Life Cycle Assessment of PFAS Removal from Landfill Leachate at the Laboratory Scale
Abstract
1. Introduction
2. Materials and Methods
- Clariflocculation, described in Section 2.1.2. It consists of a chemical–physical treatment where pollutants and suspended substances are aggregated and deposited thanks to charge interactions through the use of specific coagulating and precipitating agents, FeCl3 and Ca(OH)2 in this case. Several studies have demonstrated that flocculation and coagulation processes reduce the concentration of PFAS in the water matrices by exploiting their adsorption onto flocs via hydrophobic interactions and enhancing their removal [12,13].
- Clariflocculation in the presence of PAC in a single-step process (PAC SS), described in Section 2.1.3. The tested amounts of PAC were 7.3 g/L, 17 g/L, and 33 g/L. This process exploits the primary removal mechanism of PAC, which consists of the physical adsorption of pollutants onto the highly porous surface, mainly through hydrophobic and electrostatic interactions [26,27].
- Clariflocculation and PAC adsorption in a double-step process (PAC DS), described in Section 2.1.4. The tested amounts of PAC were 3.3 g/L, 5 g/L, 7.3 g/L, and 8.7 g/L. In this framework, the PAC only comes into contact with the clarified fraction resulting from the clariflocculation step. This should decrease the PAC poisoning due to the organic and inorganic contaminants that could negatively affect their adsorption capacity. This approach also allows the collection and recovery of the PAC at the end of the process since it is not included in the previous steps’ sludges.
- Fenton oxidation (main reactants: FeCl2 and H2O2), described in Section 2.1.5. This process is one of the most common techniques in wastewater and leachate treatment worldwide. Thanks to the production of highly reactive hydroxyl radicals (•OH) and hydrogen (•H), this technique is effective in the removal and abatement of organic content and pollutants [28,29].
2.1. Laboratory Procedures
2.1.1. PFAS Analysis Procedure
2.1.2. Clariflocculation
2.1.3. Clariflocculation in Presence of PAC in a Single-Step Process (PAC SS)
2.1.4. Clariflocculation and PAC Adsorption in a Double-Step Process (PAC DS)
2.1.5. Fenton Oxidation
2.2. Life Cycle Assessment
2.2.1. Goal and Scope Definition
2.2.2. Life Cycle Inventory Analysis
2.2.3. Life Cycle Impact Assessment
2.2.4. Uncertainty Analysis
3. Results
3.1. Removal Efficiency of PFAS
3.2. Life Cycle Assessment Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SI | Supporting information |
| LCA | Life cycle assessment |
| PFAS | Per- and polyfluoroalkyl substances |
| PFOA | Perfluorooctanoic acid |
| PFOS | Perfluorooctainoicsulfonic acid |
| PFBA | Perfluorobutanoic acid |
| PFBS | Perfluorobutanoicsulfonic acid |
| PFHxA | Perfluorohexanoic acid |
| WWTP | Wastewater treatment plant |
| PAC | Particulate activated carbon |
| ASTM | Advancing standards transforming markets |
| UPLC | Ultra-performance liquid chromatography |
| LOQ | Limit of quantification |
| ISO | International standardisation and organisation |
| LCI | Life cycle inventory |
| LCIA | Life cycle impact assessment |
| UNEP | United Nations Environment Programme |
| SETAC | Society of Environmental Toxicology and Chemistry |
| CF | Characterisation factor |
| FU | Functional unit |
| EE | Electrical energy |
| SS | Single-step |
| DS | Double-step |
| VOC | Volatile organic compound |
| H | Hierarchical |
| GW | Global warming |
| HTc | Human carcinogenic toxicity |
| HTnc | Human non-carcinogenic toxicity |
| PMF | Particulate matter formation |
| HH | Human health |
| EC | Ecotoxicity |
References
- Goldenman, G.; Fernandes, M.; Holland, M.; Tugran, T.; Nordin, A.; Schoumacher, C.; McNeill, A. The Cost of Inaction: A Socioeconomic Analysis of Environmental and Health Impacts Linked to Exposure to PFAS; Nordic Council of Ministers: Copenhagen, Denmark, 2019. [Google Scholar]
- Gaines, L.G.T. Historical and current usage of per- and polyfluoroalkyl substances (PFAS): A literature review. Am. J. Ind. Med. 2023, 66, 353–378. [Google Scholar] [CrossRef]
- European Chemicals Agency. Per-and Polyfluoroalkyl Substances (PFAS) Legislation. Available online: https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas (accessed on 14 December 2025).
- Clara, M.; Scheffknecht, C.; Scharf, S.; Weiss, S.; Gans, O. Emissions of perfluorinated alkylated substances (PFAS) from point sources—Identification of relevant branches. Water Sci. Technol. 2008, 58, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Glüge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z. An overview of the uses of per-And polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts 2020, 22, 2345–2373. [Google Scholar] [CrossRef]
- Feng, D.; Song, C.; Mo, W. Environmental, human health, and economic implications of landfill leachate treatment for per-and polyfluoroalkyl substance removal. J. Environ. Manag. 2021, 289, 112558. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Y.; Liu, Y.; Bowden, J.A.; Townsend, T.G.; Solo-Gabriele, H.M. Do PFAS changes in landfill leachate treatment systems correlate with changes in physical chemical parameters? Waste Manag. 2022, 151, 49–59. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Liu, Y.; Bowden, J.A.; Tolaymat, T.M.; Townsend, T.G.; Solo-Gabriele, H.M. Concentrations of perfluoroalkyl and polyfluoroalkyl substances before and after full-scale landfill leachate treatment. Waste Manag. 2022, 153, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Fang, D.; Wang, J.; Cui, D.; Dong, X.; Tang, C.; Zhang, L.; Yue, D. Recent Advances of Landfill Leachate Treatment. J. Indian Inst. Sci. 2021, 101, 685–724. [Google Scholar] [CrossRef]
- Moravia, W.G.; Amaral, M.C.S.; Lange, L.C. Evaluation of landfill leachate treatment by advanced oxidative process by Fenton’s reagent combined with membrane separation system. Waste Manag. 2013, 33, 89–101. [Google Scholar] [CrossRef]
- Bandala, E.R.; Liu, A.; Wijesiri, B.; Zeidman, A.B.; Goonetilleke, A. Emerging materials and technologies for landfill leachate treatment: A critical review. Environ. Pollut. 2021, 291, 118133. [Google Scholar] [CrossRef]
- Wang, P.; An, G.; Carra, I.; Hassard, F.; Moreno, P.C.; Sakar, H.; Jodkowska, M.; Wang, D.; Jefferson, B.; Chu, W.; et al. Removal of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) by coagulation: Influence of coagulant and dosing conditions. Sep. Purif. Technol. 2024, 355, 129562. [Google Scholar] [CrossRef]
- Maroli, A.S.; Zhang, Y.; Lubiantoro, J.; Venkatesan, A.K. Surfactant-enhanced coagulation and flocculation improves the removal of perfluoroalkyl substances from surface water. Environ. Sci. Adv. 2024, 3, 1714–1721. [Google Scholar] [CrossRef]
- Bao, Y.; Niu, J.; Xu, Z.; Gao, D.; Shi, J.; Sun, X.; Huang, Q. Removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from water by coagulation: Mechanisms and influencing factors. J. Colloid Interface Sci. 2014, 434, 59–64. [Google Scholar] [CrossRef]
- Pan, C.G.; Liu, Y.S.; Ying, G.G. Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: Removal efficiency and exposure risk. Water Res. 2016, 106, 562–570. [Google Scholar] [CrossRef]
- Walker, T.; Milligan, K.A. From persistence to progress: Assessing per-and polyfluoroalkyl substances (PFAS) environmental impact and advances in photo-assisted fenton chemistry for remediation. Front. Environ. Chem. 2025, 6, 1591290. [Google Scholar] [CrossRef]
- Nhu, H.D.H.; Van Tri, D.; Le Luu, T.; Trippel, J.; Wagner, M. Degradation of 29 per-and polyfluoroalkyl substances (PFAS) in water using fenton-assisted electrochemical oxidation process. Sep. Purif. Technol. 2025, 362, 131908. [Google Scholar] [CrossRef]
- Schlesinger, D.R.; McDermott, C.; Le, N.Q.; Ko, J.S.; Johnson, J.K.; Demirev, P.A.; Xia, Z. Destruction of per/poly-fluorinated alkyl substances by magnetite nanoparticle-catalyzed UV-Fenton reaction. Environ. Sci. Water Res. Technol. 2022, 8, 2732. [Google Scholar] [CrossRef]
- Ribera-Pi, J.; Badia-Fabregat, M.; Espí, J.; Clarens, F.; Jubany, I.; Martínez-Lladó, X. Decreasing environmental impact of landfill leachate treatment by MBR, RO and EDR hybrid treatment. Environ. Technol. 2021, 42, 3508–3522. [Google Scholar] [CrossRef]
- Di Maria, F.; Sisani, F. A life cycle assessment of conventional technologies for landfill leachate treatment. Environ. Technol. Innov. 2017, 8, 411–422. [Google Scholar] [CrossRef]
- Zhang, L.; Bai, H.; Zhang, Y.; Wang, Y.; Yue, D. Life Cycle Assessment of Leachate Treatment Strategies. Environ. Sci. Technol. 2021, 55, 13264–13273. [Google Scholar] [CrossRef] [PubMed]
- Boyer, T.H.; Ellis, A.; Fang, Y.; Schaefer, C.E.; Higgins, C.P.; Strathmann, T.J. Life cycle environmental impacts of regeneration options for anion exchange resin remediation of PFAS impacted water. Water Res. 2021, 207, 117798. [Google Scholar] [CrossRef]
- Li, G.; Dunlap, J.; Wang, Y.; Huang, Q.; Li, K. Environmental Life Cycle Assessment (LCA) of Treating PFASs with Ion Exchange and Electrochemical Oxidation Technology. ACS EST Water 2022, 2, 1555−1564. [Google Scholar] [CrossRef]
- Emery, I.; Kempisty, D.; Fain, B.; Mbonimpa, E. Evaluation of treatment options for well water contaminated with perfluorinated alkyl substances using life cycle assessment. Int. J. Life Cycle Assess. 2019, 24, 117–128. [Google Scholar] [CrossRef]
- Ellis, A.C.; Boyer, T.H.; Fang, Y.; Liu, C.J.; Strathmann, T.J. Life cycle assessment and life cycle cost analysis of anion exchange and granular activated carbon systems for remediation of groundwater contaminated by per-and polyfluoroalkyl substances (PFASs). Water Res. 2023, 243, 120324. [Google Scholar] [CrossRef]
- Cantoni, B.; Turolla, A.; Wellmitz, J.; Ruhl, A.S.; Antonelli, M. Perfluoroalkyl substances (PFAS) adsorption in drinking water by granular activated carbon: Influence of activated carbon and PFAS characteristics. Sci. Total Environ. 2021, 795, 148821. [Google Scholar] [CrossRef]
- Kim, G.; Mengesha, D.N.; Choi, Y. Adsorption dynamics of per-and polyfluoroalkyl substances (PFAS) on activated carbon: Interplay of surface chemistry and PFAS structural properties. Sep. Purif. Technol. 2024, 349, 127851. [Google Scholar] [CrossRef]
- Deng, Y.; Englehardt, J.D. Englehardt, Treatment of landfill leachate by the Fenton process. Water Res. 2006, 40, 3683–3694. [Google Scholar] [CrossRef]
- Umar, M.; Aziz, H.A.; Yusoff, M.S. Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Manag. 2010, 30, 2113–2121. [Google Scholar] [CrossRef] [PubMed]
- ASTM D7979-19; Standard Test Method for Determination of per-and Polyfluoroalkyl Substances in Water, Sludge, Influent, Effluent, and Wastewater by Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS). US Department of Health and Human Services: Washington, DC, USA, 2020.
- Method 537.1; Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). National Exposure Research Laboratory; Office of Research and Development; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2018.
- Picchietti, M.; Facchini, M.; Passarini, F. Processi di Abbattimento dei PFAS Nei Percolati di Discarica; Alma Mater Studiorum—University of Bologna: Bologna, Italy, 2021. [Google Scholar]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Hauschild, M.Z.; Rosenbaum, R.K.; Olsen, S.I. Life Cycle Assessment—Theory and Practice; Routledge: London, UK, 2018. [Google Scholar]
- Fenton, S.E.; Ducatman, A.; Boobis, A.; DeWitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Roberts, S.M. Per-and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environ. Toxicol. Chem. 2021, 40, 606–630. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Ng, C. Absorption, distribution, and toxicity of per-and polyfluoroalkyl substances (PFAS) in the brain: A review. Environ. Sci. Process. Impacts 2021, 23, 1623–1640. [Google Scholar] [CrossRef]
- USEtox. Available online: https://usetox.org/ (accessed on 14 December 2025).
- Rosenbaum, R.K.; Bachmann, T.M.; Gold, L.S.; Huijbregts, M.A.; Jolliet, O.; Juraske, R.; Koehler, A.; Larsen, H.F.; MacLeod, M.; Margni, M.; et al. USEtox—The UNEP-SETAC toxicity model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 2008, 13, 532–546. [Google Scholar] [CrossRef]
- Holmquist, H.; Fantke, P.; Cousins, I.T.; Owsianiak, M.; Liagkouridis, I.; Peters, G.M. An (Eco)Toxicity Life Cycle Impact Assessment Framework for Per-And Polyfluoroalkyl Substances. Environ. Sci. Technol. 2020, 54, 6224–6234. [Google Scholar] [CrossRef]
- Aggarwal, R. Freshwater ecotoxicity characterization factors for PFASs. Integr. Environ. Assess. Manag. 2025, 21, 208–219. [Google Scholar] [CrossRef]
- Postacchini, L.; Ciarapica, F.E.; Bevilacqua, M. Environmental assessment of a landfill leachate treatment plant: Impacts and research for more sustainable chemical alternatives. J. Clean. Prod. 2018, 18, 1021–1033. [Google Scholar] [CrossRef]
- Igos, E.; Mailler, R.; Guillossou, R.; Rocher, V.; Gasperi, J. Life cycle assessment of powder and micro-grain activated carbon in a fluidized bed to remove micropollutants from wastewater and their comparison with ozonation. J. Clean. Prod. 2021, 287, 125067. [Google Scholar] [CrossRef]
- Piccinno, F.; Hischier, R.; Seeger, S.; Som, C. From laboratory to industrial scale: A scale-up framework for chemical processes in life cycle assessment studies. J. Clean. Prod. 2016, 135, 1085–1097. [Google Scholar] [CrossRef]
- Arfelli, F.; Pizzone, D.M.; Cespi, D.; Ciacci, L.; Ciriminna, R.; Calabrò, P.S.; Pagliaro, M.; Mauriello, F.; Passarini, F. Prospective life cycle assessment for the full valorization of anchovy fillet leftovers: The LimoFish process. Waste Manag. 2023, 168, 156–166. [Google Scholar] [CrossRef] [PubMed]
- SimaPro—PRé Sustainability, B.V. Available online: https://simapro.com/ (accessed on 14 December 2025).
- Ecoinvent—Data with Purpose. Available online: https://ecoinvent.org/ (accessed on 14 December 2025).
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- UNI 11698:2017; Gestione Ambientale di Prodotto—Stima, dichiarazione e Utilizzo Dell’incertezza dei Risultati di una Valutazione di Ciclo di Vita—Requisiti e Linee Guida. Ente Italiano di Normalzione: Milano, Italy, 2017.
- Weidema, B.P.; Wesnæs, M.S. Data quality management for life cycle inventories-an example of using data quality indicators. J. Clean. Prod. 1996, 4, 167–174. [Google Scholar] [CrossRef]
- Wang, Q.; Lechtenfeld, O.J.; Rietveld, L.C.; Schuster, J.; Ernst, M.; Hofman-Caris, R.; Kaesler, J.; Wang, C.; Yang, M.; Yu, J.; et al. How aromatic dissolved organic matter differs in competitiveness against organic micropollutant adsorption. Environ. Sci. Ecotechnol 2024, 21, 100392. [Google Scholar] [CrossRef]
- Karanfil, T.; Kitis, M.; Kilduff, J.E.; Wigton, A. Role of Granular Activated Carbon Surface Chemistry on the Adsorption of Organic Compounds 2 Natural Organic Matter. Environ. Sci. Technol. 1999, 33, 3225–3233. [Google Scholar] [CrossRef]
- Matsui, Y.; Fukuda, Y.; Inoue, T.; Matsushita, T. Effect of natural organic matter on powdered activated carbon adsorption of trace contaminants: Characteristics and mechanism of competitive adsorption. Water Res. 2003, 37, 4413–4424. [Google Scholar] [CrossRef]
- Travar, I.; Uwayezu, J.N.; Kumpiene, J.; Yeung, L.W. Challenges in the PFAS Remediation of Soil and Landfill Leachate: A Review. Adv. Environ. Eng. Res. 2021, 2, 1–40. [Google Scholar] [CrossRef]
- Malovanyy, A.; Hedman, F.; Bergh, L.; Liljeros, E.; Lund, T.; Suokko, J.; Hinrichsen, H. Comparative study of per-and polyfluoroalkyl substances (PFAS) removal from landfill leachate. J. Hazard. Mater. 2023, 460, 132505. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Sumita; Li, C.; Sun, C.; Marmier, N. A Review of the Treatment Process of Perfluorooctane Compounds in the Waters: Adsorption, Flocculation, and Advanced Oxidative Process. Water 2022, 14, 2692. [Google Scholar] [CrossRef]
- Mitchell, S.M.; Ahmad, M.; Teel, A.L.; Watts, R.J. Degradation of Perfluorooctanoic Acid by Reactive Species Generated through Catalyzed H2O2 Propagation Reactions. Environ. Sci. Technol. Lett. 2013, 1, 117–121. [Google Scholar] [CrossRef]
- Chen, X.; Matthews, H.S.; Griffin, W.M. Uncertainty caused by life cycle impact assessment methods: Case studies in process-based LCI databases. Resour. Conserv. Recycl. 2021, 172, 105678. [Google Scholar] [CrossRef]
- Rossi, E.; Arfelli, F.; Barani, L.; Cespi, D.; Ciacci, L.; Passarini, F. Improving the waste management system in an Italian footwear district applying MFA and LCA. Sci. Total Environ. 2024, 955, 177289. [Google Scholar] [CrossRef]
- Maga, D.; Aryan, V.; Bruzzano, S. Environmental Assessment of Various End-of-Life Pathways for Treating Per-and Polyfluoroalkyl Substances in Spent Fire-Extinguishing Waters. Environ. Toxicol. Chem. 2021, 40, 947–957. [Google Scholar] [CrossRef]
- Thompson, K.A.; Shimabuku, K.K.; Kearns, J.P.; Knappe, D.R.U.; Summers, R.S.; Cook, S.M. Environmental Comparison of Biochar and Activated Carbon for Tertiary Wastewater Treatment. Environ. Sci. Technol. 2016, 50, 11253–11262. [Google Scholar] [CrossRef]
- Vilén, A.; Laurell, P.; Vahala, R. Comparative Life Cycle Assessment of Activated Carbon Production from Various Raw Materials. J. Environ. Manag. 2022, 324, 116356. [Google Scholar] [CrossRef] [PubMed]



| Technique | PFAS Removal Efficiency (%) |
|---|---|
| Clariflocculation | 20.6 |
| PAC 7.3 g/L SS | 64.5 |
| PAC 17 g/L SS | 92.4 |
| PAC 33 g/L SS | 98.9 |
| PAC 3.3 g/L DS | 44.3 |
| PAC 5.0 g/L DS | 53.1 |
| PAC 7.3 g/L DS | 70.2 |
| PAC 8.7 g/L DS | 82.2 |
| Fenton | 62.3 |
| Incineration | Landfilling | |||||||
|---|---|---|---|---|---|---|---|---|
| FU treatment of 1 m3 of leachate | HTc | HTnc | PMF | HTc | HTnc | PMF | ||
| GW | 0.968 | 0.993 | 0.907 | GW | 0.993 | 0.993 | 0.841 | |
| HTc | 0.988 | 0.781 | HTc | 0.992 | 0.801 | |||
| HTnc | 0.856 | HTnc | 0.78 | |||||
| FU removal of 1 g of PFAS | HTc | HTnc | PMF | HTc | HTnc | PMF | ||
| GW | 0.88 | 0.924 | 0.525 | GW | 0.924 | 0.957 | 0.412 | |
| HTc | 0.828 | 0.201 | HTc | 0.834 | 0.212 | |||
| HTnc | 0.507 | HTnc | 0.366 | |||||
| FU = treatment of 1 m3 of leachate | Grams of PAC | Kg of Sludge | ||
| Incineration | Landfilling | Incineration | Landfilling | |
| Global warming | 0.997 | 0.997 | 0.877 | 0.931 |
| Human carcinogenic toxicity | 0.998 | 0.998 | 0.958 | 0.943 |
| Human non-carcinogenic toxicity | 0.998 | 0.998 | 0.926 | 0.966 |
| Particulate matter formation | 0.999 | 0.999 | 0.622 | 0.612 |
| Single score | 0.998 | 0.998 | 0.812 | 0.854 |
| FU = removal of 1 g of PFAS | Grams of PAC | Kg of Sludge | ||
| Incineration | Landfilling | Incineration | Landfilling | |
| Global warming | 0.988 | 0.986 | 0.929 | 0.912 |
| Human carcinogenic toxicity | 0.98 | 0.979 | 0.924 | 0.957 |
| Human non-carcinogenic toxicity | 0.969 | 0.971 | 0.8 | 0.782 |
| Particulate matter formation | 0.958 | 0.957 | 0.297 | 0.284 |
| Single score | 0.974 | 0.974 | 0.713 | 0.757 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bedogni, F.; Arfelli, F.; Picchietti, M.; Facchini, M.; Ciacci, L.; Cespi, D.; Passarini, F. Life Cycle Assessment of PFAS Removal from Landfill Leachate at the Laboratory Scale. Environments 2026, 13, 35. https://doi.org/10.3390/environments13010035
Bedogni F, Arfelli F, Picchietti M, Facchini M, Ciacci L, Cespi D, Passarini F. Life Cycle Assessment of PFAS Removal from Landfill Leachate at the Laboratory Scale. Environments. 2026; 13(1):35. https://doi.org/10.3390/environments13010035
Chicago/Turabian StyleBedogni, Federico, Francesco Arfelli, Matteo Picchietti, Massimo Facchini, Luca Ciacci, Daniele Cespi, and Fabrizio Passarini. 2026. "Life Cycle Assessment of PFAS Removal from Landfill Leachate at the Laboratory Scale" Environments 13, no. 1: 35. https://doi.org/10.3390/environments13010035
APA StyleBedogni, F., Arfelli, F., Picchietti, M., Facchini, M., Ciacci, L., Cespi, D., & Passarini, F. (2026). Life Cycle Assessment of PFAS Removal from Landfill Leachate at the Laboratory Scale. Environments, 13(1), 35. https://doi.org/10.3390/environments13010035

