Physicochemical and Structural Properties of Freeze-Dried Lacto-Fermented Peach Snacks
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Technological Treatment
2.2.1. Fermentation
2.2.2. Freeze-Drying
2.3. Sensory Evaluation
2.4. Physical Evaluation
2.4.1. Dry Matter and Water Activity
2.4.2. Color of Samples
2.4.3. Structure
- Light Microscopy (LM)
- Scanning Microscope (SEM)
- Microtomography (µCT)
2.4.4. Texture Measurement
2.4.5. Hygroscopicity and Sorption Isotherm
2.5. Chemical
2.5.1. Total Acidity
2.5.2. Salt Content
2.5.3. Total Sugar Content
2.6. Statistical Treatment
3. Results and Discussion
3.1. Basic and Color Attributes of Freeze-Dried Peach Samples
3.2. Microstructure and Texture of Freeze-Dried Peaches
3.3. Chemical Changes Induced by Lactic Acid Fermentation
3.4. Hygroscopicity and Water Sorption Isotherms
3.5. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giménez-Campillo, C.; Arroyo-Manzanares, N.; Pastor-Belda, M.; Campillo, N.; Viñas, P. Discrimination of the geographical origin of peaches by the monitoring of volatile organic compounds by gas chromatography with mass spectrometry and chemometric tools. J. Food Compos. Anal. 2024, 129, 106125. [Google Scholar] [CrossRef]
- Lv, J.; Niu, L.; Xu, L.; Sun, X.; Wang, L.; Rong, H.; Zou, L. A visual identification method of the growth posture of young peach fruits in orchards. Sci. Hortic. 2024, 335, 113355. [Google Scholar] [CrossRef]
- Dimopoulos, G.; Stoukogiorgos, G.; Limnaios, A.; Katsimichas, A.; Thanou, I.; Taoukis, P. Pulsed electric field pretreatment for energy efficient processing of industrial peach cultivars. Innov. Food Sci. Emerg. Technol. 2025, 100, 103931. [Google Scholar] [CrossRef]
- Li, Z.; Deng, X.; Zhao, Q.; Chen, J.; Zhu, Y.; Ye, X.; Chen, S.; Cheng, H. Assessing Frozen Flavor Variations and Process Adaptability in Peach (Prunus persica L. Batsch) Cultivars Based on Molecular Sensory Technology. Food Biosci. 2025, 65, 106047. [Google Scholar] [CrossRef]
- Bento, C.; Gonçalves, A.C.; Silva, B.; Silva, L.R. Peach (Prunus persica): Phytochemicals and health benefits. Food Rev. Int. 2022, 38, 1703–1734. [Google Scholar] [CrossRef]
- Lestari, D.; Nugroho, F.S.; Pramitasari, R.; Canti, M.; Sustaningrum, R. Snack Bar Formulated from Moringa and Cashew can Prevent Anemia During Pregnancy. Appl. Food Res. 2025, 5, 100815. [Google Scholar] [CrossRef]
- Alefew, Y.D.; Tiruneh, A.T.; Yehuala, T.F. Optimization of extrusion conditions for development of high quality rice-lupin-pumpkin based extruded snack food. Heliyon 2024, 10, e40913. [Google Scholar] [CrossRef]
- Acharya, S.; Kalahal, S.P.; Prajapati, S.; Patria, D.G.; Lin, J. Utilization of flaxseed by-product to develop a healthy brown rice extruded snack and identification of its physicochemical properties. Future Foods 2025, 11, 100566. [Google Scholar] [CrossRef]
- Uzun, D.E.; Nemli, E.; Apak, R.; Bener, M.; Tomas, M.; Yağcı, S.; Capanoglu, E. Starch-based composite formulation of chickpea flour and black carrot (Daucus carota l.) pomace in extruded snacks: In vitro gastrointestinal behavior and stability of bioactive compounds. Int. J. Biol. Macromol. 2025, 293, 139075. [Google Scholar] [CrossRef]
- Pęksa, A.; Nemś, A.; Nadal, E.S.; Noguera-Artiaga, L.; Issa-Issa, H.; Tajner-Czopek, A.; Carbonell-Barrachina, Á.A.; Kita, A. Sensory profile and consumer acceptability of third generation snacks from colored flesh potatoes. LWT 2025, 217, 117460. [Google Scholar] [CrossRef]
- Botta-Arias, V.L.; Ramos-Escudero, F.; Muñoz, A.M.; Anticona, M. Nutritional composition, phenolic compounds, and sensory evaluation of osmosonicated orange peel snacks impregnated with plant extracts. Appl. Food Res. 2024, 4, 100486. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, C.; Su, S.; Sun, A.; Du, T.; Wang, J.; Liu, J.; Zhang, W. Metal-phenolic networks enhanced the protection of excipients for probiotics during freeze-drying. Food Res. Int. 2025, 206, 116097. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Lin, S.-J.; Qi, X.-Y.; Xu, B.-C.; Qin, L.; Huang, X.-H. The interaction of Lactiplantibacillus plantarum and Latilatilactobacillus sakei regulated the formation of characteristic quality attributes of low-salt fermented tilapia. Food Biosci. 2024, 62, 105167. [Google Scholar] [CrossRef]
- Gunes, R. In vitro gastrointestinal digestion of anthocyanins from marshmallows enriched with blackthorn fruit powders obtained by convective hot air and freeze drying treatments. Food Res. Int. 2025, 205, 116001. [Google Scholar] [CrossRef] [PubMed]
- Vidal, V.A.S.; Juel, S.S.; Mukhatov, K.; Jensen, I.-J.; Lerfall, J. Impact of processing conditions on the rehydration kinetics and texture profile of freeze-dried carbohydrates sources. J. Agric. Food Res. 2025, 19, 101693. [Google Scholar]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Zhang, M.; Zhou, C.; Ma, L.; Su, W.; Jiang, J.; Hu, X. Influence of ultrasound on the microbiological, physicochemical properties, and sensory quality of different varieties of pumpkin juice. Heliyon 2024, 10, e27927. [Google Scholar] [CrossRef]
- Lisiecka, K.; Wójtowicz, A.; Samborska, K.; Mitrus, M.; Oniszczuk, T.; Combrzyński, M.; Soja, J.; Lewko, P.; Kasprzak Drozd, K.; Oniszczuk, A. Structure and texture characteristics of novel snacks expanded by various methods. Materials 2023, 16, 1541. [Google Scholar] [CrossRef]
- Karwacka, M.; Galus, S.; Janowicz, M. The effect of apple pomace powder and calcium ions on selected physicochemical properties of freeze-dried carrot-orange-ginger snacks. J. Sci. Food Agric. 2024, 104, 1713–1722. [Google Scholar] [CrossRef]
- Matys, A.; Witrowa-Rajchert, D.; Parniakov, O.; Wiktor, A. Assessment of the effect of air humidity and temperature on convective drying of apple with pulsed electric field pretreatment. LWT 2023, 188, 115455. [Google Scholar] [CrossRef]
- Hassan, B.; Mustapha, A.T.; Al-Awaadh, A.M.; Ahmed, K.A. Physical and moisture sorption thermodynamic properties of Sukkari date (Phoenix dactylifera L.) powder. CyTA-J. Food 2020, 18, 264–273. [Google Scholar] [CrossRef]
- Wang, Z.; Tong, Y.; Tong, Q.; Liu, Y.; Xu, W. Effects of different lactic acid bacteria on phenolic profiles, antioxidant capacities, and volatile compounds in purple sweet potato juice. J. Food Sci. Technol. 2024, 61, 1800–1810. [Google Scholar] [CrossRef]
- Wierzbicka, A.; Janiszewska-Turak, E. Influence of the Salt Addition during the Fermentation Process on the Physical and Chemical Properties of Dried Yellow Beetroot. Appl. Sci. 2024, 14, 524. [Google Scholar] [CrossRef]
- Yang, S.; Meng, Z.; Li, Y.; Chen, R.; Yang, Y.; Zhao, Z. Evaluation of physiological characteristics, soluble sugars, organic acids and volatile compounds in ‘Orin’apples (Malus domestica) at different ripening stages. Molecules 2021, 26, 807. [Google Scholar] [CrossRef] [PubMed]
- Ndiaye, A.; Fliss, I.; Filteau, M. High-throughput characterization of the effect of sodium chloride and potassium chloride on 31 lactic acid bacteria and their co-cultures. Front. Microbiol. 2024, 15, 1328416. [Google Scholar] [CrossRef] [PubMed]
- Glaasker, E.; Konings, W.N.; Poolman, B. Osmotic regulation of intracellular solute pools in Lactobacillus plantarum. J. Bacteriol. 1996, 178, 575–582. [Google Scholar] [CrossRef]
- Fan, S.; Breidt, F.; Price, R.; Pérez-Díaz, I. Survival and Growth of Probiotic Lactic Acid Bacteria in Refrigerated Pickle Products. J. Food Sci. 2017, 82, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Ignaczak, A.; Salamon, A.; Kowalska, J.; Marzec, A.; Kowalska, H. Influence of Pre-Treatment and Drying Methods on the Quality of Dried Carrot Properties as Snacks. Molecules 2023, 28, 6407. [Google Scholar] [CrossRef]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- de Araújo, J.S.F.; de Souza, E.L.; Oliveira, J.R.; Gomes, A.C.A.; Kotzebue, L.R.V.; da Silva Agostini, D.L.; de Oliveira, D.L.V.; Mazzetto, S.E.; da Silva, A.L.; Cavalcanti, M.T. Microencapsulation of sweet orange essential oil (Citrus aurantium var. dulcis) by liophylization using maltodextrin and maltodextrin/gelatin mixtures: Preparation, characterization, antimicrobial and antioxidant activities. Int. J. Biol. Macromol. 2020, 143, 991–999. [Google Scholar]
- Luo, Y.; Zeng, X.-B.; Hu, Y.-Y.; Li, D.-Y.; Liu, X.-Y.; Liu, Y.-X.; Zhou, D.-Y. Differences and mechanisms of color deterioration in three types of ready-to-eat shellfishes during storage. Food Chem. 2025, 469, 142459. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Jafarpour, D.; Jouki, M. Improving bioactive properties of peach juice using Lactobacillus strains fermentation: Antagonistic and anti-adhesion effects, anti-inflammatory and antioxidant properties, and Maillard reaction inhibition. Food Chem. 2021, 365, 130501. [Google Scholar] [CrossRef] [PubMed]
- Kao, C.-C.; Wang, H.-M.; Tsai, S.-J.; Lin, J.-Y. Sensory and microbial analyses on naturally lacto-fermented cucumbers. Int. J. Gastron. Food Sci. 2023, 32, 100714. [Google Scholar] [CrossRef]
- Nowak, D.; Jakubczyk, E. The freeze-drying of foods—The characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods 2020, 9, 1488. [Google Scholar] [CrossRef]
- Oyinloye, T.M.; Yoon, W.B. Effect of Freeze-Drying on Quality and Grinding Process of Food Produce: A Review. Processes 2020, 8, 354. [Google Scholar] [CrossRef]
- Han, Q.; Wu, Y.; Jin, J.; Zhang, L.; Tong, S.; Li, C.; Luo, H. Effect of fresh pepper at different ripening stages on the physiochemical quality and flavor of fermented Chinese pepper. J. Food Compos. Anal. 2025, 137, 106892. [Google Scholar] [CrossRef]
- Liu, C.; Liu, J.; Li, D.; Liu, C.; Zhang, Z.; Jiang, N.; Niu, L.; Zhang, M.; Cheng, J. Cell wall components, cell morphology, and mechanical properties of peach slices submitted to drying. Dry. Technol. 2020, 38, 1776–1789. [Google Scholar] [CrossRef]
- Wang, H.-O.; Fu, Q.-Q.; Chen, S.-J.; Hu, Z.-C.; Xie, H.-X. Effect of Hot-Water Blanching Pretreatment on Drying Characteristics and Product Qualities for the Novel Integrated Freeze-Drying of Apple Slices. J. Food Qual. 2018, 2018, 1347513. [Google Scholar] [CrossRef]
- Kayacan, S.; Sagdic, O.; Doymaz, I.; Karasu, S. The effect of different drying methods on total bioactive properties, individual phenolic compounds, rehydration ability, color, and microstructural characteristics of Asian pear. J. Food Process. Preserv. 2022, 46, e16682. [Google Scholar] [CrossRef]
- Ge, L.; Huang, Y.; Li, X.; Wang, N.; Liu, J.; Liu, M.; Mei, Y.; Yang, M.; Zhao, J.; Zhao, N. Temperature-driven divergence in molecular distribution and microbial invasion and the associated texture softening during dual-phase fermentation of Paocai. Food Chem. 2024, 457, 140171. [Google Scholar] [CrossRef]
- Shang, Z.; Ye, Z.; Li, M.; Ren, H.; Cai, S.; Hu, X.; Yi, J. Dynamics of microbial communities, flavor, and physicochemical properties of pickled chayote during an industrial-scale natural fermentation: Correlation between microorganisms and metabolites. Food Chem. 2022, 377, 132004. [Google Scholar] [CrossRef]
- Mousavi, Z.E.; Mousavi, S.M.; Razavi, S.H.; Hadinejad, M.; Emam-Djomeh, Z.; Mirzapour, M. Effect of fermentation of pomegranate juice by Lactobacillus plantarum and Lactobacillus acidophilus on the antioxidant activity and metabolism of sugars, organic acids and phenolic compounds. Food Biotechnol. 2013, 27, 1–13. [Google Scholar] [CrossRef]
- Özcan, M.M.; Uslu, N. The effect of fermentation with different additives on bioactive compounds, antioxidant activity, phenolic component, fatty acid composition and mineral substance contents of capers fruits. J. Food Meas. Charact. 2023, 17, 3896–3908. [Google Scholar] [CrossRef]
- Prieto-Santiago, V.; Aguiló-Aguayo, I.; Ortiz-Solà, J.; Anguera, M.; Abadias, M. Selection of a probiotic for its potential for developing a synbiotic peach and grape juice. Foods 2024, 13, 350. [Google Scholar] [CrossRef]
- Waśko, A.; Polak-Berecka, M.; Gustaw, W. Increased viability of probiotic Lactobacillus rhamnosus after osmotic stress. Acta Aliment. 2013, 42, 520–528. [Google Scholar] [CrossRef]
- Abouloifa, H.; Khodaei, N.; Rokni, Y.; Karboune, S.; Brasca, M.; D’Hallewin, G.; Salah, R.B.; Saalaoui, E.; Asehraou, A. The prebiotics (Fructo-oligosaccharides and Xylo-oligosaccharides) modulate the probiotic properties of Lactiplantibacillus and Levilactobacillus strains isolated from traditional fermented olive. World J. Microbiol. Biotechnol. 2020, 36, 185. [Google Scholar] [CrossRef] [PubMed]
- Van Durme, J.; Goiris, K.; De Winne, A.; De Cooman, L.; Muylaert, K. Evaluation of the volatile composition and sensory properties of five species of microalgae. J. Agric. Food Chem. 2013, 61, 10881–10890. [Google Scholar] [CrossRef] [PubMed]
- Verón, H.E.; Contreras, L.; Isla, M.I.; Torres, S. Assessment of technological and functional features of Lactiplantibacillus and Fructobacillus strains isolated from Opuntia ficus-indica fruits. NFS J. 2023, 31, 110–122. [Google Scholar] [CrossRef]
- Patil, M.; Jadhav, A.; Patil, U. Functional characterization and in vitro screening of Fructobacillus fructosus MCC 3996 isolated from Butea monosperma flower for probiotic potential. Lett. Appl. Microbiol. 2020, 70, 331–339. [Google Scholar] [CrossRef]
- Supplement. 3 XVIII Annual Scientific Meeting, Tucuman Biology Society. Tucuman—Argentina. BIOCELL 2002, 26 (Suppl. S), 153–203.
- Jakubczyk, E.; Ostrowska-Ligeza, E.; Gondek, E. Moisture sorption characteristics and glass transition temperature of apple puree powder. Int. J. Food Sci. Technol. 2010, 45, 2515–2523. [Google Scholar] [CrossRef]
- Jakubczyk, E.; Jaskulska, A. The Effect of Freeze-Drying on the Properties of Polish Vegetable Soups. Appl. Sci. 2021, 11, 654. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, H.; Li, Y.; Tian, L.; Ye, B.; Yan, W.; Liu, G.; Yang, Y. Evaluating the dynamic effects of complex probiotics as cellulase replacements during fermentation of apple pomace. Int. J. Food Microbiol. 2024, 425, 110896. [Google Scholar] [CrossRef] [PubMed]
- Mubeen, B.; Aregbe, A.Y.; Murtaza, S.; Yaqoob, S.; Xiong, Y.; Ma, Y. Investigating the impact of lactic acid bacteria fermentation on the phytochemical composition, antioxidant and functional properties, and sensory attributes of Monk Fruit Sweetened Sea Buckthorn Beverage. J. Food Meas. Charact. 2025, 19, 3188–3204. [Google Scholar] [CrossRef]
- Zang, Z.; Wan, F.; Ma, G.; Xu, Y.; Wang, T.; Wu, B.; Huang, X. Enhancing peach slices radio frequency vacuum drying by combining ultrasound and ultra-high pressure as pretreatments: Effect on drying characteristics, physicochemical quality, texture and sensory evaluation. Ultrason. Sonochem. 2024, 103, 106786. [Google Scholar] [CrossRef]
- Boasiako, T.A.; Boateng, I.D.; Ma, Y. Valorization of jujube puree using lactic acid bacteria and Acetobacter pasteurianus tri-cultured co-fermentation matrix: Insight into their nutritional, sensory, volatile and non-volatile metabolomics, and physicochemical properties. LWT 2025, 218, 117431. [Google Scholar] [CrossRef]
- Ossowski, S.; Rybak, K.; Pobiega, K.; Sękul, J.; Domżalska, Z.; Gregorek, K.; Gramza-Michałowska, A.; Janiszewska-Turak, E. Antioxidant Activity and Microbial Quality of Freeze-Dried, Lactic Acid Fermented Peach Products. Molecules 2025, 30, 2360. [Google Scholar] [CrossRef]
Sample Code | P | P_LP | P_FF |
---|---|---|---|
Dry matter (%) | 96.9 ± 0.06 c | 90.9 ± 0.27 b | 89.7 ± 0.04 a |
Water activity (-) | 0.13 ± 0.02 a | 0.15 ± 0.01 a | 0.15 ± 0.01 a |
L* | 83.8 ± 2.1 b | 73.7 ± 3.4 a | 75.4 ± 7.2 a |
a* | 5.3 ± 0.5 a | 8.3 ± 0.9 b | 8.6 ± 1.4 b |
b* | 35.5 ± 1.5 c | 20.4 ± 3.9 a | 24.3 ± 1.3 b |
C* | 6.4 ± 0.1 c | 5.3 ± 0.3 a | 5.7 ± 0.2 b |
ΔE | - | 18.2 ± 6.1 a | 15.6 ± 2.4 a |
Sample Code | P | P_LP | P_FF |
---|---|---|---|
Porosity (%) | 67.74 ± 3.48 a | 71.36 ± 2.48 b | 72.77 ± 1.93 b |
Euler number (-) | −411,032 ± 69,149 b | −623,697 ± 37,049 ab | −832,126 ± 86,835 a |
Hardness (N) | 50.1 ± 15.2 b | 35.72 ± 12.7 a | 28.2 ± 10.1 a |
Sample Code | P | P_LP | P_FF |
---|---|---|---|
Salt content (%) | 0.16 ± 0.02 a | 0.50 ± 0.02 b | 0.48 ± 0.02 b |
Total acidity (g lactic acid/100 g of dm) | 3.8 ± 0.6 b | 22.5 ± 1.2 a | 21.7 ± 2.5 a |
Total sugar content (g/100 g of dm) | 42.3 ± 0.0 c | 23.9 ± 0.6 a | 29.1 ± 1.0 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janiszewska-Turak, E.; Ossowski, S.; Domżalska, Z.; Gregorek, K.; Sękul, J.; Pobiega, K.; Rybak, K. Physicochemical and Structural Properties of Freeze-Dried Lacto-Fermented Peach Snacks. Appl. Sci. 2025, 15, 6347. https://doi.org/10.3390/app15116347
Janiszewska-Turak E, Ossowski S, Domżalska Z, Gregorek K, Sękul J, Pobiega K, Rybak K. Physicochemical and Structural Properties of Freeze-Dried Lacto-Fermented Peach Snacks. Applied Sciences. 2025; 15(11):6347. https://doi.org/10.3390/app15116347
Chicago/Turabian StyleJaniszewska-Turak, Emilia, Szymon Ossowski, Zuzanna Domżalska, Klaudia Gregorek, Joanna Sękul, Katarzyna Pobiega, and Katarzyna Rybak. 2025. "Physicochemical and Structural Properties of Freeze-Dried Lacto-Fermented Peach Snacks" Applied Sciences 15, no. 11: 6347. https://doi.org/10.3390/app15116347
APA StyleJaniszewska-Turak, E., Ossowski, S., Domżalska, Z., Gregorek, K., Sękul, J., Pobiega, K., & Rybak, K. (2025). Physicochemical and Structural Properties of Freeze-Dried Lacto-Fermented Peach Snacks. Applied Sciences, 15(11), 6347. https://doi.org/10.3390/app15116347