Application of Hydraulic Safety Evaluation Indices to Waterfront Facilities in Floodplains
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. FaSTMECH Model
2.2. Floodplain Safety Evaluation Indices and Validation
3. Results
3.1. FaSTMECH Numerical Simulation
3.2. FRIs
3.3. Application of Erosion/Deposition Indices (TEDI, SEDI)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| FaSTMECH | Flow and Sediment Transport with Morphological Evolution of Channels |
| TEDI | Transient Erosion and Deposition Index |
| SEDI | Steady Erosion and Deposition Index |
| FI | Flood Intensity |
| FHR | Flood Hazard Rating |
References
- Choi, S.Y.; Han, K.Y.; Kim, B.H.; Kim, S.H. Parameter Assessment for the Simulation of Drying/Wetting in Finite Element Analysis in River and Wetland. J. Environ. Impact Assess. 2009, 18, 331–346. [Google Scholar]
- Kim, D.G.; Lee, L.Y.; Lee, C.W.; Kang, N.R.; Lee, J.S.; Kim, H.S. Analysis of Flood Reduction Effect of Washland using Hydraulic Experiment. J. Wetlands Res. 2011, 13, 307–317. [Google Scholar]
- Kim, T.H. A Study on the Change of Water Quality Characteristics Considering Waterfront Activity, Seasonal and Hydraulic Factors in Waterfront Areas. Ph.D. Thesis, Kwangwoon University, Seoul, Republic of Korea, 2022. [Google Scholar]
- Kim, K.H.; An, J.; Ji, M.-K. A Guide for Environmental Impact Assessment for the Installation of Water-Friendly Facilities in River Zones. Clean Technol. 2023, 29, 227–234. [Google Scholar] [CrossRef]
- Yazdan, M.M.S.; Ahad, M.T.; Kumar, R.; Mehedi, M.A.A. Estimating Flooding at River Spree Floodplain Using HEC-RAS Simulation. J 2022, 5, 410–426. [Google Scholar] [CrossRef]
- An, D.; Jeon, W.; Ko, H. Analysis of Flooding Patterns in River Terraces. J. Korean Soc. Hazard Mitig. 2022, 22, 219–226. [Google Scholar] [CrossRef]
- Ku, Y.H.; Song, C.-G.; Park, Y.-S.; Kim, Y.D. A Study on the Field Application of Nays2D Model for Evaluation of Riverfront Facility Flood Risk. KSCE J. Civ. Environ. Eng. Res. 2015, 35, 579–588. [Google Scholar] [CrossRef]
- Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee-Morlot, J. Future Flood Losses in Major Coastal Cities. Nat. Clim. Change 2013, 3, 802–806. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Bianchi, A.; Dottori, F.; Feyen, L. Climatic and Socioeconomic Controls of Future Coastal Flood Risk in Europe. Nat. Clim. Change 2018, 8, 776–780. [Google Scholar] [CrossRef]
- Guerreiro, S.B.; Dawson, R.J.; Kilsby, C.; Lewis, E.; Ford, A. Future Heat-waves, Droughts and Floods in 571 European Cities. Environ. Res. Lett. 2018, 13, 034009. [Google Scholar] [CrossRef]
- Martel, J.L.; Mailhot, A.; Brissette, F. Global and Regional Projected Changes in 100-yr Subdaily, Daily, and Multiday Precipitation Extremes Estimated from Three Large Ensembles of Climate Simulations. J. Clim. 2020, 33, 1089–1103. [Google Scholar] [CrossRef]
- Bermúdez, M.; Cea, L.; Van Uytven, E.; Willems, P.; Farfán, J.F.; Puertas, J. A Robust Method to Update Local River Inundation Maps Using Global Climate Model Output and Weather Typing Based Statistical Downscaling. Water Resour. Manag. 2020, 34, 4345–4362. [Google Scholar] [CrossRef]
- Padulano, R.; Rianna, G.; Costabile, P.; Costanzo, C.; Del Giudice, G.; Mercogliano, P. Propagation of Variability in Climate Projections Within Urban Flood Modelling: A Multi-purpose Impact Analysis. J. Hydrol. 2021, 602, 126756. [Google Scholar] [CrossRef]
- Ku, Y.H.; Song, C.G.; Kim, Y.D.; Seo, I.W. Analysis of Hydraulic Characteristics of Flood Plain Using Two-Dimensional Unsteady Model. J. Korean Soc. Civ. Eng. KSCE 2013, 33, 997–1005. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.-F.; Munasinghe, D.; Fang, Z.; Tsang, Y.P.; Cohen, S. Comparative Analysis of Inundation Mapping Approaches for the 2016 Flood in the Brazos River, Texas. J. Am. Water Resour. Assoc. (JAWRA) 2018, 54, 820–833. [Google Scholar] [CrossRef]
- Fan, J.; Huang, G. Evaluation of Flood Risk Management in Japan Through a Recent Case. Sustainability 2020, 12, 5357. [Google Scholar] [CrossRef]
- Luo, H.; Ji, H.; Chen, Z.; Liu, B.; Xue, Z.; Li, Z. An Analytical Study for Predicting Incipient Motion Velocity of Sediments under Ice Cover. Sci. Rep. 2025, 15, 1912. [Google Scholar] [CrossRef]
- Kim, J.-H. Deposition and Erosion Relief of Riverfront by Vegetation. Ecol. Resil. Infrastuct. 2015, 2, 154–160. [Google Scholar] [CrossRef][Green Version]
- Julien, P.Y. Erosion and Sedimentation, 2nd ed; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- Wu, W. Computational River Dynamics, 1st ed.; CRC Press: London, UK, 2007. [Google Scholar] [CrossRef]
- Aldefae, A.H.; Al-Khafaji, R.A.; Shamkhi, M.S.; Kumar, H.Q. Erosion, sediment transport and riverbank stability: A review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 901, 012014. [Google Scholar] [CrossRef]
- Sato, S.; Imamura, F.; Shuto, N. Numerical Simulation of Flooding and Damage to Houses by the Yoshida River due to Typhoon No. 8610. J. Nat. Disaster Sci. 1989, 11, 1–19. [Google Scholar]
- McDonald, R.R.; Bennett, J.P.; Nelson, J.M. The USGS Multi-dimensional Surface Water Modeling System. In Proceedings of the 7th US Interagency Sedimentation Conference, Reno, NV, USA, 25–29 March 2001; pp. I-161–I-167. [Google Scholar]
- McDonald, R.R.; Nelson, J.M.; Kinzel, P.J.; Conaway, J. Modeling Surface-Water Flow and Sediment Mobility with the Multi-Dimensional Surface Water Modeling System (MD-SWMS). U.S. Geol. Surv. Fact Sheet 2005, 2005–3078. [Google Scholar] [CrossRef]
- Nelson, J.M.; Bennett, J.P.; Wiele, S.M. Flow and Sediment-Transport Modeling. Tools Fluv. Geomorphol. 2003, 18, 539–576. [Google Scholar] [CrossRef]
- Ku, Y.H.; Kim, Y.D. Comparison of Two-Dimensional Model for Inundation Analysis in Flood Plain Area. J. Wetlands Res. 2014, 16, 93–102. [Google Scholar] [CrossRef]
- Son, G.; You, H.; Kim, D. Feasibility Calculation of FaSTMECH for 2D Velocity Distribution Simulation in Meandering Channel. KSCE J. Civ. Eng. 2014, 34, 1753–1764. [Google Scholar] [CrossRef]
- Kail, J.; Guse, B.; Radinger, J.; Schröder, M.; Kiesel, J.; Kleinhans, M.; Schuurman, F.; Fohrer, N.; Hering, D.; Wolter, C. A Modelling Framework to Assess the Effect of Pressures on River Abiotic Habitat Conditions and Biota. PLoS ONE 2015, 10, e0130228. [Google Scholar] [CrossRef]
- Song, C.G.; Ku, T.G.; Kim, Y.D.; Park, Y.S. Floodplain Stability Indices for Sustainable Waterfront Development by Spatial Identification of Erosion and Deposition. Sustainability 2017, 9, 735. [Google Scholar] [CrossRef]
- Nelson, J.M.; McDonald, R.R. Mechanics and Modeling of Flow and Bed Evolution in Lateral Separation Eddies. Rep. to Grand Canyon Monitoring and Research Center. 1996. Available online: http://www.riversimulator.org/Resources/GCMRC/PhysicalResources/Nelson1996.pdf (accessed on 1 August 2025).
- Nelson, J.; McDonald, R.R.; Kinzel, P. Morphologic Evolution in the USGS Surface-water Modeling System. In Proceedings of the Eighth Federal Interagency Sedimentation Conference (8thFISC), Reno, NV, USA, 2–6 April 2006; pp. 233–240. [Google Scholar]
- Chang, H.J.; Kim, E.S.; Jeon, G.S.; Muhammad, A.; Lee, H.S. The Change of Flood According to Dividing Sub-Basin at Musim River. J. Inst. Constr. Technol. 2015, 34, 99–104. [Google Scholar]
- Beffa, C. Two-dimensional Modelling of Flood Hazards in Urban Areas. In Proceedings of the 3rd International Conference on Hydroscience and Engineering, Berlin, Germany, 31 August–3 September 1988; Brandenbur University of Technology: Cottbus/Berlin, Germany. [Google Scholar]
- HR Wallingford; Flood Hazard Research Centre and Risk and Policy Analysts Ltd. Flood Risk to People; Phase 2, FD2321/TR2, Guidance Document; Defra/Environment Agency Flood and Coastal Defence R&D Programme; Department for Environment, Food and Rural Affairs: London, UK, 2006.
- Fanning, J.T. A Practical Treatise on Hydraulic and Water-Supply Engineering; D. Van Nostrand: New York, NY, USA, 1892. [Google Scholar]
- Henderson, F.M. Open Channel Flow; Macmillan: London, UK, 1966. [Google Scholar]
- Song, C.G.; Ku, Y.H.; Kim, Y.D.; Park, Y.S. Stability Analysis of Riverfront Facility on Inundated Foodplain Based on Fow Characteristics. J. Flood Risk Manag. 2018, 11, S455–S467. [Google Scholar] [CrossRef]












| Measurement Point | Velocity | Depth | ||
|---|---|---|---|---|
| Measurement | Simulation | Measurement | Simulation | |
| Site 1 | 0.291 | 0.302 | 0.26 | 0.27 |
| Site 2 | 0.265 | 0.252 | 0.40 | 0.39 |
| Site 3 | 0.374 | 0.363 | 0.30 | 0.30 |
| Site 4 | 0.232 | 0.230 | 0.46 | 0.48 |
| Site 5 | 0.317 | 0.286 | 0.30 | 0.29 |
| Site 6 | 0.299 | 0.288 | 0.40 | 0.39 |
| 5p | 25p | 75p | 95p | Mean. | Min. | Max. | |
|---|---|---|---|---|---|---|---|
| TEDI (m2/s3) | 0.118 | 0.368 | 0.783 | 1.138 | 0.601 | 0.004 | 4.150 |
| SEDI (m5/3/s2) | 0.442 | 1.386 | 2.819 | 3.632 | 2.119 | 0.001 | 5.592 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Ku, T.G.; Lee, S.; Ok, G.; Kim, Y.D. Application of Hydraulic Safety Evaluation Indices to Waterfront Facilities in Floodplains. Appl. Sci. 2025, 15, 11627. https://doi.org/10.3390/app152111627
Kim J, Ku TG, Lee S, Ok G, Kim YD. Application of Hydraulic Safety Evaluation Indices to Waterfront Facilities in Floodplains. Applied Sciences. 2025; 15(21):11627. https://doi.org/10.3390/app152111627
Chicago/Turabian StyleKim, Jongmin, Tae Geom Ku, Sangung Lee, Gwangmin Ok, and Young Do Kim. 2025. "Application of Hydraulic Safety Evaluation Indices to Waterfront Facilities in Floodplains" Applied Sciences 15, no. 21: 11627. https://doi.org/10.3390/app152111627
APA StyleKim, J., Ku, T. G., Lee, S., Ok, G., & Kim, Y. D. (2025). Application of Hydraulic Safety Evaluation Indices to Waterfront Facilities in Floodplains. Applied Sciences, 15(21), 11627. https://doi.org/10.3390/app152111627

