Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (169)

Search Parameters:
Keywords = Origanum vulgare L.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1001 KiB  
Article
A Preliminary Evaluation of the Use of Solid Residues from the Distillation of Medicinal and Aromatic Plants as Fertilizers in Mediterranean Soils
by Anastasia-Garyfallia Karagianni, Anastasia Paraschou and Theodora Matsi
Agronomy 2025, 15(8), 1903; https://doi.org/10.3390/agronomy15081903 (registering DOI) - 7 Aug 2025
Abstract
The current study focuses on a preliminary evaluation of the use of solid residues produced from the distillation of selected medicinal and aromatic plants (MAP) as fertilizers for alkaline soils. Specifically, the residues of hemp (Cannabis sativa L.), helichrysum (Helichrysum Italicum [...] Read more.
The current study focuses on a preliminary evaluation of the use of solid residues produced from the distillation of selected medicinal and aromatic plants (MAP) as fertilizers for alkaline soils. Specifically, the residues of hemp (Cannabis sativa L.), helichrysum (Helichrysum Italicum (Roth) G. Don), lavender (Lavandula angustifolia Mill.), oregano (Origanum vulgare L.), rosemary (Rosmarinus officinalis L.) and sage (Salvia officinalis L.) were added in an alkaline and calcareous soil at the rates of 0 (control), 1, 2, 4 and 8%, in three replications (treatments), and the treated soils were analyzed. The results showed that upon application of the residues, soil electrical conductivity (EC), organic C, total N and the C/N ratio significantly increased, especially at the 4 and 8% rates. The same was found for soil available P, K, B, Cu and Mn. The effects of the residues on soil pH, cation exchange capacity (CEC) and available Zn and Fe were rather inconclusive, whereas soil available N significantly decreased, which was somewhat unexpected. From the different application rates tested, it seems that all residues could improve soil fertility (except N?) when they were applied to soil at rates of 2% and above, without exceeding the 8% rate. The reasons for the latter statement are soil EC and available Mn: the doubling of EC upon application of the residues and the excessive increase in soil available Mn in treatments with 8% residues raise concerns of soil salinization and Mn phytotoxicity risks, respectively. This work provides the first step towards the potential agronomic use of solid residues from MAP distillation in alkaline soils. However, for the establishment of such a perspective, further research is needed in respect to the effect of residues on plant growth and soil properties, by means of at least pot experiments. Based on the results of the current study, the undesirable effect of residues on soil available N should be investigated in depth, since N is the most important essential element for plant growth, and possible risks of micronutrient phytotoxicities should also be studied. In addition, application rates between 2 and 4% should be studied extensively in order to recommend optimum application rates of residues to producers. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

15 pages, 1252 KiB  
Article
Origanum vulgare L. Essential Oil Mitigates Palmitic Acid-Induced Impairments in Insulin Signaling and Glucose Uptake in Human Adipocytes
by Andrea Müller, Jonathan Martinez-Pinto, Claudia Foerster, Mario Díaz-Dosque, Liliam Monsalve, Pedro Cisternas, Barbara Angel and Paulina Ormazabal
Pharmaceuticals 2025, 18(8), 1128; https://doi.org/10.3390/ph18081128 - 28 Jul 2025
Viewed by 304
Abstract
Background: Obesity is associated with insulin resistance (IR) and characterized by impaired activation of the PI3K/AKT route and glucose uptake. Elevated plasma levels of palmitic acid (PA) diminish insulin signaling in vitro and in vivo. Origanum vulgare L. essential oil (OVEO) is [...] Read more.
Background: Obesity is associated with insulin resistance (IR) and characterized by impaired activation of the PI3K/AKT route and glucose uptake. Elevated plasma levels of palmitic acid (PA) diminish insulin signaling in vitro and in vivo. Origanum vulgare L. essential oil (OVEO) is rich in monoterpenes with protective effects against IR. Objective: The study aimed to assess total phenols content and antioxidant activity of OVEO and its cytotoxicity, as well as its effect on insulin signaling and glucose uptake in PA-treated adipocytes. Methods: The quantification of total phenolic content was determined using the Folin–Ciocalteu method, while the antioxidant capacity of OVEO was assessed by DPPH (2,2-diphenyl-1-picrylhydrazyl) and FRAP (ferric reducing antioxidant power) methods. The cytotoxicity of OVEO (0.1–10 µg/mL) was assessed using the MTS assay. SW872 adipocytes were incubated with 0.4 mM PA for 24 h, with or without a 2 h preincubation of OVEO, and then stimulated with insulin (100 nM, 10 min) or a vehicle. Phosphorylation of Tyr-IRS-1, Ser-AKT, and Thr-AS160 was analyzed by Western blot, and glucose uptake was measured using 2-NBDG. Results: OVEO contained phenols and exhibits antioxidant capacity. All the concentrations of OVEO assessed were not cytotoxic on SW872 adipocytes. PA decreased basal phospho-AS160 as well as insulin-stimulated phospho-IRS1, phospho-AKT, phospho-AS160 and glucose uptake, while OVEO co-treatment enhanced these markers. Conclusions: These findings suggest a beneficial effect of OVEO on the PA-impaired insulin pathway and glucose uptake, which might be explained by its phenolic content and antioxidant capacity, highlighting its potential as a complementary therapeutic agent for IR and related metabolic disorders. Full article
Show Figures

Graphical abstract

15 pages, 1101 KiB  
Article
Influence of Oregano Essential Oil on the Rumen Microbiome of Organically Reared Alpine Goats: Implications for Methanobacteria Abundance
by Dimitrios Kyrtsoudis, Maria V. Alvanou, Dimitrios Loukovitis, Dimitrios Gourdouvelis, Vasileios A. Bampidis, Dimitrios Chatziplis and Ioannis K. Mitsopoulos
Animals 2025, 15(13), 1937; https://doi.org/10.3390/ani15131937 - 1 Jul 2025
Viewed by 332
Abstract
The present study aimed to evaluate the effects of dietary supplementation with organic oregano (Origanum vulgare) essential oil (OEO) on the rumen microbial population, with a focus on methanogenic archaea, in lactating dairy goats. A total of nine age-matched goats (mean [...] Read more.
The present study aimed to evaluate the effects of dietary supplementation with organic oregano (Origanum vulgare) essential oil (OEO) on the rumen microbial population, with a focus on methanogenic archaea, in lactating dairy goats. A total of nine age-matched goats (mean body weight 49 ± 1.8 kg) were assigned to three experimental groups (n = 3 per group) in a completely randomized design. All animals were fed a basal diet consisting of a corn-based concentrate and a forage mix composed of alfalfa hay, wheat straw and corn silage. Group 1 was the control group while Groups 2 and 3 received an OEO supplement at dosages of 1 mL/day and 2 mL/day per animal, respectively, incorporated into the concentrate feed. Rumen fluid samples were collected on days 15, 30 and 45 of the feeding trial and their microbial profile was assessed using NGS analysis. The results demonstrated a reduction in the relative abundance of methanobacteria in both OEO-supplemented groups compared to the control group. Statistical analysis revealed significant differences between feeding groups and days of sampling. These findings suggest that OEO has the potential to modulate the rumen microbiome by reducing methane-producing archaeal populations. In conclusion, dietary supplementation with OEO may serve as a natural strategy to mitigate enteric methane emissions in Alpine dairy goats. Full article
Show Figures

Figure 1

24 pages, 9971 KiB  
Article
Development of Bioactive Cotton, Wool, and Silk Fabrics Functionalized with Origanum vulgare L. for Healthcare and Medical Applications: An In Vivo Study
by Aleksandra Ivanovska, Anica Petrović, Tamara Lazarević-Pašti, Tatjana Ilic-Tomic, Katarina Dimić-Mišić, Jelena Lađarević and Jovana Bradić
Pharmaceutics 2025, 17(7), 856; https://doi.org/10.3390/pharmaceutics17070856 - 30 Jun 2025
Viewed by 482
Abstract
Background: This study presents an innovative approach to developing bioactive natural fabrics for healthcare and medical applications. Methods: An ethanol extract of Origanum vulgare L. (in further text: OE), exhibiting exceptional antioxidant (100%) and antibacterial activity (>99% against E.coli and S.aureus), was [...] Read more.
Background: This study presents an innovative approach to developing bioactive natural fabrics for healthcare and medical applications. Methods: An ethanol extract of Origanum vulgare L. (in further text: OE), exhibiting exceptional antioxidant (100%) and antibacterial activity (>99% against E.coli and S.aureus), was employed to biofunctionalize cotton, wool, and silk fabrics. Results: All biofunctionalized fabrics demonstrated strong antioxidant activity (>99%), while antibacterial efficacy varied by fabric: cotton > 54%, wool > 99%, and silk > 89%. OE-biofunctionalized wool possessed the highest release of OE’s bioactive compounds, followed by silk and cotton, indicating substrate-dependent release behavior. This tunable fabrics’ OE release profile, along with their unique bioactivity, supports targeted applications: OE-functionalized silk for luxury or prolonged therapeutic use (skin-care textiles, post-surgical dressings, anti-aging products), cotton for disposable or short-term use (protective wipes, minor wound coverings), and wool for wound dressings. The biocompatibility and cytotoxicity of OE-biofunctionalized wool were evaluated via in vitro assays using healthy human keratinocytes and in vivo testing in Wistar albino male rats. The obtained results revealed that OE-functionalized wool significantly accelerated wound closure (97.8% by day 14), enhanced collagen synthesis (6.92 µg/mg hydroxyproline), and improved tissue and systemic antioxidant defense while reducing oxidative stress markers in skin and blood samples of rats treated with OE-biofunctionalized wool. Conclusions: OE-biofunctionalized wool demonstrates strong potential as an advanced natural solution for managing chronic wounds. Further clinical validation is recommended to confirm its performance in real-world healthcare settings. This work introduces an entirely new application of OE in textile biofunctionalization, offering alternatives for healthcare and medical textiles. Full article
Show Figures

Graphical abstract

11 pages, 530 KiB  
Article
The Acaricidal Activity of Essential Oil Vapors and Its Effect on the Varroa Mite Varroa destructor
by Nikoletta G. Ntalli, Maria Samara, Theodoros Stathakis, Myrto Barda, Eleftheria Kapaxidi, Elektra Manea-Karga, Sofia Gounari, Georgios Goras, Konstantinos M. Kasiotis and Filitsa Karamaouna
Agriculture 2025, 15(13), 1379; https://doi.org/10.3390/agriculture15131379 - 27 Jun 2025
Viewed by 321
Abstract
Νatural compounds such as lactic, acetic, formic, and oxalic acid and thymol are currently registered for use against Varroa destructor in apiaries in Europe. Complex botanical extracts are yet to be authorized, despite their beneficial ecofriendly profile and advantages in terms of resistance [...] Read more.
Νatural compounds such as lactic, acetic, formic, and oxalic acid and thymol are currently registered for use against Varroa destructor in apiaries in Europe. Complex botanical extracts are yet to be authorized, despite their beneficial ecofriendly profile and advantages in terms of resistance management. This study examined the fumigant activity of the essential oil (EO) of oregano, clove, lavender, dittany, bay laurel, sweet orange, peppermint, blue gum, and lemon balm against V. destructor in laboratory bioassays (Petri dishes). The most effective EOs were those of Origanum vulgare, Syzygium aromaticum, and Origanum dictamnus. These three EOs yielded 33.75% carvacrol, 58.64% eugenol, and 69.77% carvacrol and exhibited significant activity from 18 h of exposure to 0.0013 μL/cm until 48 h of exposure to 0.0068 μL/cm3. Origanum vulgare’s first calculated LC50 value was 0.003 μL/cm3 after 24 h of mites’ exposure to EO vapors. The LC50 values stabilized for oregano, clove, and dittany at 0.001, 0.002, and 0.002 μL/cm3 of 24 h exposure, respectively. This first indication of fumigant miticidal activity in Petri dishes is a promising first step before scaling up to field experiments. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

23 pages, 5089 KiB  
Article
Integrated In Silico and In Vitro Assessment of the Anticancer Potential of Origanum vulgare L. Essential Oil
by Gabriel Mardale, Florina Caruntu, Alexandra Mioc, Marius Mioc, Alexandra Teodora Lukinich-Gruia, Maria-Alexandra Pricop, Calin Jianu, Armand Gogulescu, Tamara Maksimovic and Codruța Șoica
Processes 2025, 13(6), 1695; https://doi.org/10.3390/pr13061695 - 28 May 2025
Viewed by 616
Abstract
Oregano essential oil (OEO) has gained attention for its broad pharmacological activities, such as anti-inflammatory, antimicrobial, and anticancer properties. This study aimed to analyze the phytochemical composition and biological activity of OEO obtained from wild-growing Origanum vulgare L. in Romania. Gas chromatography–mass spectrometry [...] Read more.
Oregano essential oil (OEO) has gained attention for its broad pharmacological activities, such as anti-inflammatory, antimicrobial, and anticancer properties. This study aimed to analyze the phytochemical composition and biological activity of OEO obtained from wild-growing Origanum vulgare L. in Romania. Gas chromatography–mass spectrometry (GC–MS) analysis identified p-cymene (43.98%), γ-terpinene (22.16%), and thymol (11.46%) as major constituents, with notable differences from previously reported chemotypes. Antioxidant activity was assessed using the DPPH, ABTS radical scavenging assay, and TPC. OEO has a moderate antioxidant activity, with IC50 values of 134.67 ± 1.32 µg/mL (DPPH) and 88.15 ± 0.045 Inh% (ABTS) and a TPC of 159.63 mg GAE/g extract. The cytotoxicity of the simple water dispersion of OEO, OEO solubilized with polyethylene glycol 400 (OEO-PEG), and that solubilized with Tween 20 (OEO-Tw) was evaluated on human melanoma (A375) and human colorectal adenocarcinoma (HT-29) cancer cell lines, as well as on the normal human immortalized keratinocytes (HaCaT) cell line. The results demonstrated a significant inhibition of cancer cell viability with no recorded cytotoxic effect on normal cells. The highest inhibition of cell viability was recorded for OEO-PEG 200 µg/mL (7.22% ± 6.51 in A375 cell line and 22.25% ± 10.08 in HT-29 cell line). In cancer cells, OEO and its formulations significantly reduced malondialdehyde (MDA) levels (up to 41.24% in A375 cells and up to 48.58% in HT-29 cells), suggesting potent antioxidant activity. Moreover, treatment with OEO increased caspase 3/7 activation two-fold in treated A375 cells, while high-resolution respirometry studies revealed that OEO induces mitochondrial dysfunction by acting as a potential uncoupling agent. Molecular docking analysis suggested that β-caryophyllene oxide (CPO), a minor constituent of OEO, may act as a potential inhibitor of 3-phosphoinositide-dependent protein kinase-1 (PDPK1), indicating a possible mechanism of anticancer activity. Our findings highlight the potential of OEO as a natural anticancer agent, emphasizing the need for further investigations to elucidate its exact molecular mechanisms and therapeutic applicability. Full article
(This article belongs to the Special Issue Extraction, Separation, and Medicinal Analysis of Natural Products)
Show Figures

Figure 1

18 pages, 1852 KiB  
Article
Evaluating the Chemical Composition and Antitumor Activity of Origanum vulgare ssp. hirtum Essential Oil in a Preclinical Colon Cancer Model
by Georgios Aindelis, Katerina Spyridopoulou, Sotiris Kyriakou, Angeliki Tiptiri-Kourpeti, Mihalis I. Panayiotidis, Aglaia Pappa and Katerina Chlichlia
Int. J. Mol. Sci. 2025, 26(10), 4737; https://doi.org/10.3390/ijms26104737 - 15 May 2025
Viewed by 722
Abstract
Origanum vulgare ssp. hirtum is an aromatic plant native to various Mediterranean regions and has been traditionally used in folk medicine. This study investigates the chemical composition and the potential antitumor activity of its essential oil in a preclinical model of CT26 colorectal [...] Read more.
Origanum vulgare ssp. hirtum is an aromatic plant native to various Mediterranean regions and has been traditionally used in folk medicine. This study investigates the chemical composition and the potential antitumor activity of its essential oil in a preclinical model of CT26 colorectal cancer in BALB/c mice. Mice received prophylactic oral administration of the essential oil, and tumor progression, immune modulation, and apoptosis were evaluated. Even treatment with low doses (350 parts per million, ppm in 100 μL final volume) of the essential oil significantly suppressed tumor growth by approximately 44%. This effect correlated with the enhanced expression of antitumorigenic cytokines, including a 2.7-fold increase in type I interferons (IFN), IFN-γ (from 46.5 to 111.9 pg/μL per mg of protein) and tumor necrosis factor alpha (TNF-α) (from 34.5 to 103 pg/μL per mg of protein). Furthermore, the production of granzyme B, a key mediator of cytotoxic immune cell function, was notably increased from 96.1 to 319.6 pg/μL per mg of protein. An elevated activation of caspase 3, a central effector caspase of all apoptotic cascades, was also observed in tumors from oregano-treated mice. These findings suggest that O. vulgare ssp. hirtum essential oil exhibits promising antitumor properties through immune modulation and immunity-mediated apoptosis induction, supporting its potential development as a bioactive compound for cancer prevention or therapy. Full article
(This article belongs to the Special Issue The Roles of Phytochemicals and Antioxidants in Colon Cancers)
Show Figures

Figure 1

20 pages, 4454 KiB  
Article
Toxicity of Essential Oils of Origanum vulgare, Salvia rosmarinus, and Salvia officinalis Against Aculops lycopersici
by Thomas Giordano, Giuliano Cerasa, Ilaria Marotta, Mauro Conte, Santo Orlando, Adele Salamone, Michele Massimo Mammano, Carlo Greco and Haralabos Tsolakis
Plants 2025, 14(10), 1462; https://doi.org/10.3390/plants14101462 - 14 May 2025
Viewed by 907
Abstract
The tomato russet mite (TRM), Aculops lycopersici, is a destructive pest of tomato crops worldwide. It poses a significant challenge to growers in both greenhouse and open-field conditions. Traditional chemical control methods are often ineffective, promote resistance, and have negative environmental impacts. [...] Read more.
The tomato russet mite (TRM), Aculops lycopersici, is a destructive pest of tomato crops worldwide. It poses a significant challenge to growers in both greenhouse and open-field conditions. Traditional chemical control methods are often ineffective, promote resistance, and have negative environmental impacts. This has prompted the search for alternative strategies, such as biological control and eco-friendly botanical pesticides. In this study, we evaluated the acaricidal effects of essential oils (EOs) extracted from three officinal plants, Origanum vulgare L., Salvia rosmarinus Spenn., and Salvia officinalis L., cultivated using precision aromatic crop (PAC) techniques. Their efficacy was evaluated against A. lycopersici under laboratory conditions. The chemical composition of the EOs was determined by solid-phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC-MS). The dominant component of O. vulgare EO was carvacrol (83.42%), followed by ρ-cymene (3.06%), and γ-terpinene (2.93%). In S. rosmarinus, α-pinene (28.0%), 1,8-cineole (11.00%), and borneol (7.72%) were the major components. S. officinalis EO was characterized by high levels of 1,8-cineole (27.67%), camphor (21.91%), and crisantenone (12.87%). We tested multiple concentrations (320–5000 μL L−1) and exposure times (1–4 days) to assess mite mortality. The results revealed both dose- and time-dependent toxic activity, with significant differences among EOs. O. vulgare EO was the most toxic, causing 90% mortality at 0.5% (w/v) concentration after 4 days. S. rosmatinus and S. officinalis EOs had more limited effects, with 46% and 42% mortality, respectively. Lethal concentration (LC50) values were 2.23 mL L−1 (95% CI: 1.74–3.05) for O. vulgare, 5.84 mL L−1 (95% CI: 3.28–22.29) for S. rosmarinus, and 6.01 mL L−1 (95% CI: 2.63–261.60) for S. officinalis. These results indicate that O. vulgare EO shows efficacy comparable to commercially available botanical pesticides. Our findings support the potential of O. vulgare EO as a viable alternative for the control of A. lycopersici, contributing to integrated pest management (IPM) strategies. Full article
(This article belongs to the Special Issue Plant Protection: Focusing on Phytophagous Mites)
Show Figures

Graphical abstract

17 pages, 1679 KiB  
Article
Peripheral Antinociception Induced by Carvacrol in the Formalin Test Involves the Opioid Receptor-NO-cGMP-K+ Channel Pathway
by Mario I. Ortiz, Raquel Cariño-Cortés, Eduardo Fernández-Martínez, Victor Manuel Muñoz-Pérez, Gilberto Castañeda-Hernández and Martha Patricia González-García
Metabolites 2025, 15(5), 314; https://doi.org/10.3390/metabo15050314 - 7 May 2025
Viewed by 531
Abstract
Background/Objectives: Carvacrol is a naturally occurring phenolic monoterpene that is one of the main constituents of the essential oils of oregano (Origanum vulgare) and other herbs. Carvacrol has anti-inflammatory and antinociceptive effects. Carvacrol can activate and inhibit several second messengers and [...] Read more.
Background/Objectives: Carvacrol is a naturally occurring phenolic monoterpene that is one of the main constituents of the essential oils of oregano (Origanum vulgare) and other herbs. Carvacrol has anti-inflammatory and antinociceptive effects. Carvacrol can activate and inhibit several second messengers and ionic channels at the systemic level. However, there is no evidence of the peripheral antinociception of carvacrol and its mechanism of action. This study was designed to determine whether the opioid receptor-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-K+ channel pathway is involved in the local antinociception of carvacrol. Methods: Wistar rats were injected with 1% formalin subcutaneously on the dorsal surface of the right hind paw with the vehicle or carvacrol (100–300 µg/paw). To determine whether the opioid receptor-NO-cGMP-K+ channel pathway and a biguanide-dependent mechanism are responsible for the local antinociception induced by carvacrol, the effect of the injection (10 min before the 1% formalin injection) with the corresponding vehicles, metformin, naltrexone, NG-L-nitro-arginine methyl ester (L-NAME), 1 H-(1,2,4)-oxadiazolo (4,2-a) quinoxalin-1-one (ODQ), and K+ channel blockers on the antinociception induced by local carvacrol (300 µg/paw) was determined. Results: In both phases of the formalin test, carvacrol produced antinociception. Naltrexone, metformin, L-NAME, ODQ, glibenclamide and glipizide (both ATP-sensitive K+ channel blockers), tetraethylammonium and 4-aminopyridine (voltage-gated K+ channel blockers), and apamin and charybdotoxin (Ca2+-activated K+ channel blockers) reversed the carvacrol-induced peripheral antinociception. Conclusions: The local peripheral administration of carvacrol produced significant antinociception and activated the opioid receptor-NO-cGMP-K+ channel pathway. Full article
Show Figures

Figure 1

17 pages, 2601 KiB  
Article
Biosynthesis of Silver Nanoparticles via Medusomyces gisevii Fermentation with Origanum vulgare L. Extract: Antimicrobial Properties, Antioxidant Properties, and Phytochemical Analysis
by Aiste Balciunaitiene, Syeda Hijab Zehra, Mindaugas Liaudanskas, Vaidotas Zvikas, Jonas Viskelis, Yannick Belo Nuapia, Arturas Siukscius, Pradeep Kumar Singh, Valdimaras Janulis and Pranas Viskelis
Molecules 2025, 30(8), 1706; https://doi.org/10.3390/molecules30081706 - 10 Apr 2025
Cited by 1 | Viewed by 709
Abstract
Silver nanoparticles belong to a highly versatile group of nanomaterials with an appealing range of potential applications. In the realm of antimicrobial and antioxidant application, silver nanoparticles (AgNPs) exhibit auspicious capabilities. This research, for the very first time, endeavors to carry out biosynthesis [...] Read more.
Silver nanoparticles belong to a highly versatile group of nanomaterials with an appealing range of potential applications. In the realm of antimicrobial and antioxidant application, silver nanoparticles (AgNPs) exhibit auspicious capabilities. This research, for the very first time, endeavors to carry out biosynthesis of AgNPs coupled with fermentation using Medusomyces gisevii and Origanum vulgare L. (O. vulgare) plant species. Fermentation (F) via Medusomyces gisevii is responsible for chemical, physical, biological, and electrochemical processes. During in vitro study of antioxidant activity, fermented O. vulgare herb extract showed strong reductive activity as evaluated by the cupric reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power (FRAP), and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) assay, with a value of 1.45 ± 0.048 mmol TE/g, 0.95 ± 0.04 mmol TE/g, and 0.59 ± 0.023 mmol TE/g, respectively. The highest antimicrobial activity was shown by Staphylococcus aureus in the inhibition zone, with values of 1.40 ± 0.12 mm of OrV and of 10.30 ± 0.04 mm and 11.54 ± 0.10 mm for OrV-AgNPs and OrV-F-AgNPs, respectively. Analysis of phenolic compounds revealed that the highest total amount of the apigenin, 87.78 µg/g, was detected in OrV-F-AgNPs and the lowest amount, 16.56 µg/g, in OrV-AgNPs. Moreover, in OrV-F-AgNPs, the collective amount of proanthocyanidins, hydroxycinnamic, and flavonoids was prominently high in all cases, i.e., 145.00 ± 0.02 mg EE/g DW, 2.86 ± 0.01 mg CAE/g DW, and 0.55 ± 0.01 mg RE/g DW, respectively, as compared to the original extract (102.1 ± 0.03 mg EE/g DW, 2.78 ± 0.02 mg CAE/g DW, and 0.47 ± 0.01 mg RE/g DW, respectively). During the characterization of biosynthesized nanoparticles by scanning electron microscopy (SEM), AgNPs demonstrated a uniform spherical shape with even distribution. The sample’s elemental composition was confirmed with a signal of 3.2 keV using energy-dispersive X-ray spectroscopy (EDS) analysis. Transmission electron microscopy (TEM) analysis showed silver nanoparticles that were round and spherical in shape in both stacked and congested form, with a size range of less than 30 nm. Thus, this green and sustainable synthesis of AgNPs, a blend of Medusomyces gisevii and O. vulgare herbal extract, has adequate potential for increased antimicrobial and antioxidant activity. Full article
Show Figures

Figure 1

16 pages, 856 KiB  
Article
Synergistic Antibacterial Effects of Plant Extracts and Essential Oils Against Drug-Resistant Bacteria of Clinical Interest
by Hoda Helene Shahin, Moomen Baroudi, Fouad Dabboussi, Bassel Ismail, Rayane Salma, Marwan Osman and Khaled El Omari
Pathogens 2025, 14(4), 348; https://doi.org/10.3390/pathogens14040348 - 4 Apr 2025
Viewed by 2017
Abstract
Infectious diseases, the second leading cause of death worldwide, have traditionally been treated with antimicrobials. However, the emergence of drug-resistant microorganisms has driven the need for alternative therapies. This study aimed to assess the antibacterial efficacy of Capparis spinosa crude extracts and five [...] Read more.
Infectious diseases, the second leading cause of death worldwide, have traditionally been treated with antimicrobials. However, the emergence of drug-resistant microorganisms has driven the need for alternative therapies. This study aimed to assess the antibacterial efficacy of Capparis spinosa crude extracts and five essential oils (EOs) derived from Salvia officinalis, Eucalyptus globulus, Micromeria barbata, Origanum vulgare, and Juniperus excelsa. The EOs were extracted using hydro-distillation, and C. spinosa extracts were obtained using ethanol and acetone solvents. Microdilution assays revealed that O. vulgare EO exhibited the strongest activity against Listeria monocytogenes, Escherichia coli, Salmonella spp., and Brucella melitensis, while C. spinosa demonstrated significant antibacterial effects against L. monocytogenes and notable inhibition of Pseudomonas aeruginosa. The combination of EOs with antibiotics, including M. barbata, J. excelsa, S. officinalis, and E. globulus, enhanced the efficacy of the antibiotics against recalcitrant bacterial strains. The synergistic effects were evaluated through Fractional Inhibitory Concentration Index (FICI) analysis. These findings confirm that the antibacterial efficacy observed in the tested EOs, especially when used in synergy with antibiotics, offers a promising therapeutic strategy to combat antimicrobial resistance. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

21 pages, 5076 KiB  
Article
Origanum vulgare ssp. hirtum: From Plant to 3D-Printed Gummies with Antioxidant and Anti-Inflammatory Properties
by Brayan J. Anaya, Lina Raudone, Isabel Ureña-Vacas, Amadeo Sanz-Perez, Mindaugas Marksa, Gabriele Vilkickyte, Juan José García-Rodríguez, Dolores R. Serrano and Elena González-Burgos
Gels 2025, 11(4), 246; https://doi.org/10.3390/gels11040246 - 26 Mar 2025
Cited by 1 | Viewed by 838
Abstract
This study investigates the phytochemical profile, antioxidant and anti-inflammatory properties, and 3D-printing application of Origanum vulgare L. ssp. hirtum extract. The extract revealed a diverse range of phenolic compounds, with rosmarinic acid as the predominant compound (47.76%). The extract showed moderate to high [...] Read more.
This study investigates the phytochemical profile, antioxidant and anti-inflammatory properties, and 3D-printing application of Origanum vulgare L. ssp. hirtum extract. The extract revealed a diverse range of phenolic compounds, with rosmarinic acid as the predominant compound (47.76%). The extract showed moderate to high lipoxygenase inhibition (IC50 = 32.0 µg/mL), suggesting its potential as an anti-inflammatory agent. It also exhibited strong antioxidant activity, with hydrogen peroxide scavenging (SC50 = 99.2 µg/mL) and hydroxyl radical scavenging (IC50 = 64.12 µg/mL) capabilities. In cellular studies, high concentrations (50 µg/mL and 100 µg/mL) significantly decreased intracellular ROS production in Caco-2 cells (reductions exceeding 53% and 64%, respectively). Moreover, the extract suppressed NO production in LPS-stimulated J774A.1 macrophages in a concentration-dependent manner. The study also explores the incorporation of the extract into 3D-printed gummies. The gels exhibited a shear-thinning behavior, which was essential for successful extrusion-based 3D printing. The incorporation of Origanum extract significantly influenced the mechanical strength and compaction properties of the 3D-printed gummies before breaking (1.6-fold increase) allowing for a better mouth feeling. PXRD and FTIR analyses confirmed the amorphous nature of the 3D-printed gummies and the interaction between active ingredients and excipients utilized for printing. These findings demonstrated the potential for semisolid extrusion 3D printing at room temperature to transform a culinary herb (Origanum vulgare spp. hirtum) into a healthcare product with antioxidant and anti-inflammatory properties. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Pharmaceutical Applications of Gels)
Show Figures

Graphical abstract

19 pages, 1284 KiB  
Article
Effects of Different Natural Additives Alternative to Chemical Ones on Artisanal Bologna-Type Sausages Shelf Life
by Marica Egidio, Marika Di Paolo, Loriana Casalino, Valeria Vuoso, Sophia Alesio, Alma Sardo and Raffaele Marrone
Appl. Sci. 2025, 15(7), 3571; https://doi.org/10.3390/app15073571 - 25 Mar 2025
Viewed by 453
Abstract
This study aims to evaluate the effects of mandarin peel (Citrus reticulata L.), oregano (Origanum vulgare), and common lambsquarter (Chenopodium album) powders as natural additives on the shelf lives of artisanal Bologna-type sausages by comparing them with a [...] Read more.
This study aims to evaluate the effects of mandarin peel (Citrus reticulata L.), oregano (Origanum vulgare), and common lambsquarter (Chenopodium album) powders as natural additives on the shelf lives of artisanal Bologna-type sausages by comparing them with a chemically preserved control formulation. In this regard, four mortadella formulations (MTS1, MTS2, MTS3, and MTC) were produced and analyzed for physicochemical, microbiological, rheological, and sensory properties at days 1 (T0), 15 (T1), 25 (T2), and 30 (T3) after vacuum packaging. The results highlighted greater performances in the experimental samples MTS2 (made with common lambsquarters) and MTS3 (made with oregano), particularly in microbiological stability and antioxidant activity, which were similar to those of the control sample (MTC), with TBAR values extremely low, even at the end of the storage for both MTS2 (0.65 mg MDA/kg) and MTS3 (1.11 mg MDA/kg), reflecting effective lipid oxidation control. The sensory analysis further revealed oregano-containing mortadella (MTS3) as the most preferred sample for appearance and taste. These findings suggest that natural additives, like oregano or lambsquarter powders, could replace or complement nitrites in Bologna-type sausages, ensuring product quality, safety, and shelf life while meeting consumer demand for clean-label and chemical-additive-free products. Further research could optimize these formulations to support commercial applications. Full article
Show Figures

Figure 1

17 pages, 762 KiB  
Review
Chemical Composition, Biological Activity, and Potential Uses of Oregano (Origanum vulgare L.) and Oregano Essential Oil
by Renata Nurzyńska-Wierdak and Magdalena Walasek-Janusz
Pharmaceuticals 2025, 18(2), 267; https://doi.org/10.3390/ph18020267 - 18 Feb 2025
Cited by 7 | Viewed by 6571
Abstract
Medicinal aromatic plants (MAPs) are a rich and diverse source of traditional and modern medicines. Aromatic plants contain valuable essential oils that exhibit numerous biological activities. Essential oils are used in pharmaceutical production, cosmetics, and food preservation to ensure the microbiological stability of [...] Read more.
Medicinal aromatic plants (MAPs) are a rich and diverse source of traditional and modern medicines. Aromatic plants contain valuable essential oils that exhibit numerous biological activities. Essential oils are used in pharmaceutical production, cosmetics, and food preservation to ensure the microbiological stability of products. Plants from the Lamiaceae family, including Origanum vulgare L., are a source of raw materials with antimicrobial and antioxidant properties, and they can be utilized in the production of new drugs and other bioproducts. Oregano is an example of a plant with great potential, known for its traditional health-related and culinary applications and its growing significance in the production of medicines, cosmetics, antiseptics, and preservatives. This work aims to consolidate the current research results on the occurrence, acquisition, use, and medicinal and dietary value of common oregano and oregano essential oil. The obtained results indicate that oregano is a valuable medicinal and culinary plant, serving as a source of natural antiseptics and protective agents. Oregano essential oil, rich in thymol and carvacrol, has a number of health-promoting properties. These compounds (also present in extracts) exhibit significant antioxidant, anti-inflammatory, antiangiogenic, anticancer, and antimicrobial activities. The research findings highlight the promising role of these compounds as potential structures in the search for new antimicrobial and antibiofilm agents. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

31 pages, 5603 KiB  
Article
Oregano Young Plants Cultured at Low Temperature Reveal an Enhanced Healing Effect of Their Extracts: Anatomical, Physiological and Cytotoxicity Approach
by Aikaterina L. Stefi, Maria Chalkiadaki, Katerina Dimitriou, Konstantina Mitsigiorgi, Dimitrios Gkikas, Danae Papageorgiou, Georgia C. Ntroumpogianni, Dido Vassilacopoulou, Maria Halabalaki and Nikolaos S. Christodoulakis
Metabolites 2025, 15(2), 103; https://doi.org/10.3390/metabo15020103 - 7 Feb 2025
Viewed by 1526
Abstract
Background: The germination and early development of Origanum vulgare L. subsp. hirtum (Link) Ietswaart (Greek oregano) were studied to assess the plant’s response to different temperatures. Methods: After germination, seedlings were cultivated in control (25 °C) and cold (15 °C) chambers with standard [...] Read more.
Background: The germination and early development of Origanum vulgare L. subsp. hirtum (Link) Ietswaart (Greek oregano) were studied to assess the plant’s response to different temperatures. Methods: After germination, seedlings were cultivated in control (25 °C) and cold (15 °C) chambers with standard growth parameters. Comparative analyses of plant morphology and leaf anatomy were conducted to identify structural modifications induced by different temperatures. Physiological evaluations, including photosynthetic pigment measurements, phenolic content, and antioxidant activity, were performed to assess differences between the plants grown under the two temperature conditions. Methanolic extracts from the leaves were tested for cytotoxicity on MCF-7 breast adenocarcinoma cells and SH-SY5Y neuroblastoma cells, as well as on nine microbial strains. Additionally, biomarkers from the leaves affected by temperature changes were determined using LC-HRMS/MS analysis. Results: Comparative analyses revealed distinct structural and physiological modifications under cold conditions. The methanolic extracts from plants grown at 15 °C exhibited notably higher cytotoxic activity in both cell lines but demonstrated no activity against microbial strains. The results highlight the influence of low temperature on enhancing the bioactive properties of Greek oregano. Conclusions: The findings provide valuable insights into the environmental adaptability of oregano, demonstrating the impact of low temperature on its bioactive properties. The therapeutic potential of methanolic extracts cultured at 15 °C is imprinted in cytotoxicity in SH-SY5Y and MCF-7 cells and the absence of any activity against microbial strains. Full article
Show Figures

Figure 1

Back to TopTop