996, 6, 370–380. [Google Scholar] [CrossRef]
- Krejcarová, J.; Straková, E.; Suchý, P.; Herzig, I.; Karásková, K. Sea buckthorn (Hippophae rhamnoides L.) as a Potential Source of Nutraceutics and Its Therapeutic Possibilities—A Review. Acta Vet. Brno 2015, 84, 257–268. [Google Scholar] [CrossRef]
- Suryakumar, G.; Gupta, A. Medicinal and Therapeutic Potential of Sea buckthorn (Hippophae rhamnoides L.). J. Ethnopharmacol. 2011, 138, 268–278. [Google Scholar] [CrossRef]
- Vinita, V.; Punia, D.; Kumari, N. Potential Health Benefits of Sea buckthorn Oil—A Review. Agric. Rev. 2017, 38, 233–237. [Google Scholar]
- Zeb, A.Z. Chemical and Nutritional Constituents of Sea buckthorn Juice. Pak. J. Nutr. 2004, 3, 99–106. [Google Scholar] [CrossRef]
- Sawicka, B.; Barbaś, P.; Skiba, D.; Krochmal-Marczak, B.; Pszczółkowski, P. Evaluation of the Quality of Raspberries (Rubus idaeus L.) Grown in Balanced Fertilization Conditions. Commodities 2023, 2, 220–245. [Google Scholar] [CrossRef]
- Ody, P. The Complete Medicinal Herbal: A Practical Guide to the Healing Properties of Herbs; Skyhorse Publishing Company, Incorporated: New York, NY, USA, 2017. [Google Scholar]
- Jaiswal, S.P.; Porwar, N.A.; Chaudhari, B.V. Natural ways to manage PCOS using herbs: A review. Int. J. Adv. Res. 2024, 12, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Abasian, Z.; Rostamzadeh, A.; Mohammadi, M.; Hosseini, M.; Rafieian-kopaei, M. A Review on Role of Medicinal Plants in Polycystic Ovarian Syndrome: Pathophysiology, Neuroendocrine Signaling, Therapeutic Status and Future Prospects. Middle East Fertil. Soc. J. 2018, 23, 255–262. [Google Scholar] [CrossRef]
- Andersson, H.C.; Forslund, L.C. Phytoestrogens in Foods on the Nordic Market. In TemaNord; Nordic Council of Ministers: Copenhagen, Denmark, 2017. [Google Scholar] [CrossRef]
- Al-Anazi, A.F.; Qureshi, V.F.; Javaid, K.; Qureshi, S. Preventive Effects of Phytoestrogens against Postmenopausal Osteoporosis as Compared to the Available Therapeutic Choices: An Overview. J. Nat. Sc. Biol. Med. 2011, 2, 154. [Google Scholar] [CrossRef]
- Selahvarzian, A.; Alizadeh, A.; Ammanolahi Baharvand, P.; Eldahshan, O.A.; Rasoulian, B. Medicinal Properties of Rosa canina L. Herbal. Med. J. 2018, 3, 77–84. [Google Scholar] [CrossRef]
- Winther, K.; Campbell-Tofte, J.; Vinther Hansen, A.S. Bioactive Ingredients of Rose Hips (Rosa canina L) with Special Reference to Antioxidative and Anti-Inflammatory Properties: In Vitro Studies. Bot. Targets Ther. 2016, 6, 11–23. [Google Scholar] [CrossRef]
- Fan, C.; Pacier, C.; Martirosyan, D.M. Rose Hip (Rosa canina L): A Functional Food Perspective. Funct. Foods Health Dis. 2014, 4, 493. [Google Scholar] [CrossRef]
- Khazaei, M.; Khazaei, M.R.; Pazhouhi, M. An Overview of Therapeutic Potentials of Rosa canina—A Traditionally Valuable Herb. World Cancer Res. J. 2020, 7, e1580. [Google Scholar]
- Negrean, O.-R.; Farcas, A.C.; Nemes, S.A.; Cic, D.-E.; Socaci, S.A. Recent Advances and Insights into the Bioactive Properties and Applications of Rosa canina L. and Its by-products. Heliyon 2024, 10, e30816. [Google Scholar] [CrossRef] [PubMed]
- Mane, C.; Loonis, M.; Juhel, C.; Dufour, C.; Malien-Aubert, C. Food Grade Lingonberry Extract: Polyphenolic Composition and In Vivo Protective Effect against Oxidative Stress. J. Agric. Food Chem. 2011, 59, 3330–3339. [Google Scholar] [CrossRef] [PubMed]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Diapensiaceae to Myoporaceae. In Flora Europaea; Cambridge University Press: London, UK, 1972; Volume 3. [Google Scholar]
- Urbonaviciene, D.; Bobinaite, R.; Viskelis, P.; Viskelis, J.; Petruskevicius, A.; Puzeryte, V.; Cesoniene, L.; Daubaras, R.; Klavins, L.; Bobinas, C. Nutritional and Physicochemical Properties of Wild Lingonberry (Vaccinium vitis-idaea L.)—Effects of Geographic Origin. Molecules 2023, 28, 4589. [Google Scholar] [CrossRef]
- Kowalska, K. Lingonberry (Vaccinium vitis-idaea L.) Fruit as a Source of Bioactive Compounds with Health-Promoting Effects—A Review. Int. J. Mol. Sci. 2021, 22, 5126. [Google Scholar] [CrossRef] [PubMed]
- Visti, A.; Viljakainen, S.; Laakso, S. Preparation of Fermentable Lingonberry Juice through Removal of Benzoic Acid by Saccharomyces cerevisiae Yeast. Food Res. Int. 2003, 36, 597–602. [Google Scholar] [CrossRef]
- Vilkickyte, G.; Raudone, L.; Petrikaite, V. Phenolic Fractions from Vaccinium vitis-idaea L. and Their Antioxidant and Anticancer Activities Assessment. Antioxidants 2020, 9, 1261. [Google Scholar] [CrossRef]
- Cioch, M.; Satora, P.; Skotniczny, M.; Semik-Szczurak, D.; Tarko, T. Characterisation of Antimicrobial Properties of Extracts of Selected Medicinal Plants. Pol. J. Microbiol. 2017, 66, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.Y.; Tsai, C.C.; Huang, J.S.; Chen, C.P.; Lin, T.C.; Lin, C.C. Antimicrobial Activity of Tannin Components from Vaccinium vitis-idaea L. J. Pharm. Pharmacol. 2001, 53, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Ermis, E.; Hertel, C.; Schneider, C.; Carle, R.; Stintzing, F.; Schmidt, H. Characterization of in Vitro Antifungal Activities of Small and American Cranberry (Vaccinium oxycoccos L. and V. macrocarpon Aiton) and Lingonberry (Vaccinium vitis-idaea L.) Concentrates in Sugar Reduced Fruit Spreads. Int. J. Food Microbiol. 2015, 204, 111–117. [Google Scholar] [CrossRef]
- Laslo, É.; Köbölkuti, Z.A. Total Phenol Content and Antimicrobial Activity of Lingonberry (Vaccinium vitis-idaea L.) from Several Areas in the Eastern Carpathians. Not. Sci. Biol. 2017, 9, 77–83. [Google Scholar] [CrossRef]
- Nikolaeva-Glomb, L.; Mukova, L.; Nikolova, N.; Badjakov, I.; Dincheva, I.; Kondakova, V.; Doumanova, L.; Galabov, A.S. In Vitro Antiviral Activity of a Series of Wild Berry Fruit Extracts against Representatives of Picorna-, Orthomyxo- and Paramyxoviridae. Nat. Product. Commun. 2014, 9, 51–54. [Google Scholar] [CrossRef]
- Kryvtsova, M.V.; Salamon, I.; Koscova, J.; Spivak, M.Y. Antibiofilm Forming, Antimicrobial Activity and Some Biochemical Properties of Vaccinium vitis-idaea Leaf and Berry Extracts on Staphylococcus aureus. Biosys. Divers. 2020, 28, 238–242. [Google Scholar] [CrossRef]
- Attard, E.; Attard, H. Hawthorn: Crataegus oxyacantha, Crataegus monogyna and Related Species. In Nonvitamin and Nonmineral Nutritional Supplements; Elsevier: Amsterdam, The Netherlands, 2019; pp. 289–293. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia, 11th ed.; Council of Europe: Strasbourg, France, 2023. [Google Scholar]
- Kazemi, E.; Mansoursamaei, A.; Bijan, M.; Hosseinzadeh, A.; Namavar, H.; Masroor, M.J.; Sheibani, H. Effect of Crataegus oxyacantha on High Blood Pressure: A Randomized Single-Blind Controlled Trial. Adv. Integr. Med. 2024, 12, 100421. [Google Scholar] [CrossRef]
- Nazhand, A.; Lucarini, M.; Durazzo, A.; Zaccardelli, M.; Cristarella, S.; Souto, S.B.; Silva, A.M.; Severino, P.; Souto, E.B.; Santini, A. Hawthorn (Crataegus spp.): An Updated Overview on Its Beneficial Properties. Forests 2020, 11, 564. [Google Scholar] [CrossRef]
- Lakshmi, T.; Geetha, R.V.; Roy, A. Crataegus oxyacantha Linn. Commonly Knownas Hawthorn—A Scientific Review. Int. J. PharmTech Res. 2012, 4, 458–465. [Google Scholar]
- Wang, J.; Xiong, X.; Feng, B. Effect of Crataegus Usage in Cardiovascular Disease Prevention: An Evidence-Based Approach. Evid.-Based Complement. Altern. Med. 2013, 2013, 149363. [Google Scholar] [CrossRef] [PubMed]
- Prathiksha, M.; Hegde, K. A Review on Vitis vinifera L.: The Grape. Int. J. Pharm. Sci. Rev. Res. 2022, 74, 142–145. [Google Scholar] [CrossRef]
- Ranjitha, C.Y.; Priyanka, S.; Deepika, R.; Smitha Rani, G.P.; Sahana, J.; Prashith Kekuda, T.R. Antimicrobial Activity of Grape Seed Extract. World J. Pharm. Pharm. Sci. 2014, 3, 1483–1488. [Google Scholar]
- Akdemir, U. Regional Economics of Viticulture in Turkey in the Period 1970–2021. Vitic. Stud. 2022, 2, 55–71. [Google Scholar] [CrossRef]
- Topalović, A.; Knežević, M.; Bajagić, B.; Ivanović, L.; Milašević, I.; Đurović, D.; Mugoša, B.; Podolski-Renić, A.; Pešić, M. Grape (Vitis vinifera L.): Health Benefits and Effects of Growing Conditions on Quality Parameters. In Biodiversity and Biomedicine; Elsevier: Amsterdam, The Netherlands, 2020; pp. 385–401. [Google Scholar] [CrossRef]
- Papp, N.; Kocsis, M.; Czigle, S.; Ambrus, T. Ethnobotanical, historical and medicinal significance of grapevine (Vitis vinifera L.). Kaleidosc. Hist. 2015, 6, 229–256. [Google Scholar] [CrossRef]
- Sharafan, M.; Malinowska, M.A.; Ekiert, H.; Kwaśniak, B.; Sikora, E.; Szopa, A. Vitis vinifera (Vine Grape) as a Valuable Cosmetic Raw Material. Pharmaceutics 2023, 15, 1372. [Google Scholar] [CrossRef]
- Nassiri-Asl, M.; Hosseinzadeh, H. Review of the Pharmacological Effects of Vitis vinifera (Grape) and Its Bioactive Constituents: An Update: Pharmacological Effects of Grape. Phytother. Res. 2016, 30, 1392–1403. [Google Scholar] [CrossRef] [PubMed]
- Xia, E.-Q.; Deng, G.-F.; Guo, Y.-J.; Li, H.-B. Biological Activities of Polyphenols from Grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef]
- Amtaghri, S.; Eddouks, M. Pharmacological and Phytochemical Properties of the Genus Buxus: A Review. Fitoterapia 2024, 177, 106081. [Google Scholar] [CrossRef]
- Ait Slimane-Ait Kaki, S.; Oulebsir-Mohandkaci, H.; Tlili-Ait Kaki, Y.; Amellal-Chibane, H. Evaluation of the Biological Activity of the Polyphenols of Buxus sempervirens L. against Some Bacterial Strains. Wulfenia J. 2015, 22, 126–136. [Google Scholar]
- Volpe, A.R.; Carmignani, M.; Cesare, P. Hydroalcoholic Extract of Buxus sempervirens Shows Antiproliferative Effect on Melanoma, Colorectal Carcinoma and Prostate Cancer Cells by Affecting the Autophagic Flow. Front. Pharmacol. 2023, 14, 1073338. [Google Scholar] [CrossRef] [PubMed]
- Ait-Mohamed, O.; Battisti, V.; Joliot, V.; Fritsch, L.; Pontis, J.; Medjkane, S.; Redeuilh, C.; Lamouri, A.; Fahy, C.; Rholam, M.; et al. Acetonic Extract of Buxus sempervirens Induces Cell Cycle Arrest, Apoptosis and Autophagy in Breast Cancer Cells. PLoS ONE 2011, 6, e24537. [Google Scholar] [CrossRef]
- Bolat, E.; Sarıtaş, S.; Duman, H.; Eker, F.; Akdaşçi, E.; Karav, S.; Witkowska, A.M. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024, 16, 2550. [Google Scholar] [CrossRef]
- Nowak, D.; Gośliński, M.; Kłębukowska, L. Antioxidant and Antimicrobial Properties of Selected Fruit Juices. Plant Foods Hum. Nutr. 2022, 77, 427–435. [Google Scholar] [CrossRef]
- Khomsi, M.E.; Imtara, H.; Kara, M.; Hmamou, A.; Assouguem, A.; Bourkhiss, B.; Tarayrah, M.; AlZain, M.N.; Alzamel, N.M.; Noman, O.; et al. Antimicrobial and Antioxidant Properties of Total Polyphenols of Anchusa Italica Retz. Molecules 2022, 27, 416. [Google Scholar] [CrossRef]
- Dinkova-Kostova, A.T.; Talalay, P. Direct and Indirect Antioxidant Properties of Inducers of Cytoprotective Proteins. Mol. Nutr. Food Res. 2008, 52, S128–S138. [Google Scholar] [CrossRef]
- Rios, J.L.; Recio, M.C.; Villar, A. Screening Methods for Natural Products with Antimicrobial Activity: A Review of the Literature. J. Ethnopharmacol. 1988, 23, 127–149. [Google Scholar] [CrossRef]
- Andrews, J.M. Determination of Minimum Inhibitory Concentrations. J. Antimicrob. Chemother. 2001, 48, 5–16. [Google Scholar] [CrossRef]
- Intharuksa, A.; Kuljarusnont, S.; Sasaki, Y.; Tungmunnithum, D. Flavonoids and Other Polyphenols: Bioactive Molecules from Traditional Medicine Recipes/Medicinal Plants and Their Potential for Phytopharmaceutical and Medical Application. Molecules 2024, 29, 5760. [Google Scholar] [CrossRef] [PubMed]
- Echegaray, N.; Pateiro, M.; Munekata, P.E.S.; Lorenzo, J.M.; Chabani, Z.; Farag, M.A.; Domínguez, R. Measurement of Antioxidant Capacity of Meat and Meat Products: Methods and Applications. Molecules 2021, 26, 3880. [Google Scholar] [CrossRef]
- Formagio, A.; Volobuff, C.; Santiago, M.; Cardoso, C.; Vieira, M.; Valdevina Pereira, Z. Evaluation of Antioxidant Activity, Total Flavonoids, Tannins and Phenolic Compounds in Psychotria Leaf Extracts. Antioxidants 2014, 3, 745–757. [Google Scholar] [CrossRef]
- López-Contreras, J.J.; Zavala-García, F.; Urías-Orona, V.; Martínez-Ávila, G.C.G.; Rojas, R.; Niño-Medina, G. Chromatic, Phenolic and Antioxidant Properties of Sorghum bicolor Genotypes. Not. Bot. Horti Agrobo. 2015, 43, 366–370. [Google Scholar] [CrossRef]
- Medini, F.; Fellah, H.; Ksouri, R.; Abdelly, C. Total Phenolic, Flavonoid and Tannin Contents and Antioxidant and Antimicrobial Activities of Organic Extracts of Shoots of the Plant Limonium delicatulum. J. Taibah Univ. Sci. 2014, 8, 216–224. [Google Scholar] [CrossRef]
- Mammen, D.; Daniel, M. A Critical Evaluation on the Reliability of Two Aluminum Chloride Chelation Methods for Quantification of Flavonoids. Food Chem. 2012, 135, 1365–1368. [Google Scholar] [CrossRef]
- Hagerman, A.E. Vanillin Assay. 2002. Available online: https://www.scribd.com/document/326357563/Vanillin-Assay (accessed on 8 July 2025).
- Nicolescu, A.; Bunea, C.I.; Mocan, A. Total Flavonoid Content Revised: An Overview of Past, Present, and Future Determinations in Phytochemical Analysis. Anal. Biochem. 2025, 700, 115794. [Google Scholar] [CrossRef]
- Polumackanycz, M.; Kaszuba, M.; Konopacka, A.; Marzec-Wróblewska, U.; Wesolowski, M.; Waleron, K.; Buciński, A.; Viapiana, A. Phenolic Composition and Biological Properties of Wild and Commercial Dog Rose Fruits and Leaves. Molecules 2020, 25, 5272. [Google Scholar] [CrossRef] [PubMed]
- Papuc, C.; Nicorescu, V.; Predescu, N.C.; Petcu, C. Antioxidant Activity of Polyphenols Extracted from Dog Rose (Rosa canina) Fruits on Myoglobin and Lipids in Refrigerated Minced Beef. Bull. UASVM 2013, 70, 114. [Google Scholar]
- Wang, S.Y.; Feng, R.; Bowman, L.; Penhallegon, R.; Ding, M.; Lu, Y. Antioxidant Activity in Lingonberries (Vaccinium vitis-idaea L.) and Its Inhibitory Effect on Activator Protein-1, Nuclear Factor-κB, and Mitogen-Activated Protein Kinases Activation. J. Agric. Food Chem. 2005, 53, 3156–3166. [Google Scholar] [CrossRef]
- Kostka, T.; Ostberg-Potthoff, J.J.; Stärke, J.; Guigas, C.; Matsugo, S.; Mirčeski, V.; Stojanov, L.; Veličkovska, S.K.; Winterhalter, P.; Esatbeyoglu, T. Bioactive Phenolic Compounds from Lingonberry (Vaccinium vitis-idaea L.): Extraction, Chemical Characterization, Fractionation and Cellular Antioxidant Activity. Antioxidants 2022, 11, 467. [Google Scholar] [CrossRef]
- Criste, A.; Urcan, A.C.; Bunea, A.; Pripon Furtuna, F.R.; Olah, N.K.; Madden, R.H.; Corcionivoschi, N. Phytochemical Composition and Biological Activity of Berries and Leaves from Four Romanian Sea buckthorn (Hippophae rhamnoides L.) Varieties. Molecules 2020, 25, 1170. [Google Scholar] [CrossRef]
- Raal, A. Polyphenolic Compounds and Antioxidant Activity of Sea buckthorn (Hippophae rhamnoides L.). Phyton 2023, 92, 2965–2979. [Google Scholar] [CrossRef]
- Cho, H.; Cho, E.; Jung, H.; Yi, H.C.; Lee, B.; Hwang, K.T. Antioxidant Activities of Sea buckthorn Leaf Tea Extracts Compared with Green Tea Extracts. Food Sci. Biotechnol. 2014, 23, 1295–1303. [Google Scholar] [CrossRef]
- Miljković, V.M.; Nikolić, L.; Mrmošanin, J.; Gajić, I.; Mihajilov-Krstev, T.; Zvezdanović, J.; Miljković, M. Chemical Profile and Antioxidant and Antimicrobial Activity of Rosa canina L. Dried Fruit Commercially Available in Serbia. Int. J. Mol. Sci. 2024, 25, 2518. [Google Scholar] [CrossRef] [PubMed]
- Montazeri, N.; Baher, E.; Mirzajani, F.; Barami, Z.; Yousefian, S. Phytochemical Contents and Biological Activities of Rosa canina Fruit from Iran. J. Med. Plants Res. 2011, 5, 4584–4589. [Google Scholar]
- Hacioglu, M.; Dosler, S.; Birteksoz Tan, A.S.; Otuk, G. Antimicrobial Activities of Widely Consumed Herbal Teas, Alone or in Combination with Antibiotics: An in Vitro Study. PeerJ 2017, 5, e3467. [Google Scholar] [CrossRef]
- Ghendov-Moșanu, A.; Cojocari, D.; Balan, G.; Sturza, R. Antimicrobial Activity of Rose Hip and Hawthorn Powders on Pathogenic Bacteria. J. Eng. Sci. 2018, XXV, 100–107. [Google Scholar] [CrossRef]
- Moghaddam, E.H.; Dolatshah, M.; Rasoulian, B.; Rashidi, M.; Shaban, M. Study on Rooting and Changes of Some Secondary Metabolites of Dog rose Grown in Lorestan Province. J. Med. Plants By-Prod. 2021, 10, 11–17. [Google Scholar]
- Masnavi, E.; Hassanzadeh, S.; Karimi, K.; Malekzadeh, J.; Khoramrooz, S.S. Antibacterial Activities of Hydroalcoholic Extract of Rosa canina L against Hospital Acquired Infections. J. Clin. Care Ski. 2024, 5, 157–163. [Google Scholar]
- Martinengo, P.; Arunachalam, K.; Shi, C. Polyphenolic Antibacterials for Food Preservation: Review, Challenges, and Current Applications. Foods 2021, 10, 2469. [Google Scholar] [CrossRef]
- Kylli, P.; Nohynek, L.; Puupponen-Pimiä, R.; Westerlund-Wikström, B.; Leppänen, T.; Welling, J.; Moilanen, E.; Heinonen, M. Lingonberry (Vaccinium vitis-idaea) and European Cranberry (Vaccinium microcarpon) Proanthocyanidins: Isolation, Identification, and Bioactivities. J. Agric. Food Chem. 2011, 59, 3373–3384. [Google Scholar] [CrossRef]
- Mandal, M.K.; Domb, A.J. Antimicrobial Activities of Natural Bioactive Polyphenols. Pharmaceutics 2024, 16, 718. [Google Scholar] [CrossRef]
- Maslov, O.; Komisarenko, M.; Ponomarenko, S.; Osolodchenko, T.; Kolisnyk, S.; Koshovyi, O.; Golik, M.; Komissarenko, A. Investigation Antimicrobial Interaction of Arbutin and Antibiotics of Different Groups against Gram-Negative Bacteria Strains. Fitoterapia 2024, 3, 182–190. [Google Scholar] [CrossRef]
- Tagrida, M.; Palamae, S.; Saetang, J.; Ma, L.; Hong, H.; Benjakul, S. Comparative Study of Quercetin and Hyperoside: Antimicrobial Potential towards Food Spoilage Bacteria, Mode of Action and Molecular Docking. Foods 2023, 12, 4051. [Google Scholar] [CrossRef]
- Sandulachi, E.; Macari, A.; Cojocari, D.; Nicolae; Balan, G.; Popa, S.; Turculet, N.; Ghendov-Mosanu, A.; Sturza, R. Antimicrobial Properties of Sea buckthorn Grownin the Republic of Moldova. J. Eng. Sci. 2022, 29, 164–175. [Google Scholar] [CrossRef]
- Lele, V.; Monstaviciute, E.; Varinauskaite, I.; Peckaityte, G.; Paskeviciute, L.; Plytnikaite, M.; Tamosiunaite, V.; Pikunaite, M.; Ruzauskas, M.; Stankevicius, R.; et al. Sea buckthorn (Hippophae rhamnoides L.) and Quince (Cydonia oblonga L.) Juices and Their By-Products as Ingredients Showing Antimicrobial and Antioxidant Properties for Chewing Candy: Nutraceutical Formulations. J. Food Qual. 2018, 2018, 3474202. [Google Scholar] [CrossRef]
- Chauhan, A.S.; Negi, P.S.; Ramteke, R.S. Antioxidant and Antibacterial Activities of Aqueous Extract of Sea buckthorn (Hippophae rhamnoides) Seeds. Fitoterapia 2007, 78, 590–592. [Google Scholar] [CrossRef]
- Mohan Gupta, S.; K Gupta, A.; Ahmed, Z. Antibacterial and Antifungal Activity in Leaf, Seed Extract and Seed Oil of Sea buckthorn (Hippophae salicifolia D. Don) Plant. J. Plant Pathol. Microbiol. 2011, 2, 1000105. [Google Scholar] [CrossRef]
- Yue, X.-F.; Shang, X.; Zhang, Z.-J.; Zhang, Y.-N. Phytochemical Composition and Antibacterial Activity of the Essential Oils from Different Parts of Sea buckthorn (Hippophae rhamnoides L.). J. Food Drug Anal. 2017, 25, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Michel, T.; Destandau, E.; Le Floch, G.; Lucchesi, M.E.; Elfakir, C. Antimicrobial, Antioxidant and Phytochemical Investigations of Sea buckthorn (Hippophae rhamnoides L.) Leaf, Stem, Root and Seed. Food Chem. 2012, 131, 754–760. [Google Scholar] [CrossRef]
- Pap, N.; Marnila, P.; Pihlava, J.-M.; Tienaho, J. Optimization of Ultrasound Assisted Extraction of the Sea buckthorn Leaves, Characterization of the Phenolic Compounds, and Determination of Bioactive Properties of the Extracts. Future Foods 2024, 10, 100487. [Google Scholar] [CrossRef]
- Moreno, S.; Scheyer, T.; Romano, C.S.; Vojnov, A.A. Antioxidant and Antimicrobial Activities of Rosemary Extracts Linked to Their Polyphenol Composition. Free Radic. Res. 2006, 40, 223–231. [Google Scholar] [CrossRef]
- Sabatini, L.; Fraternale, D.; Di Giacomo, B.; Mari, M.; Albertini, M.C.; Gordillo, B.; Rocchi, M.B.L.; Sisti, D.; Coppari, S.; Semprucci, F.; et al. Chemical Composition, Antioxidant, Antimicrobial and Anti-Inflammatory Activity of Prunus spinosa L. Fruit Ethanol Extract. J. Funct. Foods 2020, 67, 103885. [Google Scholar] [CrossRef]
- Veličković, J.; Kostić, D.; Stojanović, G.; Mitić, S.; Mitić, M.; Ranđelović, S.; Đorđević, A. Phenolic Composition, Antioxidant and Antimicrobial Activity of the Extracts from Prunus spinosa L. Fruit. Hem. Ind. 2014, 68, 297–303. [Google Scholar] [CrossRef]
- Pozzo, L.; Russo, R.; Frassinetti, S.; Vizzarri, F.; Árvay, J.; Vornoli, A.; Casamassima, D.; Palazzo, M.; Della Croce, C.M.; Longo, V. Wild Italian Prunus spinosa L. Fruit Exerts In Vitro Antimicrobial Activity and Protects Against In Vitro and In Vivo Oxidative Stress. Foods 2019, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Dedić, A.; Dţudţević-Čančar, H.; Alispahić, A.; Tahirović, I.; Muratović, E. In-Vitro Antioxidant and Antimicrobial Activity of Aerial Parts of Prunus spinosa L. Growing Wild in Bosnia and Herzegovina. Int. J. Pharm. Sci. Res. 2021, 12, 3643–3653. [Google Scholar]
- Filocamo, A.; Bisignano, C.; Mandalari, G.; Navarra, M. In Vitro Antimicrobial Activity and Effect on Biofilm Production of a White Grape Juice (Vitis vinifera) Extract. Evid.-Based Complement. Altern. Med. 2015, 2015, 856243. [Google Scholar] [CrossRef]
- Oliveira, D.A.; Salvador, A.A.; Smânia, A.; Smânia, E.F.A.; Maraschin, M.; Ferreira, S.R.S. Antimicrobial Activity and Composition Profile of Grape (Vitis vinifera) Pomace Extracts Obtained by Supercritical Fluids. J. Biotechnol. 2013, 164, 423–432. [Google Scholar] [CrossRef]
- Brown, J.C.; Huang, G.; Haley-Zitlin, V.; Jiang, X. Antibacterial Effects of Grape Extracts on Helicobacter pylori. Appl. Environ. Microbiol. 2009, 75, 848–852. [Google Scholar] [CrossRef]
- Kitsiou, M.; Purk, L.; Gutierrez-Merino, J.; Karatzas, K.A.; Klymenko, O.V.; Velliou, E. A Systematic Quantitative Determination of the Antimicrobial Efficacy of Grape Seed Extract against Foodborne Bacterial Pathogens. Foods 2023, 12, 929. [Google Scholar] [CrossRef]
- Corrales, M.; Han, J.H.; Tauscher, B. Antimicrobial Properties of Grape Seed Extracts and Their Effectiveness after Incorporation into Pea Starch Films. Int. J. Food Sci. Tech. 2009, 44, 425–433. [Google Scholar] [CrossRef]
- Ahmad, W.; Khan, M.I.; Waqar, M.; Khan, M.A.; Khan, A.; Ramazan, R.; Wali, S.; Ahmad, F.; Khan, N.; Yousaf, S.; et al. In Vitro Antibacterial Activity of Vitis vinifera Leaf Extracts against Some Pathogenic Bacterial Strains. Adv. Biol. Res. 2014, 8, 62–67. [Google Scholar]
- Pébarthé-Courrouilh, A.; Jourdes, M.; Theil-Bazingette, M.; Gancel, A.-L.; Teissedre, P.-L.; Valls-Fonayet, J.; Cluzet, S. Antimicrobial Properties of Tannin Extracts against the Phytopathogenic Oomycete Plasmopara viticola. OENO One 2025, 59. [Google Scholar] [CrossRef]
- Manso, T.; Lores, M.; De Miguel, T. Antimicrobial Activity of Polyphenols and Natural Polyphenolic Extracts on Clinical Isolates. Antibiotics 2021, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Althaus, J.; Jerz, G.; Winterhalter, P.; Kaiser, M.; Brun, R.; Schmidt, T. Antiprotozoal Activity of Buxus sempervirens and Activity-Guided Isolation of O-Tigloylcyclovirobuxeine-B as the Main Constituent Active against Plasmodium falciparum. Molecules 2014, 19, 6184–6201. [Google Scholar] [CrossRef]
- Szabó, L.U.; Kaiser, M.; Mäser, P.; Schmidt, T.J. Antiprotozoal Nor-Triterpene Alkaloids from Buxus sempervirens L. Antibiotics 2021, 10, 696. [Google Scholar] [CrossRef]
- Palchykov, V.A.; Zazharskyi, V.V.; Brygadyrenko, V.V.; Davydenko, P.O.; Kulishenko, O.M.; Borovik, I.V. Chemical Composition and Antibacterial Effect of Ethanolic Extract of Buxus sempervirens on Cryogenic Strains of Microorganisms in Vitro. Chem. Data Collect. 2020, 25, 100323. [Google Scholar] [CrossRef]
- Kostić, D.; Velicković, J.; Mitić, S.; Mitić, M.; Randelović, S. Phenolic Content, and Antioxidant and Antimicrobial Activities of Crataegus oxyacantha L. (Rosaceae) Fruit Extract from Southeast Serbia. Trop. J. Pharm. Res. 2012, 11, 117–124. [Google Scholar] [CrossRef]
- Omer, F.H.; Abid, K.Y.; Mohammed, M.F. The Effect of Flavonoids Extracts from Hawthorn (Cratagus oxyacanthus) Against Some Gram-Positive and Gram-Negative Bacteria Species. Mil. Med. Sci. Lett. 2021, 90, 158–164. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef]
- Velicanski, A.; Cvetkovic, D.; Markov, S. Screening of Antibacterial Activity of Raspberry (Rubus idaeus L.) Fruit and Pomace Extracts. Acta Period. Technol. 2012, 43, 305–313. [Google Scholar] [CrossRef]
- Puupponen-Pimia, R.; Nohynek, L.; Meier, C.; Kahkonen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K.-M. Antimicrobial Properties of Phenolic Compounds from Berries. J. Appl. Microbiol. 2001, 90, 494–507. [Google Scholar] [CrossRef]
- Krauze-Baranowska, M.; Majdan, M.; Hałasa, R.; Głód, D.; Kula, M.; Fecka, I.; Orzeł, A. The Antimicrobial Activity of Fruits from Some Cultivar Varieties of Rubus idaeus and Rubus occidentalis. Food Funct. 2014, 5, 2536–2541. [Google Scholar] [CrossRef]
- Zhang, C.; Cock, I.E. Anti-Microbial Activity of Rubus idaeus L. Leaf Extracts in Combination with Antibiotics against Bacterial Triggers of Selected Autoimmune Diseases. Pharmacogn. Commn. 2023, 13, 176–186. [Google Scholar] [CrossRef]
- Hossain, T.J. Methods for Screening and Evaluation of Antimicrobial Activity: A Review of Protocols, Advantages, and Limitations. Eur. J. Microbiol. Immunol. 2024, 14, 97–115. [Google Scholar] [CrossRef] [PubMed]
- Ishak, A.; Mazonakis, N.; Spernovasilis, N.; Akinosoglou, K.; Tsioutis, C. Bactericidal versus Bacteriostatic Antibacterials: Clinical Significance, Differences and Synergistic Potential in Clinical Practice. J. Antimicrob. Chemother. 2025, 80, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Ochoa, S.; Chacón-Vargas, K.F.; Sánchez-Torres, L.E.; Rivera-Chavira, B.E.; Nogueda-Torres, B.; Nevárez-Moorillón, G.V. Differential Antimicrobial Effect of Essential Oils and Their Main Components: Insights Based on the Cell Membrane and External Structure. Membranes 2021, 11, 405. [Google Scholar] [CrossRef]
- Bueno, D.J.; Silva, J.O. FUNGI | The Fungal Hypha. In Encyclopedia of Food Microbiology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 11–19. [Google Scholar] [CrossRef]
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure–Activity Relationship) Models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef]
- Swindell, K.; Lattif, A.A.; Chandra, J.; Mukherjee, P.K.; Ghannoum, M.A. Parenteral Lipid Emulsion Induces Germination of Candida albicans and Increases Biofilm Formation on Medical Catheter Surfaces. J. Infect. Dis. 2009, 200, 473–480. [Google Scholar] [CrossRef]
- Hanscho, M.; Ruckerbauer, D.E.; Chauhan, N.; Hofbauer, H.F.; Krahulec, S.; Nidetzky, B.; Kohlwein, S.D.; Zanghellini, J.; Natter, K. Nutritional Requirements of the BY Series of Saccharomyces cerevisiae Strains for Optimum Growth. FEMS Yeast Res. 2012, 12, 796–808. [Google Scholar] [CrossRef]
- Wu, H.; Ito, K.; Shimoi, H. Identification and Characterization of a Novel Biotin Biosynthesis Gene in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2005, 71, 6845–6855. [Google Scholar] [CrossRef]
- Kuwahara, T.; Kaneda, S.; Shimono, K. Adding Biotin to Parenteral Nutrition Solutions Without Lipid Accelerates the Growth of Candida albicans. Int. J. Med. Sci. 2016, 13, 724–729. [Google Scholar] [CrossRef]
- Ferreyra, M.M.; Arteaga, M.C.C.; Leal, A.S. Nutritional Requirements of a Saccharomyces cerevisiae Starter Culture Used in the Elaboration of Wine from Orange. Rev. Soc. Venez. Microbiol. 2014, 34, 38–42. [Google Scholar]
- Huang, J.; Zaynab, M.; Sharif, Y.; Khan, J.; Al-Yahyai, R.; Sadder, M.; Ali, M.; Alarab, S.R.; Li, S. Tannins as Antimicrobial Agents: Understanding Toxic Effects on Pathogens. Toxicon 2024, 247, 107812. [Google Scholar] [CrossRef]
- Farha, A.K.; Yang, Q.-Q.; Kim, G.; Li, H.-B.; Zhu, F.; Liu, H.-Y.; Gan, R.-Y.; Corke, H. Tannins as an Alternative to Antibiotics. Food Biosci. 2020, 38, 100751. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Fattahi, S.; Zabihi, E.; Abedian, Z.; Pourbagher, R.; Ardekani, A.M.; Mostafazadeh, A.; Akhavan-Niaki, H. Total Phenolic and Flavonoid Contents of Aqueous Extract of Stinging Nettle and In Vitro Antiproliferative Effect on Hela and BT-474 Cell Lines. Int. J. Mol. Cell Med. 2014, 3, 102–107. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Price, M.L.; Van Scoyoc, S.; Butler, L.G. A Critical Evaluation of the Vanillin Reaction as an Assay for Tannin in Sorghum Grain. J. Agric. Food Chem. 1978, 26, 1214–1218. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Heatley, N.G. A Method for the Assay of Penicillin. Biochem. J. 1944, 38, 61–65. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Agbebi, E.A.; Alabi, O.S.; Nkrumah, A.O.; Ogbole, O.O. Evaluation of the Antibacterial and Antifungal Potentials of Peptide-Rich Extracts from Selected Nigerian Plants. Eur. J. Integr. Med. 2022, 54, 102163. [Google Scholar] [CrossRef]
- El Baaboua, A.; El Maadoudi, M.; Bouyahya, A.; Belmehdi, O.; Kounnoun, A.; Cheyadmi, S.; Ouzakar, S.; Senhaji, N.S.; Abrini, J. Evaluation of the Combined Effect of Antibiotics and Essential Oils against Campylobacter Multidrug Resistant Strains and Their Biofilm Formation. S. Afr. J. Bot. 2022, 150, 451–465. [Google Scholar] [CrossRef]
- Moura, A.; Leclercq, A.; Vales, G.; Tessaud-Rita, N.; Bracq-Dieye, H.; Thouvenot, P.; Madec, Y.; Charlier, C.; Lecuit, M. Phenotypic and Genotypic Antimicrobial Resistance of Listeria monocytogenes: An Observational Study in France. Lancet Reg. Health—Eur. 2024, 37, 100800. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, G.; Schneider, C.; Igbinosa, E.O.; Kabisch, J.; Brinks, E.; Becker, B.; Stoll, D.A.; Cho, G.-S.; Huch, M.; Franz, C.M.A.P. Antibiotics Resistance and Toxin Profiles of Bacillus cereus-Group Isolates from Fresh Vegetables from German Retail Markets. BMC Microbiol. 2019, 19, 250. [Google Scholar] [CrossRef]






| Identified Compounds | Concentration, mg/mL | |||||||
|---|---|---|---|---|---|---|---|---|
| Rid-GTE | Psp-GTE | Hrh-GTE | Rca-GTE | Vid-GTE | Cox-GTE | Bsv-GTE | Vvi-GTE | |
| Caffeic acid | 0.118 ± 0.0052 | 1.759 ± 0.0952 | 0.814 ± 0.0207 | - | 0.831 ± 0.0541 | 0.813 ± 0.0247 | - | 0.813 ± 0.0207 |
| Carnosic acid | - | - | 1.009 ± 0.0875 | - | - | - | - | - |
| Chlorogenic acid | 0.135 ± 0.0087 | 7.546 ± 0.1355 | 0.150 ± 0.0085 | 0.476 ± 0.0243 | 1.680 ± 0.0821 | 3.865 ± 0.1749 | - | 0.151 ± 0.0082 |
| trans-p-coumaric acid | - | 0.712 ± 0.0407 | - | - | - | - | - | - |
| Ellagic acid | 2.246 ± 0.1021 | - | - | - | 2.084 ± 0.1512 | - | - | - |
| Ferulic acid | - | 0.159 ± 0.0098 | - | - | - | - | - | - |
| Gallic acid | 0.056 ± 0.0074 | - | 0.092 ± 0.0078 | 0.057 ± 0.0041 | - | - | - | 0.058 ± 0.0012 |
| Salicylic acid | 0.507 ± 0.0421 | 0.161 ± 0.0091 | - | 0.261 ± 0.0132 | 0.171 ± 0.0089 | - | - | 0.090 ± 0.0021 |
| Apigenin | 0.018 ± 0.0010 | 0.016 ± 0.0003 | 0.034 ± 0.0012 | 0.027 ± 0.0002 | 0.017 ± 0.0008 | 0.008 ± 0.0001 | 0.019 ± 0.0001 | 0.027 ± 0.0015 |
| Catechin | - | 0.220 ± 0.0109 | 5.849 ± 0.2865 | 0.443 ± 0.0288 | 0.301 ± 0.0221 | - | - | 0.030 ± 0.0019 |
| Chrysin | 0.116 ± 0.0143 | 0.089 ± 0.0042 | 0.176 ± 0.0183 | 0.115 ± 0.0089 | 0.111 ± 0.0056 | 0.121 ± 0.0102 | 0.118 ± 0.0052 | 0.102 ± 0.0081 |
| Hyperoside | 0.220 ± 0.0193 | 0.837 ± 0.0654 | 0.151 ± 0.0101 | 0.785 ± 0.0365 | 1.446 ± 0.1073 | 1.822 ± 0.0831 | 0.178 ± 0.0073 | 0.199 ± 0.0088 |
| Kaempferol | 0.029 ± 0.0017 | 0.319 ± 0.0187 | - | - | 0.026 ± 0.0014 | - | - | 0.041 ± 0.0030 |
| Luteolin | - | 0.007 ± 0.0001 | 0.011 ± 0.0009 | - | 0.019 ± 0.0007 | - | - | 0.013 ± 0.0010 |
| Luteolin-7-O-glucosid | 0.074 ± 0.0041 | 0.073 ± 0.0019 | 0.090 ± 0.0062 | 0.076 ± 0.0018 | 0.086 ± 0.0024 | - | - | 0.301 ± 0.0211 |
| Naringenin | 0.035 ± 0.0024 | 0.060 ± 0.0011 | 0.061 ± 0.0053 | 0.020 ± 0.0008 | 0.024 ± 0.0008 | 0.131 ± 0.0351 | 0.026 ± 0.0008 | 0.027 ± 0.0009 |
| Quercetin | 0.107 ± 0.0084 | 0.953 ± 0.0642 | 0.038 ± 0.0021 | 0.036 ± 0.0013 | - | 0.071 ± 0.0009 | - | 0.413 ± 0.0309 |
| Quercitrin | - | 0.305 ± 0.0187 | - | 0.248 ± 0.0167 | - | - | - | - |
| Rutoside | 0.159 ± 0.0088 | 6.385 ± 0.2431 | 0.228 ± 0.0184 | 0.347 ± 0.0203 | 1.210 ± 0.0845 | 0.902 ± 0.0411 | 0.608 ± 0.0125 | 0.378 ± 0.0238 |
| Vitexin | - | 0.033 ± 0.0010 | - | - | - | 0.056 ± 0.0016 | - | 0.033 ± 0.0011 |
| Carnosol | 0.027 ± 0.0009 | 0.029 ± 0.0022 | - | - | 0.026 ± 0.0010 | - | - | 0.026 ± 0.0020 |
| Arbutoside | - | - | - | - | 1.330 ± 0.0852 | - | - | - |
| Bacteria | Conc. % | Rid-GTE | Psp-GTE | Hrh-GTE | Rca-GTE | Vid-GTE | Cox-GTE | Bsv-GTE | Vvi-GTE |
|---|---|---|---|---|---|---|---|---|---|
| S. aureus | 100 | 12.15 ± 0.64 a | 12.53 ± 1.5 a,b | 16.31 ± 1.64 a | 14.75 ± 0.42 a | 13.96 ± 0.37 a | 12.16 ± 0.29 a | nd | nd |
| 90 | 11.33 ± 1.03 b,c | 12.95 ± 1.21 a,d | 14.85 ± 1.46 a,b | 14.46 ± 0.27 a | 13.43 ± 0.31 b | 12.09 ± 0.34 a,b | nd | nd | |
| 80 | 11.73 ± 1.09 a,b | 12.21 ± 0.39 b,c | 13.94 ± 2.49 b,c | 14.59 ± 0.26 a | 13.35 ± 0.32 b,c | 12.15 ± 0.31 a,b | nd | nd | |
| 70 | 11.04 ± 0.47 c | 11.48 ± 0.91 c,d | 12.92 ± 1.53 c,d | 13.51 ± 0.19 b | 13.33 ± 0.26 b,c | 11.86 ± 0.27 b | nd | nd | |
| 60 | nd | nd | 11.63 ± 0.64 d,e | 13.78 ± 0.52 b | 13.04 ± 0.28 c | 11.41 ± 0.21 c | nd | nd | |
| 50 | nd | nd | 10.95 ± 1.71 e | 12.84 ± 0.24 c | 11.62 ± 0.29 d | 11.47 ± 0.22 c | nd | nd | |
| 40 | nd | nd | 10.06 ± 0.6 e | 12.17 ± 0.3 d | 12.26 ± 0.23 e | 10.64 ± 0.14 d | nd | nd | |
| 30 | nd | nd | nd | 11.52 ± 0.19 e | 11.34 ± 0.29 d | 10.38 ± 0.28 d | nd | nd | |
| 20 | nd | nd | nd | 10.85 ± 0.27 f | 10.92 ± 0.15 f | 9.24 ± 0.13 e | nd | nd | |
| 10 | nd | nd | nd | nd | 9.85 ± 0.24 f | nd | nd | nd | |
| B. cereus | 100 | nd | 9.88 ± 0.46 a,b | 12.44 ± 0.44 a | 16.32 ± 0.20 a | 15.46 ± 0.28 a | 13.14 ± 0.17 a | nd | 9.85 ± 0.26 |
| 90 | nd | 10.09 ± 0.43 a | 13.39 ± 1.03 b | 14.62 ± 0.27 b | 14.46 ± 0.28 b | 12.02 ± 0.15 b | nd | nd | |
| 80 | nd | 9.74 ± 0.26 b | 11.65 ± 0.39 c | 13.69 ± 0.21 c | 14.82 ± 0.53 b | 12.37 ± 0.29 c | nd | nd | |
| 70 | nd | 9.84 ± 0.21 a,b | 11.85 ± 0.68 a,c | 13.78 ± 0.42 c | 13.24 ± 0.21 c | 11.48 ± 0.16 d | nd | nd | |
| 60 | nd | nd | 10.91 ± 0.69 d | 13.35 ± 0.26 d | 13.23 ± 0.45 c | 11.12 ± 0.18 e | nd | nd | |
| 50 | nd | nd | 10.84 ± 0.97 d | 12.78 ± 0.26 e | 12.62 ± 0.23 d | 11.01 ± 0.40 e | nd | nd | |
| 40 | nd | nd | 10.71 ± 0.13 d | 13.05 ± 0.19 d,e | 12.38 ± 0.20 d | nd | nd | nd | |
| 30 | nd | nd | nd | 12.01 ± 0.22 f | 11.61 ± 0.30 e | nd | nd | nd | |
| 20 | nd | nd | nd | 11.78 ± 0.36 f | nd | nd | nd | nd | |
| 10 | nd | nd | nd | 9.69 ± 0.13 g | nd | nd | nd | nd | |
| E. faecalis | 100 | nd | nd | 12.27 ± 0.58 a | 11.84 ± 0.23 a | 12.54 ± 0.16 a | 10.31 ± 0.25 a | nd | nd |
| 90 | nd | nd | 11.39 ± 0.27 b | 11.39 ± 0.34 b | 11.61 ± 0.13 b | 9.87 ± 0.15 b | nd | nd | |
| 80 | nd | nd | 10.31 ± 0.15 c | 11.15 ± 0.25 b,c | 11.14 ± 0.19 c | 9.79 ± 0.15 b | nd | nd | |
| 70 | nd | nd | 10.16 ± 0.35 c | 10.86 ± 0.15 c | 10.9 ± 0.18 c,d | 9.7 ± 0.16 b,c | nd | nd | |
| 60 | nd | nd | 9.61 ± 0.26 d | 10.16 ± 0.19 d | 10.57 ± 0.18 e,f | 9.51 ± 0.17 c | nd | nd | |
| 50 | nd | nd | 9.16 ± 0.19 e | 10.51 ± 0.23 d | 10.91 ± 0.39 c,d | nd | nd | nd | |
| 40 | nd | nd | nd | nd | 10.67 ± 0.24 d,e | nd | nd | nd | |
| 30 | nd | nd | nd | nd | 10.33 ± 0.13 f | nd | nd | nd | |
| 20 | nd | nd | nd | nd | nd | nd | nd | nd | |
| L. monocytogenes | 100 | nd | nd | 10.34 ± 0.38 f | * 18.86 ± 0.44 a,b,c | 12.82 ± 0.38 a | nd | nd | nd |
| 90 | nd | nd | nd | * 18.95 ± 0.56 a,b,c | 11.93 ± 0.23 b | nd | nd | nd | |
| 80 | nd | nd | nd | * 18.72 ± 0.52 b,c | 11.46 ± 0.17 c | nd | nd | nd | |
| 70 | nd | nd | nd | * 19.27 ± 0.32 a,b | 11.51 ± 0.12 c | nd | nd | nd | |
| 60 | nd | nd | nd | * 19.16 ± 0.19 a,b | 10.2 ± 0.15 d | nd | nd | nd | |
| 50 | nd | nd | nd | * 19.46 ± 0.37 a,b | 10.01 ± 0.17 d | nd | nd | nd | |
| 40 | nd | nd | nd | * 18.5 ± 0.22 c,d | 9.48 ± 0.23 e | nd | nd | nd | |
| 30 | nd | nd | nd | * 18.08 ± 0.44 d | nd | nd | nd | nd | |
| 20 | nd | nd | nd | * 17.04 ± 0.34 e | nd | nd | nd | nd | |
| 10 | nd | nd | nd | * 15.34 ± 0.47 f | nd | nd | nd | nd |
| Extracts | S. cerevisiae | A. niger | A. flavus | A. ochraceus |
|---|---|---|---|---|
| Rid-GTE | 24.55 ± 0.87 * | 15.41 ± 2.12 (+++) ** | 11.56 ± 0.63 (++) ** | nd |
| Psp-GTE | nd | 23.75 ± 0.58 (+++) ** | nd | 20.51 ± 0.92 (+++) ** |
| Hrh-GTE | nd | nd | nd | nd |
| Rca-GTE | nd | 23.72 ± 0.79 (++) ** | 11.72 ± 0.18 (+) ** | nd |
| Vid-GTE | nd | nd | nd | nd |
| Cox-GTE | nd | 19.08 ± 0.48 (+++) ** | nd | 16.67 ± 1.42 (+) ** |
| Bsv-GTE | nd | nd | nd | 18.38 ± 1.01 (+) ** |
| Vvi-GTE | nd | nd | nd | nd |
| Microorganisms | Rca-GTE | Hrh-GTE | Vid-GTE | Psp-GTE | Vvi-GTE | Cox-GTE | Rid-GTE | Bsv-GTE | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Gram- positive bacteria | B. cereusR1 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
| E. faecalisR2 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |
| L. monocytogenes | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |
| S. aureusR2 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |
| Gram- negative bacteria | E. coli | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
| S. enterica | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |
| P. aeruginosaR2,3 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |
| Yeasts | S. cerevisiae | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
| C. albicans | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |
| Molds | A. niger | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x |
| A. flavus | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | |
| A. ochraceus | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | |
| P. citrinum | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | |
| P. expansum | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | ![]() | x | x | |
ADM;
MIC;
MMC;
Growth promoting effect (ADM);
No effect; x—not tested. The concentration of GTEs: darker color: 10–40%, lighter color: 50–100%. R: acquired antibiotic resistance of 1 cefotaxime, 2 kanamycin, 3 tetracycline.| Time, min | Methanol | Water | 2% Formic Acid in Water |
|---|---|---|---|
| 0.00 | 5 | 90 | 5 |
| 3.00 | 15 | 70 | 15 |
| 6.00 | 15 | 70 | 15 |
| 9.00 | 21 | 58 | 21 |
| 13.00 | 21 | 58 | 21 |
| 18.00 | 30 | 41 | 29 |
| 22.00 | 30 | 41 | 29 |
| 26.00 | 50 | 0 | 50 |
| 29.00 | 50 | 0 | 50 |
| 29.01 | 5 | 90 | 5 |
| 35.00 | 5 | 90 | 5 |
| Name of Standard | Retention Time, min | m/z, and Main Transition | MRM | Other Transitions |
|---|---|---|---|---|
| affeic acid | 13.8 | 179.0 > 135.0 | Negative | 179.0 > 134.0 179.0 > 89.0 |
| Carnosic acid | 32.0 | 331.2 > 285.1 | Negative | |
| Chlorogenic acid | 11.9 | 353.0 > 191.0 | Negative | |
| trans-p-coumaric acid | 17.5 | 163.0 > 119.0 | Negative | 163.0 > 93.0 |
| Ellagic acid | 27.2 | 301.0 > 185.0 | Negative | 301.0 > 257.0 |
| Ferulic acid | 18.4 | 193.0 > 134.0 | Negative | 193.0 > 178.0 |
| Gallic acid | 7.0 | 168.9 > 125.0 | Negative | |
| Salicylic acid | 23.5 | 137.0 > 93.0 | Negative | 137.0 > 75.0 137.0 > 65.0 |
| Apigenin | 28.1 | 269.0 > 117.0 | Negative | |
| Catechin | 10.3 | 289.0 > 202.9 | Negative | |
| Chrysin | 29.7 | 253.0 > 143.0 | Negative | 253.0 > 119.0 253.0 > 107.0 |
| Hyperoside | 20.3 | 463.1 > 300.0 | Negative | 463.1 > 301.0 |
| Kaempferol | 27.9 | 285.0 > 187.0 | Negative | 285.0 > 151.0 285.0 > 133.0 |
| Luteolin | 26.8 | 287.0 > 153.0 | Positive | |
| Luteolin-7-O-glucosid | 19.9 | 447.0 > 284.9 | Negative | |
| Naringenin | 26.2 | 271.0 > 119.0 | Negative | 271.0 > 107.0 |
| Quercetin | 25.4 | 300.9 > 151.0 | Negative | 300.9 > 121.0 |
| Quercitrin | 22.1 | 447.0 > 229.9 | Negative | |
| Rutoside | 20.2 | 609.0 > 300.0 | Negative | 609.0 > 301.0 609.0 > 271.0 |
| Vitexin | 18.4 | 431.0 > 311.0 | Negative | |
| Carnosol | 30.7 | 329.1 > 285.1 | Negative | |
| Arbutoside | 6.0 | 317.1 > 109.0 | Negative | 317.1 > 271.0 317.1 > 161.0 |
| Name of Standard | Concentration Range, mg/mL | Calibration Curve Equation | Correlation Factor | Detection Limit, mg/mL | Quantification Limit, mg/mL |
|---|---|---|---|---|---|
| Caffeic acid | 0.11–1.10 | Area = 4 × 107 · conc[mg/mL] − 319,689 | 0.9998 | 3.20 | 4.80 |
| Carnosic acid | 0.28–2.80 | Area = 107 · conc[mg/mL] − 99,360 | 0.9994 | 4.00 | 6.00 |
| Chlorogenic acid | 0.13–1.30 | Area = 2 × 108 · conc[mg/mL] − 269,699 | 0.9997 | 5.00 | 8.00 |
| trans-p-coumaric acid | 0.16–1.60 | Area = 3 × 107 · conc[mg/mL] + 36,967 | 0.9995 | 2.50 | 4.90 |
| Ellagic acid | 0.107–1.070 | Area = 14,987 · conc[mg/mL] − 138.52 | 0.9982 | 3.70 | 5.50 |
| Ferulic acid | 0.100–1.000 | Area = 5 × 106 · conc[mg/mL] − 50,000 | 0.9992 | 4.00 | 6.00 |
| Gallic acid | 0.107–1.070 | Area = 8 × 106 · conc[mg/mL] − 37,131 | 0.9999 | 1.90 | 2.80 |
| Salicylic acid | 0.16–1.60 | Area = 4 × 107 · conc[mg/mL] + 44,120 | 0.9997 | 1.50 | 2.00 |
| Apigenin | 0.10–0.98 | Area = 2 × 108 · conc[mg/mL] + 15,916 | 0.9999 | 0.20 | 0.30 |
| Catechin | 0.10–1.01 | Area = 5 × 106 · conc[mg/mL] − 1706 | 0.9984 | 1.00 | 2.00 |
| Chrysin | 0.10–1.00 | Area = 1 × 108 · conc[mg/mL] – 82,818 | 0.9997 | 3.00 | 5.00 |
| Hyperoside | 0.012–0.107 | Area = 4 × 108 · conc[mg/mL] − 567,182 | 0.9986 | 0.60 | 0.90 |
| Kaempferol | 0.10–1.00 | Area = 107 · conc[mg/mL] − 20,574 | 0.9996 | 0.80 | 1.20 |
| Luteolin | 0.01–0.10 | Area = 2 × 108 · conc[mg/mL] − 2295.4 | 0.9977 | 0.05 | 0.07 |
| Luteolin-7-O-glucosid | 0.07–0.70 | Area = 1 × 109 · conc[mg/mL] − 700,317 | 0.9990 | 3.00 | 4.00 |
| Naringenin | 0.16–1.60 | Area = 3 × 108 · conc[mg/mL] − 43,443 | 0.9999 | 0.60 | 0.90 |
| Quercetin | 0.09–0.91 | Area = 5 × 107 · conc[mg/mL] − 9556 | 0.9964 | 0.80 | 1.10 |
| Quercitrin | 0.16–1.60 | Area = 395,509 · conc[mg/mL] − 1532.9 | 0.9992 | 1.60 | 2.30 |
| Rutoside | 0.17–1.70 | Area = 2 × 108 · conc[mg/mL] − 191,937 | 0.9996 | 4.00 | 6.00 |
| Vitexin | 0.17–1.70 | Area = 3 × 108 · conc[mg/mL] − 106 | 0.9996 | 1.30 | 2.00 |
| Carnosol | 0.022–0.220 | Area = 109 × conc[mg/mL] − 253,279 | 0.9997 | 1.00 | 2.00 |
| Arbutoside | 0.11–1.10 | Area = 6 × 107 · conc[mg/mL] + 38,705 | 0.9984 | 1.30 | 2.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Héjja, M.; György, É.; Lóga, F.Á.; Nagy, R.; Pacza, T.; Sipos, P.; Tankó, G.; Laslo, É.; Mészáros, N.; Turcuș, V.; et al. Gemmotherapy Extracts Like the Dog Rose, Lingonberry, Sea Buckthorn, Blackthorn, Common Grape, Hawthorn, Raspberry and Boxwood Feature Variable Yet Excelling Antimicrobial Effects. Antibiotics 2025, 14, 1052. https://doi.org/10.3390/antibiotics14101052
Héjja M, György É, Lóga FÁ, Nagy R, Pacza T, Sipos P, Tankó G, Laslo É, Mészáros N, Turcuș V, et al. Gemmotherapy Extracts Like the Dog Rose, Lingonberry, Sea Buckthorn, Blackthorn, Common Grape, Hawthorn, Raspberry and Boxwood Feature Variable Yet Excelling Antimicrobial Effects. Antibiotics. 2025; 14(10):1052. https://doi.org/10.3390/antibiotics14101052
Chicago/Turabian StyleHéjja, Melinda, Éva György, Ferenc Ádám Lóga, Róbert Nagy, Tünde Pacza, Péter Sipos, György Tankó, Éva Laslo, Noémi Mészáros, Violeta Turcuș, and et al. 2025. "Gemmotherapy Extracts Like the Dog Rose, Lingonberry, Sea Buckthorn, Blackthorn, Common Grape, Hawthorn, Raspberry and Boxwood Feature Variable Yet Excelling Antimicrobial Effects" Antibiotics 14, no. 10: 1052. https://doi.org/10.3390/antibiotics14101052
APA StyleHéjja, M., György, É., Lóga, F. Á., Nagy, R., Pacza, T., Sipos, P., Tankó, G., Laslo, É., Mészáros, N., Turcuș, V., Oláh, N.-K., & Máthé, E. (2025). Gemmotherapy Extracts Like the Dog Rose, Lingonberry, Sea Buckthorn, Blackthorn, Common Grape, Hawthorn, Raspberry and Boxwood Feature Variable Yet Excelling Antimicrobial Effects. Antibiotics, 14(10), 1052. https://doi.org/10.3390/antibiotics14101052

