Harnessing Waste Tyres for Sustainable Riverbank Revetment and Stabilization: A Hybrid Nature-Based Pilot in Vietnam’s Mekong Delta
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Embankment Pilot Design
2.4. Stability Analysis Using FEM
- FS > 1: Structure is stable;
- FS = 1: Structure is at the limit of stability;
- FS < 1: Structure is unstable and prone to sliding failure.
- Scenario 1 (Current Condition): The residential building is a single-story house with a load of 10 kN/m over a frontage width of 10 m, and the road is classified as Class B with a load of 50 kN/m and a width of 3 m.
- Scenario 2 (Building Upgrade): The building is upgraded to three stories, with the load increasing to 30 kN/m, while the road remains unchanged.
- Scenario 3 (Road Upgrade): The road is upgraded to Class A, with a load of 70 kN/m and a width of 5 m, while the building remains as a single-story house.
- Scenario 4 (Full Upgrade): Both the building and the road are upgraded; the building is increased to three stories with a load of 30 kN/m, and the road is upgraded to Class A with a load of 70 kN/m and a width of 5 m.
2.5. Pilot and Validation of Stability
2.5.1. Embankment Construction Process
2.5.2. Displacement Validation
3. Results
3.1. Status of the Riverbank After Waste Tyre Embankment Construction
3.2. Displacement of the Embankment Measured by the Leica TS02 Plus Total Station
- -
- Section 1 (1A–1B–1C): This section shows relatively small and uniform displacements, with 1A and 1C both measuring around 9–10 mm, and 1B slightly higher. The uniformity suggests stable soil conditions and balanced load distribution in the downstream part of the structure. These low values imply that the foundational treatment, such as piling and base concrete, was effective in this segment.
- -
- Section 2 (2A–2B–2C): Displacement values in this section range from 9 mm (2C) to approximately 14–15 mm at 2A and 2B. The relatively higher movement near the top (2A) indicates potential concentration of stress or minor differential settlement at the slope’s base, possibly due to riverbank erosion or localized soil variability. Despite this, the displacements remain within acceptable limits.
- -
- Section 3 (3A–3B–3C): This is the most critical section, with the highest measured displacement at 3A (18 mm), decreasing to 3B (around 16 mm) and 3C (slightly above 13 mm). The trend here shows greater movement near the top of the embankment (3A), diminishing toward the toe (3C), which is indicative of inward rotation or shear deformation. This section likely represents a zone of weaker subsoil or higher hydraulic influence. The results suggest the need for careful observation and possibly targeted reinforcement in this upstream area.
3.3. Displacement of the Embankment Modeled by FEM
4. Discussion
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anthony, E.J.; Brunier, G.; Besset, M.; Goichot, M.; Dussouillez, P.; Nguyen, V.L. Linking rapid erosion of the Mekong River delta to human activities. Sci. Rep. 2015, 5, 14745. [Google Scholar] [CrossRef]
- IPCC. Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects; Contribution of working group II to the fifth assessment report of the intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; 1132p. [Google Scholar] [CrossRef]
- Jordan, C.; Visscher, J.; Viet Dung, N.; Apel, H.; Schlurmann, T. Impacts of human activity and global changes on future morphodynamics within the tien river, vietnamese mekong delta. Water 2020, 12, 2204. [Google Scholar] [CrossRef]
- Vo, T.M.H.; Huynh, T.P.L.; Tamas, P.; Woillez, M.-N.; Espagne, E.; Umans, L.; Eslami, S.; Nguyen, H.Q.; Minderhoud, P.S. How consistent are adaptation strategies with ongoing climatic and environmental changes in the Vietnamese Mekong Delta: A systematic review. Environ. Sci. Policy 2025, 168, 104064. [Google Scholar] [CrossRef]
- Tri, V.P.D.; Yarina, L.; Nguyen, H.Q.; Downes, N.K. Progress toward resilient and sustainable water management in the Vietnamese Mekong Delta. Wiley Interdiscip. Rev. Water 2023, 10, e1670. [Google Scholar] [CrossRef]
- Hai, D.H.; Nam, V.Q.; Samadhiya, A.; Kumar, A.; Gupta, S.; Jagtap, S. Unravelling the economic impact of climate change in Vietnam’s Mekong River Delta and Southeast region. Discov. Sustain. 2024, 5, 125. [Google Scholar] [CrossRef]
- Diep, G.H.; Pham, T.D.; Tran, V.T. Assessment of the current status of changes and stability of Hau River bank, from An Giang to the river mouth. Constr. Mater. Mag.—Minist. Constr. 2024, 14. [Google Scholar] [CrossRef]
- Hoai, H.C.; Bay, N.T.; Khoi, Đ.N.; Nga, T.N.Q. Analyzing the causes producing the rapidity of river bank erosion in Mekong delta. Vietnam. J. Hydrometeorol. 2019, 703, 42–50. [Google Scholar]
- Gao, Y.; Sarker, S.; Sarker, T.; Leta, O.T. Analyzing the critical locations in response of constructed and planned dams on the Mekong River Basin for environmental integrity. Environ. Res. Commun. 2022, 4, 101001. [Google Scholar] [CrossRef]
- Tran, D.D.; Thien, N.D.; Yuen, K.W.; Lau, R.Y.S.; Wang, J.; Park, E. Uncovering the lack of awareness of sand mining impacts on riverbank erosion among Mekong Delta residents: Insights from a comprehensive survey. Sci. Rep. 2023, 13, 15937. [Google Scholar] [CrossRef] [PubMed]
- Park, E. Sand mining in the Mekong Delta: Extent and compounded impacts. Sci. Total Environ. 2024, 924, 171620. [Google Scholar] [CrossRef]
- Duy, D.V.; Ty, T.V.; Phat, L.T.; Minh, H.V.T.; Thanh, N.T.; Downes, N.K. Assessing River Corridor Stability and Erosion Dynamics in the Mekong Delta: Implications for Sustainable Management. Earth 2025, 6, 34. [Google Scholar] [CrossRef]
- Van Le, T.; Vo, P.L.; Ha, Q.K.; Thi, V.T.; Luu, H.D. Land Subsidence in Ho Chi Minh City and the Mekong Delta Region, Vietnam: Causes, Challenges, and Solutions. In Transcending Humanitarian Engineering Strategies for Sustainable Futures; IGI Global Scientific Publishing: Hershey, PA, USA, 2023; pp. 39–64. [Google Scholar]
- Chapman, A.D.; Darby, S.E.; Hong, H.M.; Tompkins, E.L.; Van, T.P. Adaptation and development trade-offs: Fluvial sediment deposition and the sustainability of rice-cropping in An Giang Province, Mekong Delta. Clim. Change 2016, 137, 593–608. [Google Scholar] [CrossRef]
- Thang, C.N.; Giang, P.H.H.; Tri, L.H.; Anh, N.P.V. Effect of load on the stability of Ong Chuong riverbank, An Giang province. Constr. Mater. Mag.—Minist. Constr. 2023, 13, 84–89. [Google Scholar] [CrossRef]
- Thang, C.; Hino, T.; Quang, C.N.; Lam, L. Effects of ship waves on riverbank erosion in the Mekong delta: A case study in An Giang province. Lowl. Technol. Int. 2020, 22, 24–31. [Google Scholar]
- Bang, L.; Thinh, L.; Tri, L.; Duy, D.; Ty, T.; Minh, H. Research on the impacts of geological, hydrological factors on the stability of riverbanks of Cai Vung river in Hong Ngu district, Dong Thap province. Vietnam. J. Hydrometeorol. 2021, 731, 16–25. [Google Scholar] [CrossRef]
- Phat, L.T.; Duy, D.V.; Hieu, C.T.; An, N.T.; Lavane, K.; Ty, T.V. Initial assessment on the causes of riverbank instability in Chau Thanh district, Hau Giang province. Vietnam. J. Hydrometeorol. 2022, 740, 57–73. [Google Scholar] [CrossRef]
- Tisserant, M.; Bourgeois, B.; González, E.; Evette, A.; Poulin, M. Controlling erosion while fostering plant biodiversity: A comparison of riverbank stabilization techniques. Ecol. Eng. 2021, 172, 106387. [Google Scholar] [CrossRef]
- Fukuoka, S.; Watanabe, A.; Hosokawa, S.; Tomari, H.; Kyousai, S. Characteristics of a wave group generated by a tanker in a river and effects of detached breakwaters as a bank erosion measure. Proc. Hydraul. Eng. 2002, 46, 445–450. [Google Scholar] [CrossRef][Green Version]
- Polk, M.A.; Eulie, D.O. Effectiveness of living shorelines as an erosion control method in North Carolina. Estuaries Coasts 2018, 41, 2212–2222. [Google Scholar] [CrossRef]
- Sánchez-Núñez, D.A.; Bernal, G.; Mancera Pineda, J.E. The relative role of mangroves on wave erosion mitigation and sediment properties. Estuaries Coasts 2019, 42, 2124–2138. [Google Scholar] [CrossRef]
- Anh, N.T. Application of spring network in stabilizing the entire weak soil mass in the Mekong Delta. Constr. Mater. Mag.—Minist. Constr. 2021, 04, 73–83. [Google Scholar]
- Hue, V.H. Construction solutions overcomes erosions in Thanh Long Island. Vietnam. J. Hydrometeorol. 2023, 754, 26–43. [Google Scholar] [CrossRef]
- Hue, V.H. Construction solutions prevents erosion on Vam Co Tay riverbank. Vietnam. J. Hydrometeorol. 2023, 754, 79–100. [Google Scholar] [CrossRef]
- Schuerch, M.; Spencer, T.; Temmerman, S.; Kirwan, M.L.; Wolff, C.; Lincke, D.; McOwen, C.J.; Pickering, M.D.; Reef, R.; Vafeidis, A.T. Future response of global coastal wetlands to sea-level rise. Nature 2018, 561, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef]
- Gevaña, D.T.; Garcia, J.E.; Ruzol, C.D.; Malabayabas, F.L.; Grefalda, L.B.; O’Brien, E.; Santos, E.P.; Camacho, L.D. Climate change resiliency through mangrove conservation: The case of alitas farmers of Infanta, Philippines. In Fostering Transformative Change for Sustainability in the Context of Socio-Ecological Production Landscapes and Seascapes (SEPLS); Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Ty, T.V.; Duy, D.V.; Phat, L.T.; Minh, H.V.T.; Thanh, N.T.; Uyen, N.T.N.; Downes, N.K. Coastal erosion dynamics and protective measures in the Vietnamese Mekong Delta. J. Mar. Sci. Eng. 2024, 12, 1094. [Google Scholar] [CrossRef]
- Sutton-Grier, A.E.; Wowk, K.; Bamford, H. Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy 2015, 51, 137–148. [Google Scholar] [CrossRef]
- Apollonio, C.; Petroselli, A.; Tauro, F.; Cecconi, M.; Biscarini, C.; Zarotti, C.; Grimaldi, S. Hillslope erosion mitigation: An experimental proof of a nature-based solution. Sustainability 2021, 13, 6058. [Google Scholar] [CrossRef]
- Xing, Y.; Jones, P.; Donnison, I. Characterisation of nature-based solutions for the built environment. Sustainability 2017, 9, 149. [Google Scholar] [CrossRef]
- Albert, C.; Spangenberg, J.H.; Schröter, B. Nature-based solutions: Criteria. Nature 2017, 543, 315. [Google Scholar] [CrossRef]
- Sowińska-Świerkosz, B.; García, J. What are Nature-based solutions (NBS)? Setting core ideas for concept clarification. Nat.-Based Solut. 2022, 2, 100009. [Google Scholar] [CrossRef]
- Thang, C.N.; Van, T.C.; Quang, C.N.X. Measures to protect the river/channel bank in mekong delta towards soft, ecology and environment-friendly engineering. J. Sci. Technol.—Univ. Danang 2018, 2, 67–70. [Google Scholar]
- Schmidt, J.C.; Wilcock, P.R. Metrics for assessing the downstream effects of dams. Water Resour. Res. 2008, 44, W04404. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Gao, Y.; Annandale, G.W.; Morris, G.L.; Jiang, E.; Zhang, J.; Cao, Y.; Carling, P.; Fu, K.; Guo, Q. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth’s Future 2014, 2, 256–280. [Google Scholar] [CrossRef]
- Murtaza, N.; Pasha, G.A.; Hamidifar, H.; Ghani, U.; Ahmed, A. Enhancing flood resilience: Comparative analysis of single and hybrid defense systems for vulnerable buildings. Int. J. Disaster Risk Reduct. 2025, 116, 105078. [Google Scholar] [CrossRef]
- Bridges, T.; King, J.; Simm, J.; Beck, M.; Collins, G.; Lodder, Q.; Mohan, R. International Guidelines on Natural and Nature-Based Features for Flood Risk Management; US Army Corps of Engineers: Washington, DC, USA, 2021.
- Kapetas, L.; Fenner, R. Integrating blue-green and grey infrastructure through an adaptation pathways approach to surface water flooding. Philos. Trans. R. Soc. A 2020, 378, 20190204. [Google Scholar] [CrossRef] [PubMed]
- Quynh, N.P.; Hai, D.D.; Truong, T.V.; Hoa, V.H. Evaluation of coastal wave reduction for dyke types that reuse car tires as waveblocking materials. J. Water Resour. Sci. Technol. 2022, 73, 1–9. [Google Scholar]
- Water Resources Division, Department of Agriculture and Environment of An Giang province. Topographic Survey Report—Contract Package: Topographic and Geological Survey for Design of Bank Protection Model at Rach Gia Canal—Long Xuyen, Long Xuyen Quadangle Area; Water Resources Division, Department of Agriculture and Environment of An Giang province: Long Xuyen, Vietnam, 2017.
- Mohajerani, A.; Burnett, L.; Smith, J.V.; Markovski, S.; Rodwell, G.; Rahman, M.T.; Kurmus, H.; Mirzababaei, M.; Arulrajah, A.; Horpibulsuk, S. Recycling waste rubber tyres in construction materials and associated environmental considerations: A review. Resour. Conserv. Recycl. 2020, 155, 104679. [Google Scholar] [CrossRef]
- Van Cuong, C.; Brown, S.; To, H.H.; Hockings, M. Using Melaleuca fences as soft coastal engineering for mangrove restoration in Kien Giang, Vietnam. Ecol. Eng. 2015, 81, 256–265. [Google Scholar] [CrossRef]
- Ma’ruf, M.A.; Arifin, Y.F.; Asy’ari, M. Utilization pattern and potential of gelam wood (Melaleuca cajuputi Powell) as a foundation structure. GEOMATE J. 2023, 25, 25–32. [Google Scholar] [CrossRef]
- TCVN 100304-2014; Design of Foundation Soils. Ministry of Construction: Hanoi, Vietnam, 2015.
- TCVN 8858-2011; Geosynthetics for Civil Engineering. Ministry of Construction: Hanoi, Vietnam, 2011.
- UK Department of Trade and Industry Partners. Sustainabale Re-Use Tyre in Port, Coastal and River Engineering: Guidance for Planning, Implementation and Maintenance; Report SR 669; HR Wallingford: Wallingford, UK, 2025. [Google Scholar]
- Cheng, Y.M.; Lansivaara, T.; Wei, W. Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Comput. Geotech. 2007, 34, 137–150. [Google Scholar] [CrossRef]
- Tu, Y.; Liu, X.; Zhong, Z.; Li, Y. New criteria for defining slope failure using the strength reduction method. Eng. Geol. 2016, 212, 63–71. [Google Scholar] [CrossRef]
- TCVN 2737-2023; Loads and Actions. Ministry of Construction: Hanoi, Vietnam, 2023.
- TCVN 4054:2005; Highway—Specifications for Design. Ministry of Construction: Hanoi, Vietnam, 2005.
- Hill, C.D.; Sippel, K.D. Modern deformation monitoring: A multi sensor approach. In Proceedings of the FIG XXII International Congress, Washington, DC, USA, 19–26 April 2002. [Google Scholar]
- Kuhlmann, H.; Glaser, A. Investigation of new measurement techniques for bridge monitoring. In Proceedings of the 2nd Symposium on Geodesy for Geotechnical and Structural Engineering, Berlin, Germany, 21–24 May 2002; pp. 123–132. [Google Scholar]
- Beshr, A.A. Monitoring the Structural Deformation of Tanks; LAP LAMBERT Academic Publishing: Saarbrücken, Germany, 2012. [Google Scholar]
- Azeez, A.K. Deformation monitoring using Total Stations: An evaluation of system performance. J. Geomat. Environ. Res. 2018, 1, 1–13. [Google Scholar]
- QCVN 04-05:2022/BNNPTNT; Hydraulic Structures—Essential Regulations for Design. Ministry of Construction: Hanoi, Vietnam, 2022.
- Le Gouvello, R.; Cohen-Shacham, E.; Herr, D.; Spadone, A.; Simard, F.; Brugere, C. The IUCN Global Standard for Nature-based Solutions™ as a tool for enhancing the sustainable development of marine aquaculture. Front. Mar. Sci. 2023, 10, 1146637. [Google Scholar] [CrossRef]
- Ministry of Natural Resources and Environment. Resolution on Sustainable and Climate-Resilient Development of the Mekong Delta; 120/NQ-CP; Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2017.
- Gonzalez-Ollauri, A. Sustainable use of nature-based solutions for slope protection and erosion control. Sustainability 2022, 14, 1981. [Google Scholar] [CrossRef]
- Medina, M. The World’s Scavengers: Salvaging for Sustainable Consumption and Production; Rowman Altamira: Lanham, MD, USA, 2007. [Google Scholar]
- Sembiring, E.; Nitivattananon, V. Sustainable solid waste management toward an inclusive society: Integration of the informal sector. Resour. Conserv. Recycl. 2010, 54, 802–809. [Google Scholar] [CrossRef]
- Tong, Y.D.; Huynh, T.D.X.; Khong, T.D. Understanding the role of informal sector for sustainable development of municipal solid waste management system: A case study in Vietnam. Waste Manag. 2021, 124, 118–127. [Google Scholar] [CrossRef]
- Schröder, P.; Anantharaman, M.; Anggraeni, K.; Foxon, T.J. (Eds.) The Circular Economy and the Global South; Routledge: Oxfordshire, UK, 2019; ISBN 9780429434006. [Google Scholar] [CrossRef]
- Pomponi, F.; Moncaster, A. Circular economy for the built environment: A research framework. J. Clean. Prod. 2017, 143, 710–718. [Google Scholar] [CrossRef]
- Rey, F. Harmonizing erosion control and flood prevention with restoration of biodiversity through ecological engineering used for co-benefits nature-based solutions. Sustainability 2021, 13, 11150. [Google Scholar] [CrossRef]











| Layer | Soil Description | Sampling Depth (m) | Compression Modulus, E (KPa) | Poisson Ratio, ν | Cohesion, c (KPa) | Angle of Internal Friction, φ |
|---|---|---|---|---|---|---|
| CH1 | Fat clay | 0–3 | 5000 | 0.3 | 12.3 | 7 |
| CH2 | Clay, high liquid limit | 4–11 | 10,000 | 0.3 | 8.5 | 3 |
| CL1 | Silty clays | 12–16 | 120,000 | 0.3 | 9.4 | 4 |
| CL2 | Lean clays | 17–20.5 | 20,000 | 0.3 | 38.0 | 12 |
| SM | Sand–silt mixtures | 20.6–30 | 30,000 | 0.3 | 7.1 | 30 |
| Scenario | Description | Building Load (kN/m) | Road Load (kN/m) | Road Width (m) |
|---|---|---|---|---|
| 1 | Current condition | 10 | 50 | 3 |
| 2 | Building upgrade | 30 | 50 | 3 |
| 3 | Road upgrade | 10 | 70 | 5 |
| 4 | Full upgrade | 30 | 70 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thang, C.N.; Binh, N.T.; Ty, T.V.; Bay, N.T.; Quang, C.N.X.; Downes, N.K. Harnessing Waste Tyres for Sustainable Riverbank Revetment and Stabilization: A Hybrid Nature-Based Pilot in Vietnam’s Mekong Delta. Geosciences 2025, 15, 340. https://doi.org/10.3390/geosciences15090340
Thang CN, Binh NT, Ty TV, Bay NT, Quang CNX, Downes NK. Harnessing Waste Tyres for Sustainable Riverbank Revetment and Stabilization: A Hybrid Nature-Based Pilot in Vietnam’s Mekong Delta. Geosciences. 2025; 15(9):340. https://doi.org/10.3390/geosciences15090340
Chicago/Turabian StyleThang, Cu Ngoc, Nguyen Thanh Binh, Tran Van Ty, Nguyen Thi Bay, Chau Nguyen Xuan Quang, and Nigel K. Downes. 2025. "Harnessing Waste Tyres for Sustainable Riverbank Revetment and Stabilization: A Hybrid Nature-Based Pilot in Vietnam’s Mekong Delta" Geosciences 15, no. 9: 340. https://doi.org/10.3390/geosciences15090340
APA StyleThang, C. N., Binh, N. T., Ty, T. V., Bay, N. T., Quang, C. N. X., & Downes, N. K. (2025). Harnessing Waste Tyres for Sustainable Riverbank Revetment and Stabilization: A Hybrid Nature-Based Pilot in Vietnam’s Mekong Delta. Geosciences, 15(9), 340. https://doi.org/10.3390/geosciences15090340

