Relative Intensity Noise of Gain-Switched Dual-State Lasing for an Insein(113)B Quantum Dot Laser
Abstract
:1. Introduction
2. Method
3. Results
- (I)
- Slow capture and fast relaxation (): To ensure this, the phonon and Auger terms Awly and Cwly were taken as 0.7 × 1010 s−1 and 2 × 10−9 cm−3s−1, respectively. For both models, in this case, the Exs and Grs threshold currents increased; however, as the increase in the Exs was higher, while the increase in the Grs was very small, there was no change in the RIN spectra of the Grs and Exs + Gr, while the RIN of the Exs value increased, as observed in Figure 8a,b. Gain-switched pulses from the Exs radiation could not be generated at any frequency.
- (II)
- Fast capture and slow relaxation (): To ensure this, the phonon and Auger terms Aexs and Cexs were taken as 0.7 × 1010 s−1 and 6 × 10−8 cm−3s−1, respectively. In this case, while the Grs threshold current did not change for both models, the Exs threshold current decreased. As the Exs threshold current decreased, the RIN of the Exs decreased by 3 dB for the DRM and 4 dB for the CRM (see Figure 8). There was no significant change in the RIN of the Grs and Exs + Grs for the DRM, while the RIN of the Grs and Exs + Grs increased by 2 dB for the CRM. Gain-switched pulses originating from the Exs and Grs radiation were obtained at all frequencies.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mikhrin, S.S.; Kovsh, A.R.; Krestnikov, I.L.; Kozhukhov, A.V.; Livshits, D.A.; Ledentsov, N.N.; Shernyakov, Y.M.; Novikov, I.I.; Maximov, M.V.; Ustinov, V.M.; et al. High power temperature-insensitive 1.3 µm InAs/InGaAs/GaAs quantum dot lasers. Semicond. Sci. Technol. 2005, 20, 340–342. [Google Scholar] [CrossRef]
- Saito, H.; Nishi, K.; Kamei, A.; Sugou, S. Low chirp observed in directly modulated quantum dot lasers. IEEE Photon. Technol. Lett. 2000, 12, 1298–1300. [Google Scholar]
- Liu, G.; Stintz, A.; Li, H.; Malloy, K.; Lester, L. Extremely low room-temperature threshold currentdensity diode lasersusing InAs dots in In0.15Ga0.85As quantum well. Electron. Lett. 1999, 35, 1163–1165. [Google Scholar] [CrossRef]
- Caroff, P.; Paranthoen, C.; Platz, C.; Dehaese, O.; Folliot, H.; Bertru, N.; Labbe, C.; Piron, R.; Homeyer, E.; Le Corre, A.; et al. High gain and low-threshold InAs QD lasers on InP. J. Appl. Phys. 2005, 87, 243107. [Google Scholar]
- Shimizu, M.; Suzuki, Y.; Watanabe, M. Characteristics of Cavity Round-Trip Time Pulses in Short-Cavity Q-Switched AlGaAs Multiple-Quantum-Well Semiconductor Lasers. Jpn. J. Appl. Phys. 1998, 37, L1040–L1042. [Google Scholar]
- Mukai, K.; Nakata, Y.; Otsubo, K.; Sugawara, M.; Yokoyama, N.; Ishikawa, H. Low threshold (8 mA) 1.3-mm CW lasing of InGaAs/InAs quantum dots at room temperature. In Proceedings of the Lasers and Electro-Optics Conference, Baltimore, MD, USA, 23–26 May 1999. [Google Scholar]
- Sugawara, M.; Mukai, K.; Nakata, Y.; Ishikawa, H.; Sakamoto, A. Effect of Homogeneous Broadening of Optical Gain on Lasing Spectra in Self-Assembled InxGa1-xAs/GaAs Quantum Dot Lasers. Phys. Rev. B 2000, 61, 7595–7603. [Google Scholar]
- Grillot, F.; Veselinov, K.; Gioannini, M.; Montrosset, I.; Even, J.; Piron, R.; Homeyer, E.; Loualiche, S. Spectral Analysis of 1.55-m InAs–InP(113)B Quantum-Dot Lasers Based on a Multipopulation Rate Equations Mode. IEEE J. Quantum Electron. 2009, 45, 872–878. [Google Scholar]
- Sritirawisarn, N.; Van Otten, F.W.M.; Eijkemans, T.J.; Nötzel, R. Surface morphology induced InAs quantum dot or dash formation on InGaAs/InP(100). J. Cryst. Growth 2007, 305, 63–69. [Google Scholar] [CrossRef]
- Heck, S.C.; Osborne, S.; Healy, S.B.; O’Reilly, E.P.; Lelarge, F.; Poingt, F.; Le Gouezigou, O.; Accard, A. Experimental and theoretical study of InAs/InGaAs/InP quantum dash laser. IEEE J. Quantum Electron. 2009, 45, 1508–1516. [Google Scholar]
- Sheikhey, M.M.; MirSoheil, S.S.; Asadian, N.; Baghban, H. Quantum-dot semiconductor lasers with prominent relative intensity noise and spectral characteristics. Opt. Express 2021, 29, 10236–10248. [Google Scholar] [CrossRef]
- Liao, M.; Chen, S.; Liu, Z.; Wang, Y.; Ponnampalam, L.; Zhou, Z.; Wu, J.; Tang, M.; Shutts, S.; Liu, Z.; et al. Low-noise 1.3 µm InAs/GaAs quantum dot laser monolithically grown on silicon. Photon. Res. 2018, 6, 1062–1066. [Google Scholar] [CrossRef]
- Sanaee, M.; Zarifkar, A. Enhanced Modulation and Noise Characteristics in 1.55 µm QD Lasers using Additional Optical Pumping. Int. J. Opt. Photon. 2017, 11, 3–18. [Google Scholar] [CrossRef]
- Dogru, N.; Adams, M.J. Intensity noise of actively mode-locked quantum dot external cavity laser. J. Lightw. Technol. 2014, 32, 3215–3222. [Google Scholar] [CrossRef]
- Klaime, K.; Calò, C.; Piron, R.; Paranthoen, C.; Thiam, D.; Batte, T.; Dehaese, O.; Le Pouliquen, J.; Loualiche, S.; Le Corre, A.; et al. 23 and 39 GHz low phase noise monosection InAs/InP (113)B quantum dots mode-locked lasers. Opt. Express 2013, 21, 29000. [Google Scholar] [CrossRef] [PubMed]
- Gensty, T.; Elsäßer, W. Semiclassical model for the relative intensity noise of intersubband quantum cascade lasers. Opt. Commun. 2005, 256, 171–183. [Google Scholar] [CrossRef]
- Sanaee, M.; Zarifkar, A. Effect of carrier transition mechanisms and gain compression on relative intensity noise of 1.55 µm QD lasers. Opt. Commun. 2015, 353, 42–48. [Google Scholar] [CrossRef]
- Duan, J.; Wang, X.-G.; Zhou, Y.-G.; Wang, C.; Grillot, F. Relative intensity noise properties of quantum dot lasers. In Semiconductor Lasers and Applications VIII; SPIE: Bellingham, WA, USA, 2018; p. 31. [Google Scholar]
- Babaabasi, G.-R.; Mir, A.; Yavari, M.-H. Theoretical analysis of relative intensity noise in semiconductor QD lasers. J. Comput. Electron. 2023, 22, 1097–1106. [Google Scholar] [CrossRef]
- Fatadin, I.; Ives, D.; Wicks, M. Numerical simulation of intensity and phase noise from extracted parameters for CW DFB lasers. IEEE J. Quantum Electron. 2006, 42, 934–941. [Google Scholar] [CrossRef]
- Ahmed, M.; Yamada, M.; Saito, M. Numerical modeling of intensity and phase noise in semiconductor lasers. IEEE J. Quantum Electron. 2001, 37, 1600–1610. [Google Scholar] [CrossRef]
- Dogru, N.; Tunc, H.S.D.; Al-Dabbagh, A.M. Gain-switched short pulse generation from InAs-InP (113)B quantum dot laser excited state. Opt. Laser Technol. 2022, 148, 107709. [Google Scholar] [CrossRef]
- Veselinov, K.; Grillot, F.; Miska, P.; Homeyer, E.; Caroff, P.; Platz, C.; Even, J.; Marie, X.; Dehaese, O.; Loualiche, S.; et al. Carrier Dynamics and Saturation Effect in (113)B InAs/InP Quantum Dot Lasers. Opt. Quantum Electron. 2006, 38, 369–379. [Google Scholar] [CrossRef]
- Wang, C.; Grillot, F.; Even, J. Impacts of Wetting Layer and Excited State on the Modulation Response of Quantum-Dot Lasers. IEEE J. Quantum Electron. 2012, 48, 1144–1150. [Google Scholar] [CrossRef]
- Even, J.; Grillot, F.; Veselinov, K.; Piron, R.; Cornet, C.; Dore, F.; Pedesseau, L.; Le Corre, A.; Loualiche, S.; Miska, P.; et al. Analysis of carrier dynamics and laser emission in 1.55 µm InAs/InP(1113)B quantum dot lasers. In Semiconductor Lasers and Laser Dynamics IV; SPIE: Bellingham, WA, USA, 2010; Volume 7720. [Google Scholar]
- Duan, J.; Wang, X.G.; Zhou, Y.G.; Wang, C.; Grillot, F. Carrier-noise-enhanced relative intensity noise of quantum dot lasers. IEEE J. Quantum Electron. 2018, 54, 2001407. [Google Scholar]
- Zhou, Y.; Duan, J.; Grillot, F.; Wang, C. Optical noise of dual-state lasing quantum dot lasers. IEEE J. Quantum Electron. 2020, 56, 2001207. [Google Scholar]
- Tunc, H.S.D.; Dogru, N.; Cengiz, E. Gain-switched short pulse generation from InAs-InP (113)B quantum dot laser modelled using multi-population rate equations. Mathematics 2022, 10, 4316. [Google Scholar]
- Dogru, N.; Tunc, H.S.D.; Al-Dabbagh, A.M. Gain-switched pulses from quantum-dot laser excited state. In Proceedings of the SPIE/COS Photonic Asia-Semiconductor Lasers and Applications XI, Nantong, China, 10–12 October 2021; Volume 11891, pp. 80–87. [Google Scholar]
- Dogru, N.; Cengiz, E.; Tunc, H.S.D. RIN reduction in Gain-Switched InAs-InP(113)B Quantum Dot Laser Based on Multi-population Rate Equations. IEEE Trans. Electron. Devices 2023, 70, 3695–3703. [Google Scholar] [CrossRef]
- Ghosh, S.; Pradhan, S.; Bhattacharya, P. Dynamic characteristics of high-speed In0.4Ga0.6As/GaAs self-organized quantum dot lasers at room temperature. Appl. Phys. Lett. 2022, 81, 3055–3057. [Google Scholar]
- Gubenko, A.; Krestnikov, I.; Livshtis, D.; Mikhrin, S.; Kovsh, A.; West, L.; Bornholdt, C.; Grote, N.; Zhukov, A. Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser. Electron. Lett. 2007, 43, 1430–1431. [Google Scholar]
- Duan, J.; Zhou, Y.; Dong, B.; Huang, H.; Norman, J.C.; Jung, D.; Zhang, Z.; Wang, C.; Bowers, J.E.; Grillot, F. Effect of p-doping on the intensity noise of epitaxial quantum dot lasers on silicon. Opt. Lett. 2020, 45, 4887–4890. [Google Scholar]
- Zhou, Y.-G.; Zhou, C.; Cao, C.-F.; Du, J.-B.; Gong, Q.; Wang, C. Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge. Opt. Exp. 2017, 25, 28817–28824. [Google Scholar] [CrossRef]
- Capua, A.; Rozenfeld, L.; Mikhelashvili, V.; Eisenstein, G.; Kuntz, M.; Laemmlin, M.; Bimberg, D. Direct correlation between a highly damped modulation response and ultralow relative intensity noise in an InAs-GaAs quantum dot laser. Opt. Express 2007, 15, 5388–5393. [Google Scholar] [CrossRef] [PubMed]
- Lelarge, F.; Dagens, B.; Renaudier, J.; Brenot, R.; Accard, A.; van Dijk, F.; Make, D.; Le Gouezigou, O.; Provost, J.-G.; Poingt, F.; et al. Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 111–124. [Google Scholar] [CrossRef]
- Duan, J.; Huang, H.; Jung, D.; Norman, J.C.; Bowers, J.E.; Grillot, F. Relative intensity noise of silicon-based quantum dot lasers. In Proceedings of the 2019 Compound Semiconductor Week, Nara, Japan, 19–23 May 2019; pp. 1–2. [Google Scholar]
- Gready, D.; Eisenstein, G.; Gilfert, C.; Ivanov, V.; Reithmaier, J.P. High-speed low-noise InAs/InAlGaAs/InP 1.55-μm quantum-dot lasers. IEEE Photon. Technol. Lett. 2012, 24, 809–811. [Google Scholar]
Cavity length | L = 0.245 cm |
Cavity width | w = 12 µm |
Differential gain for Grs | agrs = 4.6 × 10–14 cm2 |
Differential gain for Exs | aexs = 9.2 × 10–14 cm2 |
Confinement factor | Γ = 0.025 |
Quantum dot density | No = 6 × 1016 cm−3 |
Refractive index | nr = 3.27 |
Cavity internal loss | αint = 6 cm−1 |
Mirror reflectivity | R1 = 0.95, R2 = 0.05 |
Gain compression factor | εgrs,exs = 1 × 10–16 cm3 |
Spontaneous emission, Wly | = 500 ps |
Spontaneous emission, Exs | = 500 ps |
Spontaneous emission, Grs | = 1.2 ns |
Photon lifetime | τp = 8.92 ps |
Spontaneous coupling factor | β = 1 × 10–4 |
Wly emission energy | Ewly = 1.05 eV |
Exs emission energy | Eexs = 0.840 eV |
Grs emission energy | Egrs = 0.792 eV |
Wly phonon relaxation | Awly = 1.35 × 1010 s−1 |
Wly Auger coefficient | Cwly = 5 × 10−9 cm3s−1 |
Wly phonon relaxation | Aexs = 1.5 × 1010 s−1 |
Exs Auger coefficient | Cexs = 9 × 10−8 cm3s−1 |
Degeneracy, Grs, Exs, Wly | µgrs,exs,wly = 2, 4, 10 |
Operating frequency | f = 1 GHz |
Wavelength | λ = 1.55 µm |
Ith,Exs | Ith,Grs | Ith,Exs+Grs | |
---|---|---|---|
DRM | 61 mA | 8 mA | 8 mA |
CRM | 51 mA | 9 mA | 9 mA |
(a) | Exs | Grs | Exs + Grs |
Without noise | 77 ps 89 mW | 303 ps 269 mW | 265 ps 354 mW |
With noise | 74 ps 90 mW | 298 ps 273 mW | 262 ps 357 mW |
(b) | Exs | Grs | Exs + Grs |
Without noise | 80 ps 60 mW | 259 ps 200 mW | 229 ps 234 mW |
With noise | 74 ps 61 mW | 252 ps 201 mW | 226 ps 236 mW |
(a) | Exs | Grs | Exs + Grs |
Without noise | 29 ps 517 mW | 50 ps 126 mW | 29 ps 517 mW |
With noise | 29 ps 518 mW | 51 ps 126 mW | 29 ps 518 mW |
(b) | Exs | Grs | Exs + Grs |
Without noise | 29 ps 508 mW | 50 ps 117 mW | 29 ps 508 mW |
With noise | 29 ps 510 mW | 50 ps 117 mW | 29 ps 510 mW |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dogru, N.; Cengiz, E.; Duranoglu Tunc, H.S. Relative Intensity Noise of Gain-Switched Dual-State Lasing for an Insein(113)B Quantum Dot Laser. Nanomaterials 2025, 15, 511. https://doi.org/10.3390/nano15070511
Dogru N, Cengiz E, Duranoglu Tunc HS. Relative Intensity Noise of Gain-Switched Dual-State Lasing for an Insein(113)B Quantum Dot Laser. Nanomaterials. 2025; 15(7):511. https://doi.org/10.3390/nano15070511
Chicago/Turabian StyleDogru, Nuran, Erkan Cengiz, and Hilal S. Duranoglu Tunc. 2025. "Relative Intensity Noise of Gain-Switched Dual-State Lasing for an Insein(113)B Quantum Dot Laser" Nanomaterials 15, no. 7: 511. https://doi.org/10.3390/nano15070511
APA StyleDogru, N., Cengiz, E., & Duranoglu Tunc, H. S. (2025). Relative Intensity Noise of Gain-Switched Dual-State Lasing for an Insein(113)B Quantum Dot Laser. Nanomaterials, 15(7), 511. https://doi.org/10.3390/nano15070511