Oxidative Stress and Inflammatory Biomarkers in Aqueous Humor and Blood of Patients with Leber’s Hereditary Optic Neuropathy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Ophthalmic Examination
2.3. Samples Collection
2.4. Measurement of Oxidative Stress and Inflammatory Cytokine Biomarkers
2.5. Measurement of Antioxidants and Anti-Inflammatory Cytokine Biomarkers
2.6. Statistical Analyses
3. Results
3.1. Participants Characteristics
3.2. Oxidative Stress Biomarkers and Cytokines Analysis in Aqueous Humor
3.3. Oxidative Stress Biomarkers and Cytokines Analysis in Blood
3.4. Analysis in LHON Subgroups
3.5. Adjustment Analysis for Potential Confounders: Smoking and Alcohol
3.6. Statistical Exploration of Biomarkers for LHON Risk Assessment
3.7. Cumulative Risk Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| RGC | Retinal ganglion cells |
| mtDNA | Mitochondrial DNA |
| ROS | Reactive oxygen species |
| OS | Oxidative stress |
| SDU | Standard drinking units |
| BCVA | Best-corrected visual acuity |
| IOP | Intraocular pressure |
| AL | Axial length |
| OCT | Optical coherence tomography |
| RNFL | Retinal nerve fiber layer |
| RGC | Retinal ganglion cell layer |
| PVI | Povidone-iodine |
| AOPP | Advanced oxidation protein products |
| LOOH | Lipid hydroperoxides |
| ELISA | Enzyme-linked immunosorbent assay |
| IL-1 β | Interleukin-1 β |
| IFN- γ | Interferon-γ |
| TNF-α | Tumor necrosis factor α |
| TAS | Total antioxidant status |
| GPX | Glutathione peroxidase |
| GRD | Glutathione reductase |
| SOD | Superoxide dismutase |
| G6PDH | Glucose 6 Phosphate Dehydrogenase |
| SOD3 | Extracellular superoxide dismutase |
| cGMP | Cyclic guanosine monophosphate |
| IL-1ra | Interleukin 1 receptor antagonist |
| CHAID | Chi-squared Automatic Interaction Detection |
| OX/AntiOX | Oxidant/antioxidant |
| OCR | Overall classification rate |
| AUC | Area under curve |
| TOS | Total oxidant status |
| RNS | Reactive nitrogen species |
References
- Yen, M.Y.; Wang, A.G.; Wei, Y.H. Leber’s Hereditary Optic Neuropathy: A Multifactorial Disease. Prog. Retin. Eye Res. 2006, 25, 381–396. [Google Scholar] [CrossRef]
- Meyerson, C.; Van Stavern, G.; McClelland, C. Leber Hereditary Optic Neuropathy: Current Perspectives. Clin. Ophthalmol. 2015, 9, 1165–1176. [Google Scholar] [CrossRef]
- Orphanet. The Portal for Rare Diseases and Orphan Drugs. Available online: https://www.orpha.net/en/disease/detail/104?name=leber&mode=name (accessed on 26 November 2025).
- Esteban-Vasallo, M.D.; Domínguez-Berjón, M.F.; Chalco-Orrego, J.P.; González Martín–Moro, J. Prevalence of Leber Hereditary Optic Neuropathy in the Community of Madrid (Spain), Estimation with a Capture-Recapture Method. Orphanet. J. Rare Dis. 2024, 19, 220. [Google Scholar] [CrossRef]
- Fuller, J.T.; Barnes, S.; Sadun, L.A.; Ajmera, P.; Alexandrova, A.N.; Sadun, A.A. Coenzyme Q10 Trapping in Mitochondrial Complex I Underlies Leber’s Hereditary Optic Neuropathy. Proc. Natl. Acad. Sci. USA 2023, 120, e2304884120. [Google Scholar] [CrossRef]
- Yang, Y.P.; Foustine, S.; Hsiao, Y.J.; Tsai, E.T.; Tsai, F.T.; Wang, C.L.; Ko, Y.L.; Tai, H.Y.; Tsai, Y.C.; Yang, C.H.; et al. The Pathological Mechanisms and Novel Therapeutics for Leber’s Hereditary Optic Neuropathy. J. Chin. Med. Assoc. 2023, 86, 539–541. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, S.J.; Sadun, A.A. Solutions to a Radical Problem: Overview of Current and Future Treatment Strategies in Leber’s Hereditary Opic Neuropathy. Int. J. Mol. Sci. 2022, 23, 13205. [Google Scholar] [CrossRef] [PubMed]
- Rovcanin, B.; Jancic, J.; Pajic, J.; Rovcanin, M.; Samardzic, J.; Djuric, V.; Nikolic, B.; Ivancevic, N.; Novakovic, I.; Kostic, V. Oxidative Stress Profile in Genetically Confirmed Cases of Leber’s Hereditary Optic Neuropathy. J. Mol. Neurosci. 2021, 71, 1070–1081. [Google Scholar] [CrossRef]
- Carelli, V.; Ross-Cisneros, F.N.; Sadun, A.A. Mitochondrial Dysfunction as a Cause of Optic Neuropathies. Prog. Retin. Eye Res. 2004, 23, 53–89. [Google Scholar] [CrossRef] [PubMed]
- Lambiri, D.W.; Levin, L.A. Modeling Reactive Oxygen Species-Induced Axonal Loss in Leber Hereditary Optic Neuropathy. Biomolecules 2022, 12, 1411. [Google Scholar] [CrossRef]
- Pan, B.X.; Ross-Cisneros, F.N.; Carelli, V.; Rue, K.S.; Salomao, S.R.; Moraes-Filho, M.N.; Moraes, M.N.; Berezovsky, A.; Belfort, R.; Sadun, A.A. Mathematically Modeling the Involvement of Axons in Leber’s Hereditary Optic Neuropathy. Investig. Ophthalmol. Vis. Sci. 2012, 53, 7608–7617. [Google Scholar] [CrossRef]
- Buonfiglio, F.; Böhm, E.W.; Pfeiffer, N.; Gericke, A. Oxidative Stress: A Suitable Therapeutic Target for Optic Nerve Diseases? Antioxidants 2023, 12, 1465. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.S.; Sharpley, M.S.; Fan, W.; Waymire, K.G.; Sadun, A.A.; Carelli, V.; Ross-Cisneros, F.N.; Baciu, P.; Sung, E.; McManus, M.J.; et al. Mouse MtDNA Mutant Model of Leber Hereditary Optic Neuropathy. Proc. Natl. Acad. Sci. USA 2012, 109, 20065–20070. [Google Scholar] [CrossRef] [PubMed]
- Cwerman-Thibault, H.; Augustin, S.; Lechauve, C.; Ayache, J.; Ellouze, S.; Sahel, J.A.; Corral-Debrinski, M. Nuclear Expression of Mitochondrial ND4 Leads to the Protein Assembling in Complex I and Prevents Optic Atrophy and Visual Loss. Mol. Ther. Methods Clin. Dev. 2015, 2, 15003. [Google Scholar] [CrossRef] [PubMed]
- Falabella, M.; Forte, E.; Magnifico, M.C.; Santini, P.; Arese, M.; Giuffrè, A.; Radić, K.; Chessa, L.; Coarelli, G.; Buscarinu, M.C.; et al. Evidence for Detrimental Cross Interactions between Reactive Oxygen and Nitrogen Species in Leber’s Hereditary Optic Neuropathy Cells. Oxid. Med. Cell Longev. 2016, 2016, 3187560. [Google Scholar] [CrossRef]
- Beretta, S.; Mattavelli, L.; Sala, G.; Tremolizzo, L.; Schapira, A.H.V.; Martinuzzi, A.; Carelli, V.; Ferrarese, C. Leber Hereditary Optic Neuropathy MtDNA Mutations Disrupt Glutamate Transport in Cybrid Cell Lines. Brain 2004, 127, 2183–2192. [Google Scholar] [CrossRef]
- Floreani, M.; Napoli, E.; Martinuzzi, A.; Pantano, G.; De Riva, V.; Trevisan, R.; Bisetto, E.; Valente, L.; Carelli, V.; Dabbeni-Sala, F. Antioxidant Defences in Cybrids Harboring MtDNA Mutations Associated with Leber’s Hereditary Optic Neuropathy. FEBS J. 2005, 272, 1124–1135. [Google Scholar] [CrossRef]
- Xhuti, D.; Chiarot, A.; Minhas, M.; Tobia, S.; de Maat, N.; Manta, K.; Ng, S.Y.; Tarnopolsky, M.A.; Nederveen, J.P. Combination Treatment with Antioxidants and Creatine Alleviates Common and Variant-Specific Mitochondrial Impairments in Leber’s Hereditary Optic Neuropathy Patient-Derived Fibroblasts. Hum. Mol. Genet. 2025, 34, 1780–1795. [Google Scholar] [CrossRef]
- Wang, J.Y.; Gu, Y.S.; Wang, J.; Tong, Y. Oxidative Stress in Chinese Patients with Leber’s Hereditary Optic Neuropathy. J. Int. Med. Res. 2008, 36, 544–550. [Google Scholar] [CrossRef]
- Martínez-Fernández de la Cámara, C.; Salom, D.; Sequedo, M.D.; Hervás, D.; Marín-Lambíes, C.; Aller, E.; Jaijo, T.; Díaz-LLopis, M.; Millán, J.M.; Rodrigo, R. Altered Antioxidant-Oxidant Status in the Aqueous Humor and Peripheral Blood of Patients with Retinitis Pigmentosa. PLoS ONE 2013, 8, e74223. [Google Scholar] [CrossRef]
- Nita, M.; Grzybowski, A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid. Med. Cell Longev. 2016, 2016, 3164734. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, J.; Li, J.; Jiang, H.; Kong, J. Klotho Levels Are Decreased and Associated with Enhanced Oxidative Stress and Inflammation in the Aqueous Humor in Patients with Exudative Age-Related Macular Degeneration. Ocul. Immunol. Inflamm. 2022, 30, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Guha, S.; Bhogapurapu, B.; Ramappa, M.; Chaurasia, S.; Roy, S. Determination of Oxidative Stress Markers in the Aqueous Humor and Corneal Tissues of Patients With Congenital Hereditary Endothelial Dystrophy. Cornea 2020, 40, 491–496. [Google Scholar] [CrossRef]
- Ramos-González, E.J.; Bitzer-Quintero, O.K.; Ortiz, G.; Hernández-Cruz, J.J.; Ramírez-Jirano, L.J. Relationship between Inflammation and Oxidative Stress and Its Effect on Multiple Sclerosis. Neurologia 2024, 39, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Chua, J.; Vania, M.; Ming Gemmy Cheung, C.; Ang, M.; Phaik Chee, S.; Yang, H.; Li, J.; Wong, T.T. Expression Profile of Inflammatory Cytokines in Aqueous from Glaucomatous Eyes. Mol. Vis. 2012, 18, 431. [Google Scholar]
- Duarte, J.N. Neuroinflammatory Mechanisms of Mitochondrial Dysfunction and Neurodegeneration in Glaucoma. J. Ophthalmol. 2021, 2021, 4581909. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.; Wang, J.; Su, X.; Tian, Y.; Ye, X.; Zhang, Y. Causal Associations between Circulating Inflammatory Cytokines and Blinding Eye Diseases: A Bidirectional Mendelian Randomization Analysis. Front. Aging Neurosci. 2024, 16, 1324651. [Google Scholar] [CrossRef]
- Zhou, Q.; Yao, S.; Yang, M.; Guo, Q.; Li, Y.; Li, L.; Lei, B. Superoxide Dismutase 2 Ameliorates Mitochondrial Dysfunction in Skin Fibroblasts of Leber’s Hereditary Optic Neuropathy Patients. Front. Neurosci. 2022, 16, 917348. [Google Scholar] [CrossRef]
- Yu, A.K.; Song, L.; Murray, K.D.; Van Der List, D.; Sun, C.; Shen, Y.; Xia, Z.; Cortopassi, G.A. Mitochondrial Complex I Deficiency Leads to Inflammation and Retinal Ganglion Cell Death in the Ndufs4 Mouse. Hum. Mol. Genet. 2015, 24, 2848–2860. [Google Scholar] [CrossRef]
- Price, J.F.; Mowbray, P.I.; Lee, A.J.; Rumley, A.; Lowe, G.D.O.; Fowkes, F.G.R. Relationship between smoking and cardiovascular risk factors in the development of peripheral arterial disease and coronary artery disease; Edinburgh Artery Study: Edinburgh Artery Study. Eur. Heart J. 1999, 20, 344–353. [Google Scholar] [CrossRef]
- Llopis Llácer, J.J.; Gual Solé, A.; Rodríguez-Martos Dauer, A. Registro Del Consumo de Bebidas Alcohólicas La Unidad de Bebida Estándar. Diferencias Geográficas. Adicciones 2000, 12, 11–19. [Google Scholar] [CrossRef]
- Matteucci, E.; Biasci, E.; Giampietro, O. Advanced Oxidation Protein Products in Plasma: Stability during Storage and Correlation with Other Clinical Characteristics. Acta Diabetol. 2001, 38, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Witko-Sarsat, V.; Friedlander, M.; Capeillere-Blandin, C.; Nguyen-Khoa, T.; Nguyen, A.T.; Zingraff, J.; Jungers, P.; Descamps-Latscha, B. Advanced Oxidation Protein Products as a Novel Marker of Oxidative Stress in Uremia. Kidney Int. 1996, 49, 1304–1313. [Google Scholar] [CrossRef] [PubMed]
- Arab, K.; Steghens, J.P. Plasma Lipid Hydroperoxides Measurement by an Automated Xylenol Orange Method. Anal. Biochem. 2004, 325, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Miniwebtool Outlier Calculator. Available online: https://miniwebtool.com/outlier-calculator/ (accessed on 17 September 2025).
- Garcia-Fernandez, M.I.; Gheduzzi, D.; Boraldi, F.; Paolinelli, C.D.; Sanchez, P.; Valdivielso, P.; Morilla, M.J.; Quaglino, D.; Guerra, D.; Casolari, S.; et al. Parameters of Oxidative Stress Are Present in the Circulation of PXE Patients. Biochim. Biophys. Acta Mol. Basis Dis. 2008, 1782, 474–481. [Google Scholar] [CrossRef]
- Chen, B.S.; Yu-Wai-Man, P.; Newman, N.J. Developments in the Treatment of Leber Hereditary Optic Neuropathy. Curr. Neurol. Neurosci. Rep. 2022, 22, 881–892. [Google Scholar] [CrossRef]
- Erb, M.; Hoffmann-Enger, B.; Deppe, H.; Soeberdt, M.; Haefeli, R.H.; Rummey, C.; Feurer, A.; Gueven, N. Features of Idebenone and Related Short-Chain Quinones That Rescue ATP Levels under Conditions of Impaired Mitochondrial Complex I. PLoS ONE 2012, 7, e36153. [Google Scholar] [CrossRef]
- Njie-Mbye, Y.F.; Kulkarni-Chitnis, M.; Opere, C.A.; Barrett, A.; Ohia, S.E. Lipid Peroxidation: Pathophysiological and Pharmacological Implications in the Eye. Front. Physiol. 2013, 4, 366. [Google Scholar] [CrossRef]
- Yang, M.; Feng, X.; Huang, H.; Liu, L.; Liu, D.; Bian, F.; Dalal, R.; Yang, H.; Cao, F.; Ong, P.; et al. Anti-Lipid Peroxidation Promotes Significant Optic Nerve Regeneration and Neuroprotection in Mouse Glaucoma Models. Investig. Ophthalmol. 2024, 65, 3255. [Google Scholar]
- Suno, M.; Nagaoka, A. Inhibition of Lipid Peroxidation by Idebenone in Brain Mitochondria in the Presence of Succinate. Arch. Gerontol. Geriatr. 1989, 8, 291–297. [Google Scholar] [CrossRef]
- Candan, O. Ocular Findings of the Patients with Congenital Leptin Deficiency under Long-Term Leptin Replacement Therapy. Int. J. Ophthalmol. 2025, 18, 1949–1957. [Google Scholar] [CrossRef]
- Suganami, E.; Takagi, H.; Ohashi, H.; Suzuma, K.; Suzuma, I.; Oh, H.; Watanabe, D.; Ojima, T.; Suganami, T.; Fujio, Y.; et al. Leptin Stimulates Ischemia-Induced Retinal Neovascularization. Diabetes 2004, 53, 2443–2448. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, S.H.; Park, J.; Lee, M.; Kim, D.S.; Lee, M.G. Up-Regulation of Receptor Antagonist Interleukin-1 Family Members in Psoriasis and Their Regulation by pro-Inflammatory Cytokines. J. Dermatol. Sci. 2016, 82, 204–206. [Google Scholar] [CrossRef]
- Herder, C.; Brunner, E.J.; Rathmann, W.; Strassburger, K.; Tabák, A.G.; Schloot, N.C.; Witte, D.R. Elevated Levels of the Anti-Inflammatory Interleukin-1 Receptor Antagonist Precede the Onset of Type 2 Diabetes: The Whitehall II Study. Diabetes Care 2009, 32, 421–423. [Google Scholar] [CrossRef]
- Carelli, V.; D’Adamo, P.; Valentino, M.L.; La Morgia, C.; Ross-Cisneros, F.N.; Caporali, L.; Maresca, A.; Polosa, P.L.; Barboni, P.; De Negri, A.; et al. Parsing the Differences in Affected with LHON: Genetic versus Environmental Triggers of Disease Conversion. Brain 2016, 139, e17. [Google Scholar] [CrossRef]
- Kirkman, M.A.; Yu-Wai-Man, P.; Korsten, A.; Leonhardt, M.; Dimitriadis, K.; De Coo, I.F.; Klopstock, T.; Chinnery, P.F. Geneenvironment Interactions in Leber Hereditary Optic Neuropathy. Brain 2009, 132, 2317–2326. [Google Scholar] [CrossRef]
- Klopstock, T.; Zeng, L.H.; Priglinger, C. Leber’s Hereditary Optic Neuropathy—Current Status of Idebenone and Gene Replacement Therapies. Med. Genet. 2025, 37, 57–63. [Google Scholar] [CrossRef] [PubMed]
| Variables | Control (n = 21) | LHON (n = 17) |
|---|---|---|
| Age (years) | 54.29 ± 15.35 | 45.71 ± 15.57 |
| Gender (male) Gender (female) | 10/21 (47.6%) 11/21 (53.4%) | 11/17 (64.7%) 6/17 (35.3%) |
| Caucasian (yes) Caucasian (no) | 21/21 (100%) 0/21 (0%) | 15/17 (88.23%) 2/17 (11.76%) |
| Smoking (packs/years) | 8.81 ± 23.32 | 12.76 ± 26.87 |
| Alcohol (SDU) | 3.42 ± 6.76 | 8.23 ± 8.64 |
| Idebenone (yes) Idebenone (no) | 0/21 (0%) 21/21 (100%) | 11/17 (64.71%) 6/17 (35.29%) |
| BCVA * | 0.96 ± 0.21 | 0.10 ± 0.24 |
| AL (mm) | 23.85 ± 0.55 | 23.55 ± 1.17 |
| IOP (mmHg) | 15.85 ± 0.88 | 16.70 ± 2.11 |
| RNFL (µ) * | 95.23 ± 4.08 | 54.65 ± 23.12 |
| RGCL (µ) * | 68.15 ± 2.28 | 39.35 ± 6.08 |
| Markers | Control | LHON | ||
|---|---|---|---|---|
| Oxidant-Antioxidants | n | Mean ± SD | n | Mean ± SD |
| AOPP * | 19 | 77.79 ± 30.24 | 16 | 97.56 ± 25.27 |
| LOOH * | 19 | 183.86 ± 114.46 | 15 | 264.03 ± 80.85 |
| Nitrotyrosine * | 20 | 0.55 ± 0.47 | 17 | 1.66 ± 2.10 |
| TAS | 20 | 3.54 ± 3.01 | 16 | 2.85 ± 2.04 |
| G6PDH | 15 | 20.32 ± 17.24 | 11 | 29.70 ± 35.54 |
| GPx * | 17 | 0.91 ± 0.42 | 15 | 1.26 ± 0.22 |
| GRD * | 21 | 100.95 ± 43.72 | 16 | 110.51 ± 36.80 |
| SOD3 * | 19 | 195.98 ± 71.49 | 16 | 157.92 ± 23.36 |
| Cytokines | n | Mean ± SD | n | Mean ± SD |
| IL-1 β | 13 | 7.30 ± 2.52 | 12 | 7.09 ± 2.70 |
| IL-6 | 12 | 69.33 ± 20.70 | 12 | 77.33 ± 32.58 |
| IL-12p40 | 13 | 5.27 ± 1.77 | 12 | 5.14 ± 1.80 |
| Leptin * | 13 | 340.85 ± 239.55 | 12 | 190.67 ± 58.59 |
| IFN- γ | 13 | 30.24 ± 10.01 | 12 | 28.91 ± 10.50 |
| TNF-α | 13 | 18.64 ± 5.87 | 12 | 17.55 ± 5.61 |
| IL-1ra * | 11 | 302.72 ± 89.17 | 9 | 499.67 ± 161.73 |
| IL-4 | 13 | 48.92 ± 15.90 | 12 | 47.33 ± 16.46 |
| IL-10 | 13 | 7.33 ± 2.46 | 12 | 7.09 ± 2.57 |
| IL-13 | 13 | 9.08 ± 2.98 | 12 | 8.37 ± 3.03 |
| Markers | Control | LHON | ||
|---|---|---|---|---|
| Oxidant-Antioxidants | n | Mean ± SD | n | Mean ± SD |
| AOPP | 17 | 69.53 ± 10.67 | 15 | 84.07 ± 25.30 |
| LOOH * | 18 | 16.33 ± 3.85 | 15 | 24.87 ± 9.67 |
| Nitrotyrosine * | 15 | 176.64 ± 121.75 | 17 | 351.53 ± 188.14 |
| TAS | 19 | 1.44 ± 0.11 | 15 | 1.49 ± 0.10 |
| G6PDH | 17 | 63.34 ± 31.08 | 14 | 53.72 ± 21.94 |
| GPx | 19 | 786.4 ± 186.71 | 15 | 837.13 ± 130.35 |
| GRD * | 21 | 80.95 ± 10.90 | 17 | 90.23 ± 14.21 |
| SOD3 | 18 | 364.78 ± 201.99 | 15 | 215.66 ± 197.81 |
| SOD * | 16 | 24.24 ± 15.33 | 12 | 51.91 ± 38.92 |
| cGMP | 20 | 0.24 ± 0.10 | 17 | 0.31 ± 0.25 |
| Cytokines | n | Mean ± SD | n | Mean ± SD |
| IL-1 β * | 19 | 4.75 ± 0.24 | 17 | 4.55 ± 0.12 |
| IL-6 | 18 | 41.11 ± 1.28 | 14 | 40.26 ± 1.31 |
| IL-12p40 | 19 | 3.60 ± 0.16 | 16 | 3.54 ± 0.86 |
| Leptin | 18 | 5691.11 ± 3566.22 | 16 | 4092.19 ± 2384.66 |
| IFN- γ | 17 | 21.25 ± 1.45 | 16 | 28.91 ± 10.50 |
| TNF-α * | 18 | 12.70 ± 0.66 | 15 | 12.08 ± 0.62 |
| IL-1ra * | 11 | 40.81 ± 21.07 | 14 | 21.50 ± 18.99 |
| IL-4 | 19 | 32.97 ± 4.27 | 17 | 33.09 ± 7.07 |
| IL-10 | 19 | 4.80 ± 0.24 | 17 | 4.91 ± 0.39 |
| IL-13 | 19 | 5.67 ± 0.61 | 16 | 5.50 ± 0.14 |
| Variables | Smoking | No Smoking | ||
| n | Mean ± SD | n | Mean ± SD | |
| RGCL (µ) * | 4 | 31.75 ± 5.31 | 13 | 41.69 ± 4.13 |
| IL-13 (aqueous humor) * | 3 | 5.40 ± 0.00 | 9 | 9.36 ± 2.88 |
| IL-1ra (aqueous humor) * | 3 | 400.67 ± 161.57 | 6 | 549.17 ± 150.30 |
| Variables | Alcohol | No Alcohol | ||
| n | Mean ± SD | n | Mean ± SD | |
| RNFL (µ) * | 9 | 42.56 ± 19.79 | 8 | 68.25 ± 19.37 |
| TNF-α (serum) * | 8 | 11.71 ± 0.38 | 7 | 12.51 ± 0.56 |
| Variable | Idebenone | No Idebenone | ||
| GPx (aqueous humor) * | 11 | 1.19 ± 0.22 | 4 | 1.45 ± 0.29 |
| Biomarkers (Aqueous Humor) | Cut-Off Point | LHON Below/Above Risk Value | Chi2 Significance | Odds Ratio | Sensitivity | Specificity | OCR | AUC |
| OX/antiOX Ratio | ≤0.730 >0.730 | 34.6% (9) 100% (6) | 0.004 | - | 40% | 100% | 71.9% | 0.696 |
| GPX | ≤1.066 >1.066 | 15.4% (2) 68.4% (13) | 0.003 | 11.97 | 86.7% | 64.7% | 75% | 0.769 |
| Leptin | >230 ≤230 | 16.7% (2) 76.9% (10) | 0.003 | 16.68 | 83.3% | 76.% | 80% | 0.183 |
| IL-1ra | ≤470 >470 | 21.4% (3) 100% (6) | 0.001 | - | 66.7% | 100% | 85% | 0.869 |
| Biomarkers (Blood) | Cut-Off Point | LHON Below/Above Risk Value | Chi2 Significance | Odds Ratio | Sensitivity | Specificity | OCR | AUC |
| LOOH | ≤19 >19 | 21.1% (4) 78.6% (11) | 0.001 | 13.75 | 73.3% | 83.3% | 78.8% | 0.807 |
| OX/antiOX Ratio | ≤11.19 >11.19 | 30.8% (4) 84.6% (11) | 0.005 | 12.38 | 73.3% | 81.8% | 76.9% | 0.776 |
| SOD activity | ≤53.82 >53.82 | 30.4% (7) 100% (5) | 0.004 | - | 41.7% | 100% | 75% | 0.724 |
| IL-1ra | >19.32 ≤19.32 | 20% (3) 78.6% (11) | 0.002 | 14.67 | 78.6% | 80% | 79.3% | 0.207 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sánchez-Fernández, B.; Zamorano-González, P.; Martín-Montañez, E.; Alba-Linero, C.; Rius-Díaz, F.; García-Fernandez, M.; Luque-Aranda, R.; García-Basterra, I. Oxidative Stress and Inflammatory Biomarkers in Aqueous Humor and Blood of Patients with Leber’s Hereditary Optic Neuropathy. Antioxidants 2026, 15, 51. https://doi.org/10.3390/antiox15010051
Sánchez-Fernández B, Zamorano-González P, Martín-Montañez E, Alba-Linero C, Rius-Díaz F, García-Fernandez M, Luque-Aranda R, García-Basterra I. Oxidative Stress and Inflammatory Biomarkers in Aqueous Humor and Blood of Patients with Leber’s Hereditary Optic Neuropathy. Antioxidants. 2026; 15(1):51. https://doi.org/10.3390/antiox15010051
Chicago/Turabian StyleSánchez-Fernández, Berta, Pablo Zamorano-González, Elisa Martín-Montañez, Carmen Alba-Linero, Francisca Rius-Díaz, María García-Fernandez, Rafael Luque-Aranda, and Ignacio García-Basterra. 2026. "Oxidative Stress and Inflammatory Biomarkers in Aqueous Humor and Blood of Patients with Leber’s Hereditary Optic Neuropathy" Antioxidants 15, no. 1: 51. https://doi.org/10.3390/antiox15010051
APA StyleSánchez-Fernández, B., Zamorano-González, P., Martín-Montañez, E., Alba-Linero, C., Rius-Díaz, F., García-Fernandez, M., Luque-Aranda, R., & García-Basterra, I. (2026). Oxidative Stress and Inflammatory Biomarkers in Aqueous Humor and Blood of Patients with Leber’s Hereditary Optic Neuropathy. Antioxidants, 15(1), 51. https://doi.org/10.3390/antiox15010051

