Abstract
Documenting baseline elemental distribution patterns in crops under non-contaminated conditions provides a physiological reference for understanding constitutive metal homeostasis. This study compared the internal allocation of elements in sunflower (Helianthus annuus), wheat (Triticum aestivum), and maize (Zea mays) grown in soil with a specific geochemical profile. Soil was characterized using X-ray Fluorescence Spectroscopy (XRF) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Plants were grown under controlled conditions, and elemental concentrations in roots and shoots were quantified to calculate Bioaccumulation (BCF) and Translocation (TF) Factors. Soil analysis confirmed nickel (42.6 mg kg−1) and copper (32.8 mg kg−1) concentrations within typical global ranges for uncontaminated soils. Species exhibited different distribution tendencies: sunflower showed balanced root–shoot allocation for nickel (TF = 1.00); wheat demonstrated pronounced root retention of nickel and copper (TF < 0.5); and maize exhibited preferential translocation of copper (TF = 0.76) alongside root retention of nickel. Concentrations of lead, selenium, and silver were minimal across all species. The study delineates different species-specific tendencies in internal elemental allocation under given growth conditions. These patterns represent baseline physiological behaviors rather than responses to contamination, providing a comparative dataset that contributes to the understanding of crop ionomics and informs the interpretation of tissue metal concentrations in relation to soil conditions.