Effects of Organic and Mineral Fertilization on Yield and Selected Quality Parameters for Dried Herbs of Two Varieties of Oregano (Origanum vulgare L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pot Experiment
2.2. Plant Material Preparation and Analysis
3. Results and Discussion
3.1. Yield
3.2. The Kinetics of Drying
3.3. Chemical Composition of HS-SPME
3.4. Bioactive Compounds Content
3.5. Color
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Aligians, N.; Kalpoutzakis, E.; Mitaku, S.; Chinou, I.B. Composition and antimicrobial activity of the essential oil of two Origanum species. J. Agric. Food Chem. 2001, 49, 4168–4170. [Google Scholar] [CrossRef]
- Luz, J.M.Q.; Silva, S.M.; Soares, J.S.; de Oliveira, R.C.; Marques, M.O.M.; Facanali, R. Organic fertilization and composition of oregano essential oil. Bol. Lat. Caribe Plant Med. Aromat. 2016, 15, 301–314. [Google Scholar]
- Goliaris., A.; Chatzopoulou, P.; Katsiotis, S. Production of new Greek Oregano clones and analysis of their essential oils. J. Herbs 2002, 10, 29–35. [Google Scholar] [CrossRef]
- Chudnicka, A.; Matysik, G. Research of enzymatic activities of fresh juice and water infusions from dry herbs. J. Ethnopharm. 2005, 99, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Sagdiç, O.; Kusçu, A.; Ozcan, M.; Ozçelik, S. Effects of Turkish spices extracts at various concentrations on the growth of Escherichia coli O157:H7. Food Microbiol. 2002, 19, 473–480. [Google Scholar] [CrossRef]
- Sahin, F.; Gulluce, M.; Daferera, D.; Sokmen, A.; Polissiou, M.; Agar, G.; Ozer, H. Biological activities of the essential oils and methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food Cont. 2004, 15, 549–557. [Google Scholar] [CrossRef]
- Chun, S.; Vattem, D.A.; Shetty, K. Phenolic antioxidants from clonal oregano (Oreganum vulgare) with antimicrobial activity against Helicobacter pylori. Process Biochem. 2005, 40, 809–816. [Google Scholar] [CrossRef]
- Paster, N.; Menasherov, M.; Ravid, U.; Juven, B.; Raduoiene, J.; Judpintiene, A.; Peeiulyte, D.; Janulis, V. Chemical composition of essential oil and antimicrobial avtivity of Origanum vulgare. Biologija 2005, 4, 53–58. [Google Scholar]
- Burt, S.; Vlielander, R.; Haagsman, H.; Veldhuizen, E. Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157:H7 by addition of food stabilizers. J. Food Prot. 2005, 68, 919–926. [Google Scholar] [CrossRef]
- Sakkas, H.; Papadopoulou, C. Antimicrobial Activity of Basil, Oregano, and Thyme Essential Oils. J. Microbiol. Biotechnol. 2017, 27, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Yan, F.; Azizi, A.; Janke, S.; Schwarz, M.; Zeller, S.; Honermeier, B. Antioxidant capacity variation in the oregano (Origanum vulgare L.) collection of the German National Genebank. Ind. Crop. Prod. 2016, 92, 119–125. [Google Scholar] [CrossRef]
- Szajdek, A.; Borowska, J. Właściwości przeciwutleniające żywności pochodzenia roślinnego. Nauka. Technologia. Jakość 2004, 4, 5–28. [Google Scholar]
- Brovelli, E.A. Pre- and postharvest factors affecting nutraceutical properties of horticultural products. Stewart Posthar. Rev. 2006, 2, 1–6. [Google Scholar] [CrossRef]
- Min, S.Y.; Tawaha, A.R.M.; Lee, K.D. Effects of ammonium concentration on the yield, mineral content and active terpene components of Chrysanthemum coronarium L. in a hydroponic system. Res. J. Agric. Biol. Sci. 2005, 1, 170–175. [Google Scholar]
- Stutte, G.W. Process and product: Recirculation hydroponics and bioactive compounds in a controlled environment. Hortscience 2006, 41, 526–530. [Google Scholar] [CrossRef]
- Matłok, N.; Gorzelany, J.; Stepień, A.E.; Figiel, A.; Balawejder, M. Effect of Fertilization in Selected Phytometric Features and Contents of Bioactive Compounds in Dry Matter of Two Varieties of Basil (Ocimum basilicum L.). Sustainability 2019, 11, 6590. [Google Scholar] [CrossRef] [Green Version]
- Kochan, E.A.; Balcerczak, E.; Szymczyk, P.; Sienkiewcz, M.; Zielińska-Bliźniewska, H.; Szymańska, G. Abscicis acid gerulates the 3-hydroxy-3-methylglutaryl CoA reductase gene promoter and ginsenoside production in Panax quinquefolium hairy root culures. Int. J. Mol. Sci. 2019, 20, 1310. [Google Scholar] [CrossRef] [Green Version]
- Stępień, A.E.; Gorzelany, J.; Matłok, N.; Lech, K.; Figiel, A. The effect of drying methods on the energy consumption, bioactive potential and colour of dried leaves of Pink Rock Rose (Cistus creticus). J. Food Sci. Technol. 2019, 56, 2386–2394. [Google Scholar] [CrossRef] [Green Version]
- Matłok, N.; Lachowicz, S.; Gorzelany, J.; Balawejder, M. Influence of Drying Method on Some Bioactive Compounds and the Composition of Volatile Components in Dried Pink Rock Rose (Cistus creticus L.). Molecules 2020, 25, 2596. [Google Scholar] [CrossRef]
- Sifola, M.I.; Barbieri, G. Growth, yield and essentials oil content of three cultivars of basil grown under different levels of nitrogen in the field. Sci. Hort. 2006, 108, 408–413. [Google Scholar] [CrossRef]
- Rao, E.V.S.P.; Puttana, K.; Rao, R.S.G.; Ramesh, S. Nitrogen and potassium nutrition of French basil (Ocimum basilicum L.). J. Spices Aromat. Plants 2007, 16, 99–105. [Google Scholar]
- Sarab, D.; Naghdi Badi, H.; Nasi, M.; Makkizadeh, M.; Midi, H. Changes in essentials oil content and yield of basil in response to different levels of nitrogen and plant density. J. Med. Plants 2008, 7, 60–70. [Google Scholar]
- Zheljazkov, V.D.; Cantrell, C.L.; Ebelhar, M.W.; Rowe, D.E.; Coker, C. Productivity, oil content, and oil composition of sweet basil as a function of nitrogen and sulphur fertilization. Hort. Sci. 2008, 43, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Alibas, I. Determination of drying parameters, ascorbic acid contents and color characteristics of nettle leaves during microwave-, air- and combined microwave-air-drying. J. Food Process Eng. 2010, 33, 213–233. [Google Scholar] [CrossRef]
- Skoufogianni, E.; Solomou, A.D.; Danalatos, N.G. Ecology, Cultivation and Utilization of the Aromatic Greek Oregano (Origanum vulgare L.): A Review. Not. Botanic. Hort. Agro. Cluj-Napoca 2019, 47, 545–552. [Google Scholar] [CrossRef] [Green Version]
- Corrêa, R.M.; Pinto, J.E.B.P.; Reis, E.S.; Costa, L.C.B.; Alves, P.B.; Niculan, E.S.; Brant, R.S. Organic fertilization on phytomass production and essential oil content and quality of oregano (Origanum vulgare L.) under protected cultivation. Rev. Bras. Plantas Med. 2010, 12, 80–89. [Google Scholar] [CrossRef]
- Singh, K.; Chand, K.; Yaseen, M. Integrated nutrient management in Indian basil (Ocimum basilicum). Ind. Crops Prod. 2014, 55, 225–229. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Hallmann, E.; Sokołowska, O.; Rembiałkowska, E. Bioactive substances content in selected species of medical plants from organic and conventional production. J. Res. Appl. Agric. Engin. 2011, 56, 200–205. [Google Scholar]
- Kazimierczak, R.; Hallmann, E.; Rembiałkowska, E. Effects of organic and conventional production systems on the content of bioactive substances in four species of medicinal plants. Biol. Agric. Hort. 2014, 34, 1–11. [Google Scholar] [CrossRef]
- Young, J.E.; Zhao, X.; Carey, E.E.; Welti, R.; Yang, S.-S.; Wang, W. Phytochemical phenolics in organically grown vegetables. Mol. Nutrit. Food Res. 2005, 49, 1136–1142. [Google Scholar] [CrossRef]
- Tomaszewski, B.; Majtkowska, G.; Majtkowski, W. Chlorophyll content index in selected ecotypes and varieties of switchgrass (Panicum virgatum L.) in the diverse fertilization conditions. Biuletyn Instytutu Hodowli I Aklimatyzacji Roślin 2016, 280, 71–77. [Google Scholar]
- Skwaryło-Bednarz, B.; Krzepiłko, A. Wpływ zróżnicowanego nawożenia NPK na zawartość chlorofilu w liściach dwóch odmian szarłatu (Amaranthus cruentus L.) uprawianego w siewie szerokorzędowym. Acta Agrophysica 2009, 14, 469–477. [Google Scholar]
Fertilization Method | Substratum Composition | pH in KCl | Substratum Abundance (mg 100 g Substratum−1) | N Total (%) | Nitrogen Fertilization | |||
---|---|---|---|---|---|---|---|---|
P2O5 | K2O | Mg | Dose (g N Plant−1) | Type of Fertilizer | ||||
mineral | 6.4 | 40.4 | 244.2 | 62.0 | 0.74 | 1.2 | Ammonium nitrate | |
organic | neutral peat (70%), extract of common nettle (10%), horse manure (20%) | 5.3 | 237.0 | 1282.0 | 269.0 | 1.88 | 0.6 | Bioilsa N 12.5 |
Veriety | Fertilization Method | Plant Height (cm) ± SD | Plant Mass (g) ± SD |
---|---|---|---|
Aureum | organic | 18.2 ± 2.4 b | 1.96 ± 0.28 b |
mineral | 14.6 ± 3.0 a | 1.32 ± 0.21 a | |
Hot & Spicy | organic | 16.1 ± 2.3 d | 1.51 ± 0.31 d |
mineral | 11.9 ± 3.0 c | 1.19 ± 0.33 c |
Variety | Fertilization Method | Stage of Drying | Constants | Statistics | Drying Time | Mcwb | |||
---|---|---|---|---|---|---|---|---|---|
A | k | n | RMSE‡ | R2 | (min) | (%) | |||
Aureum | organic | CPD | 1 | 0.006607 | 0.8519 | 0.008817 | 0.9974 | 276 | 3 |
VMFD | 0.4751 | 0.04798 | 1.3037 | 0.010173 | 0.9973 | ||||
mineral | CPD | 1 | 0.007941 | 0.8715 | 0.005357 | 0.9993 | 264 | 2.9 | |
VMFD | 0.3800 | 0.06966 | 1.5523 | 0.006244 | 0.9990 | ||||
Hot & Spicy | organic | CPD | 1 | 0.008182 | 0.8095 | 0.006950 | 0.9983 | 268 | 3 |
VMFD | 0.4839 | 0.04384 | 1.5468 | 0.006976 | 0.9991 | ||||
mineral | CPD | 1 | 0.01370 | 0.7482 | 0.011269 | 0.9964 | 264 | 3.1 | |
VMFD | 0.4163 | 0.03255 | 1.7861 | 0.013759 | 0.9962 |
No. | RT (min) | Peak Share in the Chromatogram (%) | Ordinary Substance Name | Systematic Substance Name | No CAS | |||
---|---|---|---|---|---|---|---|---|
A(O) | A(M) | HS(O) | HS(M) | |||||
1 | 9.53 | 1.45 ± 0.30 a | 2.71 ± 0.42 b | 9.04 ± 1.61 a | 8.62 ± 2.12 a | cymene | methyl(1-methylethyl)benzene | 25155-15-1 |
2 | 9.62 | 1.24 ± 0.21 a | trace | trace | trace | Β-phellandrene | 3-Isopropyl-6-methylenecyclohex-1-ene | 555-10-2 |
3 | 10.23 | 0.61 ± 0.08 a | 1.23 ± 0.19 b | 1.70 ± 0.07 c | trace | γ-terpinene | 1-methyl-4-propan-2-ylcyclohexa-1,4-diene | 99-85-4 |
4 | 10.99 | 0.49 ± 0.06 a | 0.58 ± 0.09 a | trace | trace | trans-sabinene hydrate | 2-methyl-5-propan-2-ylbicyclo [3.1.0]hexan-2-ol | 78-70-6 |
5 | 12.19 | 1.02 ± 0.06 a | 0.86 ± 0.07 a | trace | trace | L-borneol | 1,7,7-trimethylbicyclo[2.2.1]heptan-6-ol | 464-45-9 |
6 | 12.36 | 0.75 ± 0.06 a | 0.68 ± 0.08 a | trace | trace | 4-terpinenol | 4-methyl-1-propan-2-ylcyclohex-3-en-1-ol | 562-74-3 |
7 | 13.22 | trace | trace | 1.41 ± 0.09 a | 3.69 ± 1.03 b | thymyl methyl ether | 1-methyl-3-methoxy-4-isopropylbenzene | 1076-56-8 |
8 | 13.38 | 1.78 ± 0.26 a | 1.51 ± 0.29 a | 5.23 ± 0.91 a | 13.33 ± 2.12 b | carvacryl methyl ether | 4-isopropyl-2-methoxy-1-methylbenzene | 6379-73-3 |
9 | 13.50 | 2.06 ± 0.53 a | 2.13 ± 0.52 a | 2.23 ± 0.34 a | trace | thymoquinone | 2-isopropyl-5-methyl-1,4-benzoquinone | 490-91-5 |
10 | 14.09 | 2.71 ± 0.41 a | 3.63 ± 0.68 b | 20.30 ± 1.86 b | 17.73 ± 2.56 a | thymol | 2-isopropyl-5-methylphenol | 89-83-8 |
11 | 14.32 | 81.40 ± 5.08 b | 75.09 ± 6.32 a | 29.42 ± 2.08 b | 24.66 ± 3.02 a | carvacrol | 2-methyl-5-(propan-2-yl)phenol | 499-75-2 |
12 | 15.36 | trace | trace | trace | trace | α-copaene | 1,3-dimethyl-8-(1-methyl ethyl) tricyclo(4.4.0.0.02,7-)dec-3-ene | 3856-25-5 |
13 | 15.98 | 1.24 ± 0.27 a | 2.01 ± 0.22 b | 3.82 ± 0.09 a | 5.44 ± 1.01 b | β-caryophyllene | (−)-trans-Caryophyllene, trans-(1R,9S)-8-Methylene-4,11,11-trimethylbicyclo[7.2.0]undec-4-ene | 87-44-5 |
14 | 16.09 | 0.28 ± 0.06 a | 0.35 ± 0.06 a | 1.39 ± 0.29 a | 2.16 ± 0.66 b | (E)-germacrene D | (1E,6E)-1-methyl-5-methylidene-8-propan-2-cylcyclodeca-1,6-diene | 23986-74-5 |
15 | 16.24 | trace | trace | trace | valencene | 4a,5-dimethyl-3-prop-1-en-2-yl-2,3,4,5,6,7-hexahydro-1H-naphthalene | 4630-07-3 | |
16 | 16.68 | 0.27 ± 0.08 a | trace | trace | trace | (-)-α-amorphene | 1α-isopropyl-4,7-dimethyl-1,2,4aβ,5,6,8aβ-hexahydronaphthale | 6753-98-6 |
17 | 17.03 | 1.27 ± 0.17 a | 1.58 ± 0.19 a | 4.50 ± 0.86 a | 5.43 ± 1.03 b | Β-bisabolene | (4R)-1-methyl-4-(6-methylhepta-1,5-dien-2-yl)cyclohexene | 495-61-4 |
18 | 18.06 | 0.39 ± 0.07 a | trace | trace | trace | β-caryophyllene oxide | [1R-(1R *,4R *,6R *,10S *)]-4,12,12-trimethyl-9-methylene-5-oxatricyclo[8.2.0.04,6]dodecane | 1139-30-6 |
TOTAL | 96.96 ± 5.21 b | 92.36 ± 4.34 a | 79.04 ± 3.87 a | 80.5 ± 3.89 a |
Variety | Fertilization Method | DPPH (mg g−1 dm) ± SD | ABTS (mg g−1 dm) ± SD | Total Phenolic Content (mg g−1 dm) ± SD |
---|---|---|---|---|
Aureum | organic | 21.70 ± 0.30 a | 117.40 ± 0.33 b | 15.66 ± 0.66 d |
mineral | 19.04 ± 0.30 a | 107.66 ± 2.23 c,* | 8.31 ± 0.35 e,* | |
Hot & Spicy | organic | 24.47 ± 1.10 f | 123.60 ± 0.25 g | 18.12 ± 2.25 i |
mineral | 23.18 ± 2.73 f | 112.09 ± 1.09 h,* | 8.98 ± 0.35 j,* |
Variety | Fertilization Method | L * ± SD | a * ± SD | b * ± SD |
---|---|---|---|---|
Aureum | organic | 51.21 ± 1.45 a | −1.09 ± 0.08 c | 11.60 ± 0.63 f |
mineral | 48.27 ± 0.48 a | −1.06 ± 0.04 c | 9.01 ± 0.40 f | |
Hot & Spicy | organic | 48.93 ± 0.81 b | −0.65 ± 0.04 d | 10.17 ± 0.29 g |
mineral | 45.96 ± 0.81 b | −0.58 ± 0.06 e,* | 7.94 ± 0.03 h,* |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matłok, N.; Stępień, A.E.; Gorzelany, J.; Wojnarowska-Nowak, R.; Balawejder, M. Effects of Organic and Mineral Fertilization on Yield and Selected Quality Parameters for Dried Herbs of Two Varieties of Oregano (Origanum vulgare L.). Appl. Sci. 2020, 10, 5503. https://doi.org/10.3390/app10165503
Matłok N, Stępień AE, Gorzelany J, Wojnarowska-Nowak R, Balawejder M. Effects of Organic and Mineral Fertilization on Yield and Selected Quality Parameters for Dried Herbs of Two Varieties of Oregano (Origanum vulgare L.). Applied Sciences. 2020; 10(16):5503. https://doi.org/10.3390/app10165503
Chicago/Turabian StyleMatłok, Natalia, Agnieszka Ewa Stępień, Józef Gorzelany, Renata Wojnarowska-Nowak, and Maciej Balawejder. 2020. "Effects of Organic and Mineral Fertilization on Yield and Selected Quality Parameters for Dried Herbs of Two Varieties of Oregano (Origanum vulgare L.)" Applied Sciences 10, no. 16: 5503. https://doi.org/10.3390/app10165503
APA StyleMatłok, N., Stępień, A. E., Gorzelany, J., Wojnarowska-Nowak, R., & Balawejder, M. (2020). Effects of Organic and Mineral Fertilization on Yield and Selected Quality Parameters for Dried Herbs of Two Varieties of Oregano (Origanum vulgare L.). Applied Sciences, 10(16), 5503. https://doi.org/10.3390/app10165503