Using Species Distribution Modeling to Guide Surveys for a Rare Plant (Cymopterus sessiliflorus): Climate and Landscape Variables Predict Potential Distribution
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Species and Area
2.2. Species Distribution Modeling
2.3. Model Validation in the Field
2.4. Pollinating Insects
3. Results
3.1. Habitat Suitability Based on Species Distribution Model
3.2. Observations from Field Surveys
3.3. Potential Pollinators
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gibson, R.H.; Nelson, I.L.; Hopkins, G.W.; Hamlett, B.J.; Memmott, J. Pollinator webs, plant communities and the conservation of rare plants: Arable weeds as a case study. J. Appl. Ecol. 2006, 43, 246–257. [Google Scholar] [CrossRef]
- Carvalheiro, L.; Barbosa, E.; Memmott, J. Pollinator networks, alien species and the conservation of rare plants: Trinia glauca as a case study. J. Appl. Ecol. 2008, 45, 1419–1427. [Google Scholar] [CrossRef]
- Wei, N.; Kaczorowski, R.L.; Arceo-Gómez, G.; O’Neill, E.M.; Hayes, R.A.; Ashman, T.L. Pollinators contribute to the maintenance of flowering plant diversity. Nature 2021, 597, 688–692. [Google Scholar] [CrossRef]
- Flather, C.; Sieg, C. Species Rarity: Definition, Causes, and Classification; Island Press: Washington, DC, USA, 2007; pp. 40–66. [Google Scholar]
- Dee, L.E.; Cowles, J.; Isbell, F.; Pau, S.; Gaines, S.D.; Reich, P.B. When Do Ecosystem Services Depend on Rare Species? Trends Ecol. Evol. 2019, 34, 746–758. [Google Scholar] [CrossRef]
- Jain, M.; Flynn, D.F.B.; Prager, C.M.; Hart, G.M.; DeVan, C.M.; Ahrestani, F.S.; Palmer, M.I.; Bunker, D.E.; Knops, J.M.H.; Jouseau, C.F.; et al. The importance of rare species: A trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies. Ecol. Evol. 2014, 4, 104–112. [Google Scholar] [CrossRef]
- Lyons, K.; Brigham, C.; Traut, B.; Schwartz, M. Rare Species and Ecosystem Functioning. Conserv. Biol. 2005, 19, 1019–1024. [Google Scholar] [CrossRef]
- Channell, R.; Lomolino, M.V. Trajectories to extinction: Spatial dynamics of the contraction of geographical ranges. J. Biogeogr. 2000, 27, 169–179. [Google Scholar] [CrossRef]
- Arenas, M.; Ray, N.; Currat, M.; Excoffier, L. Consequences of range contractions and range shifts on molecular diversity. Mol. Biol. Evol. 2012, 29, 207–218. [Google Scholar] [CrossRef]
- Rogan, J.E.; Parker, M.R.; Hancock, Z.B.; Earl, A.D.; Buchholtz, E.K.; Chyn, K.; Martina, J.; Fitzgerald, L.A. Genetic and demographic consequences of range contraction patterns during biological annihilation. Sci. Rep. 2023, 13, 1691. [Google Scholar] [CrossRef] [PubMed]
- Parmesan, C.; Gaines, S.; Gonzalez, L.; Kaufman, D.M.; Kingsolver, J.; Townsend Peterson, A.; Sagarin, R. Empirical perspectives on species borders: From traditional biogeography to global change. Oikos 2005, 108, 58–75. [Google Scholar] [CrossRef]
- Faurby, S.; Araújo, M.B. Anthropogenic range contractions bias species climate change forecasts. Nat. Clim. Change 2018, 8, 252–256. [Google Scholar] [CrossRef]
- Diamond, S.E. Contemporary climate-driven range shifts: Putting evolution back on the table. Funct. Ecol. 2018, 32, 1652–1665. [Google Scholar] [CrossRef]
- Pearson, R.G. Species’ Distribution Modeling for Conservation Educators and Practitioners; Center for Biodiversity and Conservation, American Museum of Natural History: New York, NY, USA, 2010. [Google Scholar]
- Proosdij, A.S.J.; Sosef, M.; Wieringa, J.; Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 2016, 39, 542–552. [Google Scholar] [CrossRef]
- McCune, J. Species distribution models predict rare species occurrences despite significant effects of landscape context. J. Appl. Ecol. 2016, 53, 1871–1879. [Google Scholar] [CrossRef]
- Rhoden, C.M.; Peterman, W.E.; Taylor, C.A. Maxent-directed field surveys identify new populations of narrowly endemic habitat specialists. PeerJ 2017, 5, e3632. [Google Scholar] [CrossRef]
- Ahmadi, K.; Mahmoodi, S.; Pal, S.C.; Saha, A.; Chowdhuri, I.; Nguyen, T.T.; Jarvie, S.; Szostak, M.; Socha, J.; Thai, V.N. Improving species distribution models for dominant trees in climate data-poor forests using high-resolution remote sensing. Ecol. Model. 2023, 475, 110190. [Google Scholar] [CrossRef]
- Rocky MountainHerbarium. Occurance dataset. Available online: https://www.rockymountainherbarium.org/ (accessed on 15 February 2023).
- Downie, S.R.; Hartman, R.L.; Sun, F.-J.; Katz-Downie, D.S. Polyphyly of the spring-parsleys (Cymopterus): Molecular and morphological evidence suggests complex relationships among the perennial endemic genera of western North American Apiaceae. Can. J. Bot. 2002, 80, 1295–1324. [Google Scholar] [CrossRef]
- Theobald, W.L.; Tseng, C.C.; Mathias, M.E. A Revision of Aletes and Neoparrya (Umbelliferae). Brittonia 1963, 16, 296–315. [Google Scholar] [CrossRef]
- Hartman, R.L. New combinations in the genus Cymopterus (Apiaceae) of the southwestern United States. SIDA Contrib. Bot. 2006, 22, 955–957. [Google Scholar]
- Fertig, W. Flora of Colorado. 2015. Jennifer Ackerfield. Syst. Bot. 2016, 40, 1159–1160. [Google Scholar] [CrossRef]
- Intermountain Region Herbaria Network. Available online: https://intermountainbiota.org/portal (accessed on 6 June 2023).
- Allred, K.W.; Ivey, R.D.; Jercinovic, E.M. Flora Neomexicana; Kelly, W.A., Ed.; BRIT Press: Fort Worth, TX, USA, 2008. [Google Scholar]
- California Botanic Garden Herbarium. Occurrence Dataset. Available online: https://www.calbg.org/collections/herbarium (accessed on 6 June 2023).
- San Juan College Herbarium. Occurrence Dataset. Available online: https://portal.idigbio.org/portal/recordsets/8ec76c75-a673-4682-bfde-00a18bc12794 (accessed on 6 June 2023).
- Western Regional Climate Center. 2025. Available online: https://wrcc.dri.edu/ (accessed on 15 December 2023).
- Steven, J.; Phillips, M.D.; Schapire, R.E. Maxent Software for Modeling Species Niches and Distributions (Version 3.4.1). Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 15 March 2023).
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Davidson, A.; Aycrigg, J.; Grossmann, E.; Kagan, J.; Lennartz, S.; McDonough, S.; Miewald, T.; Ohmann, J.; Radel, A.; Sajwaj, T. Digital Land Cover Map for the Northwestern United States: Northwest Gap Analysis Project; USGS GAP Analysis Program: Moscow, ID, USA, 2009.
- Gesch, D.; Oimoen, M.; Greenlee, S.; Nelson, C.; Steuck, M.; Tyler, D. The national elevation dataset. Photogramm. Eng. Remote Sens. 2002, 68, 5–32. [Google Scholar]
- Jenness, J. Topographic Position Index (tpi_jen. avx_extension for Arcview 3. x, v. 1.3 a, Jenness Enterprises [EB/OL]. 2006. Available online: http://www.jennessent.com/arcview/tpi.htm (accessed on 10 March 2023).
- Stillman, S.T. A comparison of Three Automated Precipitation Simulation Models: ANUSPLIN, MTCLIM-3D, and PRISM. Master’s Thesis, Montana State University, Bozeman, MT, USA, 1996. [Google Scholar]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. A J. R. Meteorol. Soc. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef]
- LANDFIRE. Existing Vegetation Type Layer, LANDFIRE 1.1.0. Available online: https://www.landfire.gov/viewer/ (accessed on 9 February 2024).
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. 2023. Available online: https://cran.r-project.org/web/packages/raster/index.html (accessed on 1 October 2025).
- R Core Team. R: A Language and Environment for Statistical Computing, 4.2.2; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol. Evol. 2012, 3, 327–338. [Google Scholar] [CrossRef]
- Lanzante, J.R.; Dixon, K.W.; Nath, M.J.; Whitlock, C.E.; Adams-Smith, D. Some pitfalls in statistical downscaling of future climate. Bull. Am. Meteorol. Soc. 2018, 99, 791–803. [Google Scholar] [CrossRef]
- Pourmokhtarian, A.; Driscoll, C.T.; Campbell, J.L.; Hayhoe, K.; Stoner, A.M. The effects of climate downscaling technique and observational data set on modeled ecological responses. Ecol. Appl. 2016, 26, 1321–1337. [Google Scholar] [CrossRef]
- Tronstad, L.; Dillon, M. Field Guide to Wyoming’s Native Bees; Biodiversity Institute, University of Wyoming: Laramie, WY, USA, 2019. [Google Scholar]
- Williams, P.H.; Thorp, R.W.; Richardson, L.L.; Colla, S.R. Bumble bees of north America. In Bumble Bees of North America; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar]
- Miller, J. Species distribution modeling. Geogr. Compass 2010, 4, 490–509. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Abdelaal, M.; Fois, M.; Fenu, G.; Bacchetta, G. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. in Egypt. Ecol. Inform. 2019, 50, 68–75. [Google Scholar] [CrossRef]
- Tronstad, L.M.; Brown, K.M.; Andersen, M.D. Using species distribution models to guide field surveys for an apparently rare aquatic beetle. J. Fish Wildl. Manag. 2018, 9, 330–339. [Google Scholar] [CrossRef]
- Williams, J.N.; Seo, C.; Thorne, J.; Nelson, J.K.; Erwin, S.; O’Brien, J.M.; Schwartz, M.W. Using species distribution models to predict new occurrences for rare plants. Divers. Distrib. 2009, 15, 565–576. [Google Scholar] [CrossRef]
- Marcer, A. A Contribution to the Use, Modelling and Organization of Data in Biodiversity Conservation; Universitat Autònoma de Barcelona: Barcelona, Spain, 2013. [Google Scholar]
- Amirkhiz, R.G.; Frey, J.K.; Cain, J.W., III; Breck, S.W.; Bergman, D.L. Predicting spatial factors associated with cattle depredations by the Mexican wolf (Canis lupus baileyi) with recommendations for depredation risk modeling. Biol. Conserv. 2018, 224, 327–335. [Google Scholar] [CrossRef]
- Rodríguez, J.P.; Brotons, L.; Bustamante, J.; Seoane, J. The application of predictive modelling of species distribution to biodiversity conservation. Divers. Distrib. 2007, 13, 243–251. [Google Scholar] [CrossRef]
- Crawford, P.H.; Hoagland, B.W. Using species distribution models to guide conservation at the state level: The endangered American burying beetle (Nicrophorus americanus) in Oklahoma. J. Insect Conserv. 2010, 14, 511–521. [Google Scholar] [CrossRef]
- Chen, I.-C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef] [PubMed]
- Rehm, E.; Olivas, P.; Stroud, J.; Feeley, K. Losing your edge: Climate change and the conservation value of range-edge populations. Ecol. Evol. 2015, 5, 4315–4326. [Google Scholar] [CrossRef]
- McNichol, B.H.; Russo, S.E. Plant Species’ Capacity for Range Shifts at the Habitat and Geographic Scales: A Trade-Off-Based Framework. Plants 2023, 12, 1248. [Google Scholar] [CrossRef]
- Brodie, J.F.; Freeman, B.G.; Mannion, P.D.; Hargreaves, A.L. Shifting, expanding, or contracting? Range movement consequences for biodiversity. Trends Ecol. Evol. 2025, 40, 439–448. [Google Scholar] [CrossRef]
- Handley, J.C.; Tronstad, L.M. Pollinators limit seed production in an early blooming rare plant: Evidence of a mismatch between plant phenology and pollinator emergence. Nord. J. Bot. 2023, 2023, e03877. [Google Scholar] [CrossRef]
- Wilson, J.; Isaacs, R. Weather During Bloom Affects Pollination and Yield of Highbush Blueberry. J. Econ. Entomol. 2010, 103, 557–562. [Google Scholar] [CrossRef]
- Tronstad, L.M.; Tronstad, B.P. Aquatic snails of the Bear and Powder River asins, and the Snowy Mountains of Wyoming. Report prepared by the Wyoming Natural Diversity Database for the Wyoming Fish and Wildlife Department. 2022; Available online: https://www.uwyo.edu/wyndd/_files/docs/reports/WYNDDReports/22tro03.pdf (accessed on 1 October 2025).
- Graves, T.A.; Janousek, W.M.; Gaulke, S.M.; Nicholas, A.C.; Keinath, D.A.; Bell, C.M.; Cannings, S.; Hatfield, R.G.; Heron, J.M.; Koch, J.B. Western bumble bee: Declines in the continental United States and range-wide information gaps. Ecosphere 2020, 11, e03141. [Google Scholar] [CrossRef]
- Tronstad, L.; Vaudo, A.; Crawford, M.; Handley, J. Rare endemic plants have differing roles in pollination networks: Examples from understudied sagebrush steppe ecosystems. Authorea 2025. [Google Scholar] [CrossRef]
- Tronstad, L.M.; Bell, C.; Cook, K.; Dillon, M.E. Using species distribution models to assess the status of the declining Western Bumble Bee (Hymenoptera: Apidae: Bombus occidentalis) in Wyoming, USA. Envioronments 2025, 12, 2. [Google Scholar] [CrossRef]




| Model | Variable | % Contribution | Permutation Importance |
|---|---|---|---|
| Initial model | BioClim18 | 52.1 | 83.8 |
| Initial model | Shrub | 27 | 12.3 |
| Initial model | PJ | 21 | 4 |
| Revised model | Shrub | 57.5 | 42.6 |
| Revised model | D2Outcrop | 32 | 26.3 |
| Revised model | BioClim 18 | 8.3 | 30.6 |
| Revised model | Geology | 2.2 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Weschler, M.L.; Handley, J.; Cook, K.A.; Tronstad, B.P.; Tronstad, L.M. Using Species Distribution Modeling to Guide Surveys for a Rare Plant (Cymopterus sessiliflorus): Climate and Landscape Variables Predict Potential Distribution. Environments 2026, 13, 32. https://doi.org/10.3390/environments13010032
Weschler ML, Handley J, Cook KA, Tronstad BP, Tronstad LM. Using Species Distribution Modeling to Guide Surveys for a Rare Plant (Cymopterus sessiliflorus): Climate and Landscape Variables Predict Potential Distribution. Environments. 2026; 13(1):32. https://doi.org/10.3390/environments13010032
Chicago/Turabian StyleWeschler, Michelle L., Joy Handley, Katrina A. Cook, Bryan P. Tronstad, and Lusha M. Tronstad. 2026. "Using Species Distribution Modeling to Guide Surveys for a Rare Plant (Cymopterus sessiliflorus): Climate and Landscape Variables Predict Potential Distribution" Environments 13, no. 1: 32. https://doi.org/10.3390/environments13010032
APA StyleWeschler, M. L., Handley, J., Cook, K. A., Tronstad, B. P., & Tronstad, L. M. (2026). Using Species Distribution Modeling to Guide Surveys for a Rare Plant (Cymopterus sessiliflorus): Climate and Landscape Variables Predict Potential Distribution. Environments, 13(1), 32. https://doi.org/10.3390/environments13010032

