Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = riverbank protection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 12895 KiB  
Article
Remote Sensing and GIS-Based Assessment of Riverbank Erosion, Deposition, and Channel Migration: A Case Study in Tarim River’s Xinqiman–Kelelik Mainstem
by Ze Li, Lin Li and Jing Liu
Appl. Sci. 2025, 15(13), 6977; https://doi.org/10.3390/app15136977 - 20 Jun 2025
Viewed by 504
Abstract
To investigate the erosion and deposition evolution characteristics of the Xinqiman–Kelelik reach along the main stem of the Tarim River, this study analyzed river channel dynamics and planform morphological changes using Landsat satellite imagery (1993–2024) and hydrological data (water discharge and sediment load) [...] Read more.
To investigate the erosion and deposition evolution characteristics of the Xinqiman–Kelelik reach along the main stem of the Tarim River, this study analyzed river channel dynamics and planform morphological changes using Landsat satellite imagery (1993–2024) and hydrological data (water discharge and sediment load) from gauge stations. The results show that the thalweg line swings indefinitely in the river. The thalweg length increased by 29 km, while the mean channel width decreased by 0.28 km. The sinuosity index rose from 1.95 to 2.34, indicating a gradual intensification of channel curvature. The north bank is in a state of siltation, while the south bank is in a state of erosion. The riverbank exhibited an overall southward migration. The farmland area in the study area increased from 1510 hectares in 1993 to 5140 hectares in 2024. During this period, the thalweg near the water-diversion sluice continuously shifted toward the sluice side. To ensure flood protection safety for farmlands and villages on both banks, as well as ecological water diversion, river channel regulation and channel pattern control should be implemented. Full article
(This article belongs to the Special Issue Applications of Remote Sensing in Environmental Sciences)
Show Figures

Figure 1

23 pages, 7688 KiB  
Article
Assessing River Corridor Stability and Erosion Dynamics in the Mekong Delta: Implications for Sustainable Management
by Dinh Van Duy, Tran Van Ty, Lam Tan Phat, Huynh Vuong Thu Minh, Nguyen Truong Thanh and Nigel K. Downes
Earth 2025, 6(2), 34; https://doi.org/10.3390/earth6020034 - 6 May 2025
Viewed by 679
Abstract
This study assessed riverbank erosion and stability along the Mekong and Bassac Rivers to propose safe river corridors and mitigate erosion risks in the Mekong Delta. Using Landsat imagery (2000–2023), field surveys, and numerical simulations, we identified severe erosion hotspots, where erosion rates [...] Read more.
This study assessed riverbank erosion and stability along the Mekong and Bassac Rivers to propose safe river corridors and mitigate erosion risks in the Mekong Delta. Using Landsat imagery (2000–2023), field surveys, and numerical simulations, we identified severe erosion hotspots, where erosion rates reach up to 40 m annually, in the meandering sections of the Mekong River,. In contrast, the Bassac River exhibited significant sedimentation, though this trend was diminishing due to upstream sediment deficits caused by hydropower dams. Stability assessments revealed optimal safety corridor distances ranging from 20 to 38 m, influenced by local geotechnical conditions and structural loads. A significant proportion of riverbanks in Dong Thap (88%) and An Giang (48%) do not comply with conservation standards, exacerbating erosion risks and threatening infrastructure. The results of this study highlight the urgent need for enforcing conservation regulations, implementing nature-based solutions like riparian buffers, and adopting sustainable land-use planning. By addressing the interplay between natural processes and anthropogenic pressures, these findings offer actionable insights to enhance riverbank stability, protect ecosystems, and sustain livelihoods in the Mekong Delta amidst growing environmental challenges. Full article
Show Figures

Figure 1

16 pages, 6011 KiB  
Article
Sedimentation Pattern as a Response to Hydrodynamics in a Near-Symmetric River Confluence
by João Nuno Fernandes and Leila Alizadeh
Sustainability 2025, 17(9), 3790; https://doi.org/10.3390/su17093790 - 23 Apr 2025
Viewed by 484
Abstract
River confluences are dynamic zones where hydrodynamic interactions between tributary flows—varying in velocity, direction, and sediment concentration—can significantly alter hydro morphology. These changes feature substantial consequences for the stability of riverbanks, nearby hydraulic structures, and the surrounding environment. This paper investigates flow mechanisms [...] Read more.
River confluences are dynamic zones where hydrodynamic interactions between tributary flows—varying in velocity, direction, and sediment concentration—can significantly alter hydro morphology. These changes feature substantial consequences for the stability of riverbanks, nearby hydraulic structures, and the surrounding environment. This paper investigates flow mechanisms and sediment dynamics in a symmetric 50° confluence through laboratory experiments on a scaled physical model of a real confluence located on Madeira Island, Portugal. Acoustic Doppler velocity measurements were used to analyze the hydrodynamic characteristics, while bathymetry was surveyed using an RGB sensor and the Structure from Motion technique. Sedimentation patterns were correlated with key flow zones within the confluence. This study highlights how variations in discharge and momentum ratios influence sediment distribution and morphology, potentially destabilizing riverbanks and contributing to sediment deposition and erosion patterns. Understanding these mechanisms is critical for improving the sustainable management of water resources and minimizing anthropogenic impacts on fluvial systems. The findings provide valuable insights for enhancing river resilience, protecting natural watercourses, and supporting sustainable development by promoting informed planning of hydraulic structures and sediment management strategies. Full article
(This article belongs to the Special Issue Sustainable Environmental Analysis of Soil and Water)
Show Figures

Figure 1

19 pages, 9650 KiB  
Article
Study on the Causes of Cracking in Concrete Components of a High-Pile Beam Plate Wharf
by Chao Yang, Pengjuan He, Shaohua Wang, Jiao Wang and Zuoxiang Zhu
Buildings 2025, 15(8), 1352; https://doi.org/10.3390/buildings15081352 - 18 Apr 2025
Viewed by 581
Abstract
The high-pile beam slab structure is a commonly employed design for riverbank wharves; however, the wharf structure may incur damage due to various factors during long-term operation, resulting in potential safety concerns. To illustrate this, an investigation was conducted on a high-pile beam [...] Read more.
The high-pile beam slab structure is a commonly employed design for riverbank wharves; however, the wharf structure may incur damage due to various factors during long-term operation, resulting in potential safety concerns. To illustrate this, an investigation was conducted on a high-pile beam slab wharf, which included on-site examination, testing, and large-scale three-dimensional numerical simulation. The effects of gravity, ship impact, earthquake, lateral impact, water, and crane change were considered to explore the causes of cracking in the wharf concrete components. The results indicated that crane modification significantly augmented loads, precipitating notable deformation (92% increase in maximum vertical displacement), and the maximum tensile stress exceeded concrete tensile strength. The inadequate thickness of the steel reinforcement protective layer caused concrete carbonation, steel exposure, and corrosion, reducing structural capacity. The presence of defects in the pile foundation has been shown to result in high stress concentrations, which can lead to deformation and damage. There was a 58% increase in vertical displacement in the concrete components above the affected area compared to intact piles. Based on analysis of the results, appropriate measures for strengthening and correction have been proposed to ensure the safety and durability of the wharf. A comprehensive multifactor evaluation and 3D simulation of the actual dimensions are recommended to ensure the safety of wharf structures. Full article
Show Figures

Figure 1

22 pages, 4571 KiB  
Article
Long-Term Analysis and Multi-Scenarios Simulation of Ecosystem Service Values in Typical Karst River Basins
by Shishu Lian, Anjun Lan, Zemeng Fan, Bingcheng Feng and Kuisong Xiao
Land 2025, 14(4), 824; https://doi.org/10.3390/land14040824 - 10 Apr 2025
Viewed by 495
Abstract
This study, guided by the concept hat “lucid waters and lush mountains are invaluable assets”, focuses on explicating the ecological vulnerability characteristics of the Nanpan and Beipan River Basins, a typical karst river basin in Guizhou Province. In this article, a value equivalent [...] Read more.
This study, guided by the concept hat “lucid waters and lush mountains are invaluable assets”, focuses on explicating the ecological vulnerability characteristics of the Nanpan and Beipan River Basins, a typical karst river basin in Guizhou Province. In this article, a value equivalent table was built to calculate the ecosystem service value (ESV) within the basin from 2000 to 2020. The patch landscape and urban simulation model (PLUS) was improved to forecast ecosystem changes under four scenarios in the future. The Getis-Ord Gi*statistic, a spatial analysis tool, was introduced to identify and interpret the spatial patterns of ESVs in the study area. The research indicates that: (1) from 2000 to 2020, the spatial pattern of ecosystem has significantly improved, and with a notable ESV increase in the Nanpan and Beipan River Basins, especially the fastest growth from 2005 to 2010. Forest and grassland ecosystems are the main contributors to ESV within the basin, and the spatial distribution of ESV shows a decreasing trend from southeast to northwest. (2) Under different scenarios, forest ecosystem still would have the highest contribution rate to update the ESV between 2010 and 2035. The ESV is the lowest under the cropland protection scenario, amounting to CNY 104.972 billion. Compared to other scenarios, the ESV is higher under the sustainable development scenario, reaching CNY 106.786 billion, and this scenario provides a more comprehensive and balanced perspective, relatively achieving a harmonious coexistence between humans and nature. (3) The hot spots of ESV are mainly concentrated in the southeast and along the riverbanks of the study area. Urban ecosystems are the cold spots of ESV, indicating that protecting the ecosystems along the riverbanks is crucial for ensuring the ecological security and sustainable development of karst mountainous river basins. In the future development of karst mountainous river basins, it is necessary to strengthen ecological restoration and governance, monitor soil erosion through remote sensing technology, optimize the layout of territorial space to implement the policy of green development, and promote the harmonious coexistence of humans and nature, ensuring the ecological security and sustainable development of the basins. Full article
Show Figures

Figure 1

25 pages, 16044 KiB  
Article
Plant Diversity Characteristics and Environmental Interpretation Under the Land–Sea Gradient in the Yellow River Delta
by Yingjun Sun, Wenxue Meng, Fang Wang, Yanshuang Song and Mingxin Sui
Appl. Sci. 2025, 15(7), 4030; https://doi.org/10.3390/app15074030 - 6 Apr 2025
Viewed by 923
Abstract
Understanding the characteristics and key driving factors of plant diversity is of great significance for maintaining biodiversity and the ecosystem. Current studies on plant diversity in the Yellow River Delta are limited to local areas; there is a lack of comprehensive discussion on [...] Read more.
Understanding the characteristics and key driving factors of plant diversity is of great significance for maintaining biodiversity and the ecosystem. Current studies on plant diversity in the Yellow River Delta are limited to local areas; there is a lack of comprehensive discussion on the spatial heterogeneity of plant diversity and the driving factors at a regional scale. Based on field investigations, this study explored the characteristics of plant composition and diversity under the land–sea gradient, with particular emphasis on the differences of plant diversity under different riverbanks and at a distance from the sea. Using the regression, redundancy, and Mantel test analysis, we analyzed soil properties, environmental factors, and human influence to assess their potential impacts on plant diversity. The results demonstrated that Asteraceae, Poaceae, and Amaranthaceae are the dominant plant families in the Yellow River Delta. As the distance from the sea increases, the community transitions from the monospecies dominance of Suaeda salsa to one dominated by various plants. The species similarity was higher in the adjacent environment and coastal areas. The overall level of plant diversity was not high, and the Margalef, Shannon–Wiener, Simpson, and Pielou index showed a fluctuating downward trend from land to sea. Notably, there was a peak value in the region of 3–17 km and >42 km from the sea. The plant diversity of the main stream bank was higher than that of its tributaries, where the former was more susceptible to human interference and the latter to soil electrical conductivity. In terms of the region, soil electrical conductivity had the greatest influence on plant diversity. This study could provide theoretical support for vegetation restoration and ecological protection in the Yellow River Delta. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

19 pages, 5580 KiB  
Article
Study on the Influence of Relative Chord Length and Frequency of Flapping Hydrofoil Device on Hydrodynamic Performance and Bank Slope Scour
by Ertian Hua, Caiju Lu, Mingwang Xiang, Yabo Song, Tao Wang and Qizong Sun
Water 2025, 17(7), 1026; https://doi.org/10.3390/w17071026 - 31 Mar 2025
Viewed by 366
Abstract
A flapping hydrofoil device is an innovative device for enhancing the hydrodynamics of small rivers. While increasing the flow velocity of the river, it inevitably causes different degrees of scouring on the bank slope. This study aims to find an optimal combination of [...] Read more.
A flapping hydrofoil device is an innovative device for enhancing the hydrodynamics of small rivers. While increasing the flow velocity of the river, it inevitably causes different degrees of scouring on the bank slope. This study aims to find an optimal combination of flapping hydrofoil parameters to maximize the pushing-water performance while minimizing the impact on bank slope scour, which is of great significance for the device’s application and environmental protection. Based on the finite volume method and overlapping dynamic grid technology, this paper selects the maximum bank slope scouring section as the research plane for numerical simulation. In order to expand the scope of application, the relative chord length c* (the ratio of chord length to river channel width) is introduced as a research parameter, and the influence of different relative chord lengths c* and frequencies f on the pushing-water performance of the device and the degree of bank slope scouring is systematically analyzed. The research results show that the near-shore current mean scouring force increases significantly with the increase in f and c*. The pushing-water efficiency will increase with c*, and will gradually increase with the increase in f and then tend to be stable. When c* = 1/2 and f = 2.5 Hz, the pushing-water efficiency reaches 51.04%, but at this time, the impact on bank slope scour is the most serious. When c* is reduced to 1/8, the bank slopes are not scoured even at the maximum frequency f = 2.5 Hz, and the pushing-water efficiency is 24.59% at this time. As c* decreases, the threshold frequency at which scour does not occur on the riverbank increases gradually. In addition, when c* is constant, decreasing f will significantly reduce the scouring force, but will have little effect on pushing-water efficiency. In order to achieve the purpose of this study, the parameters of flapping hydrofoil are recommended to be larger relative chord length and smaller motion frequency combinations. Full article
(This article belongs to the Special Issue Ecological Hydraulic Engineering and River Restoration)
Show Figures

Figure 1

18 pages, 2389 KiB  
Article
Modeling Spawning Habitats of Coreius guichenoti with Substrate Considerations: A Case Study of Pingdi Town in the Lower Jinsha River
by Wenchao Li, Dong Chen, Lekui Zhu, Tong Liu, Hanyue Wang, Litao Zhang, Rui Han, Zhi Yang, Jun Yan, Hongyi Yang, Anan Guo and Lei Liu
Animals 2025, 15(6), 881; https://doi.org/10.3390/ani15060881 - 19 Mar 2025
Cited by 1 | Viewed by 379
Abstract
Coreius guichenoti, once widely distributed in the upper reaches of the Jinsha River, has become a nationally protected species in China due to the profound impacts of cascade reservoirs. To assess the influence of substrate on the suitability of spawning habitat for [...] Read more.
Coreius guichenoti, once widely distributed in the upper reaches of the Jinsha River, has become a nationally protected species in China due to the profound impacts of cascade reservoirs. To assess the influence of substrate on the suitability of spawning habitat for C. guichenoti, this study develops a substrate-inclusive habitat model using fuzzy logic based on expert knowledge. Taking the Pingdi Town section of the lower Jinsha River—a historical spawning site for C. guichenoti—as a case study from March to July 2020, we simulated changes in the spawning habitat suitability index (HSI) and compared the results with those from traditional models that exclude substrate factors. The results showed that in the first and second halves of May, Weighted Usable Area (WUA) and Overall Suitability Index (OSI) increased by 42.31% and 38.73%, respectively, while MSP exhibited dramatic increases of 236.04% and 614.56%. These improvements were primarily observed along the riverbanks, where HSI increased by approximately 0.25. From a management perspective, the HSI results provide a scientific basis for optimizing ecological flow regulation. Incorporating substrate factors into spawning habitat models offers a more objective and comprehensive assessment of habitat quality. Habitat restoration measures, such as targeted substrate improvement in key riverbank areas, may further increase habitat suitability, providing additional opportunities for conservation planning in regulated rivers. Full article
Show Figures

Figure 1

18 pages, 19950 KiB  
Article
Improving Water Environment in Water Source Area of Dabie Mountains Based on Investigation of Farmers’ Garbage Stacking Behavior
by Ke Chen, Yabing Guan, Huawei Bao, Xiaolin Liu, Leyuan Yang, Delang Luo, Xitong Zhang, Qingtao Zhao and Yanjun Zhang
Sustainability 2025, 17(5), 1851; https://doi.org/10.3390/su17051851 - 21 Feb 2025
Viewed by 460
Abstract
The contradiction between ecological environment protection and economic development in the Yangtze River Basin has become increasingly prominent in recent years, which seriously limits the sustainable development of the basin. Research on water environment changes of the main tributaries of the Yangtze River [...] Read more.
The contradiction between ecological environment protection and economic development in the Yangtze River Basin has become increasingly prominent in recent years, which seriously limits the sustainable development of the basin. Research on water environment changes of the main tributaries of the Yangtze River helps explore measures to improve the ecological environment of the Yangtze River Basin. In this study, based on the theory of behavioral science in modern management, water quality data in the field were collected, and the farmers’ garbage stacking behavior was also investigated in the water source area of the Dabie Mountains. The results showed that ammonia nitrogen (AN), chemical oxygen demand (COD), total organic carbon (TOC), and total dissolved solids (TDS) in the water bodies showed an overall negative correlation with the distance of water quality collection sites from the garbage stacking point. AN was the most important pollution element affecting the rural water quality in the water source area of the Dabie Mountains. The unsuitable garbage stacking locations and the farmers’ behavior of dumping garbage along the riverbanks were the important causes of water pollution. The garbage stacking locations were optimized and designed by using a GIS spatial analysis tool and a developed suitability evaluation model for the garbage stacking points. The optimized garbage stacking locations were more suitable for improving the local water environment, and their average suitability values increased to 2.01 times and 2.94 times that of the original stacking locations in Kanxiawan and Lengshuigou, respectively. This study can be used as a scientific and methodological reference for improving the rural water environment in the water source area of the Dabie Mountains and in other similar regions in the world. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

17 pages, 3369 KiB  
Article
Lightweight Multi-Scale Network for Segmentation of Riverbank Sand Mining Area in Satellite Images
by Hongyang Zhang, Shuo Liu and Huamei Liu
Remote Sens. 2025, 17(2), 227; https://doi.org/10.3390/rs17020227 - 9 Jan 2025
Cited by 1 | Viewed by 835
Abstract
Riverbank sand overexploitation is threatening the ecology and shipping safety of rivers. The rapid identification of riverbank sand mining areas from satellite images is extremely important for ecological protection and shipping management. Image segmentation methods based on AI technology are gradually becoming popular [...] Read more.
Riverbank sand overexploitation is threatening the ecology and shipping safety of rivers. The rapid identification of riverbank sand mining areas from satellite images is extremely important for ecological protection and shipping management. Image segmentation methods based on AI technology are gradually becoming popular in academia and industry. However, traditional neural networks have complex structures and numerous parameters, making them unsuitable for meeting the needs of rapid extraction in large areas. To improve efficiency, we proposed a lightweight multi-scale network (LMS Net), which uses a lightweight multi-scale (LMS) block in both the encoder and decoder. The lightweight multi-scale block combines parallel computing and depthwise convolution to reduce the parameters of the network and enhance its multi-scale extraction ability. We created a benchmark dataset to validate the accuracy and efficiency improvements of our network. Comparative experiments and ablation studies proved that our LMS Net is more efficient than traditional methods like Unet and more accurate than typical lightweight methods like Ghostnet and other more recent methods. The performance of our proposed network meets the requirements of river management. Full article
Show Figures

Graphical abstract

25 pages, 18819 KiB  
Article
Integrating Geosynthetics and Vegetation for Sustainable Erosion Control Applications
by Tatiana Olinic, Ernest-Daniel Olinic and Ana-Cornelia Butcaru
Sustainability 2024, 16(23), 10621; https://doi.org/10.3390/su162310621 - 4 Dec 2024
Viewed by 2202
Abstract
The stability of slopes is a critical challenge in various civil engineering projects, such as embankments, cut-slopes, landfills, dams, transportation infrastructure, and riverbank restoration. Stabilizing slopes using bioengineering methods is a sustainable approach that limits the negative impact of engineering works; such methods [...] Read more.
The stability of slopes is a critical challenge in various civil engineering projects, such as embankments, cut-slopes, landfills, dams, transportation infrastructure, and riverbank restoration. Stabilizing slopes using bioengineering methods is a sustainable approach that limits the negative impact of engineering works; such methods should be implemented and adopted worldwide. Geosynthetic materials and plant roots are sustainable for preventing erosion and surface landslides. The plants used for this paper are known to have beneficial effects on erosion control, namely Festuca arundinaceous, Dactylis glomerata, Phleum pratensis, Trifolium pratense, and Trifolium repens. Using vegetation as a bio-reinforcement method is often more cost effective and environmentally friendly than traditional engineering solutions, making a more sustainable engineering solution for shallow slope stabilization applications. The paper presents the erosion process that occurred on sandy slopes protected by organic soil layers and geosynthetic materials under rainfall simulation in scaled model tests. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

14 pages, 4700 KiB  
Article
Pollution Characteristics and Eutrophication Assessment in Plain River Network Areas: A Case Study of the Beijing–Hangzhou Grand Canal (Changzhou Section)
by Haizhen Hu, Gang Zhou, Sichen Tong and Tingting Hu
Water 2024, 16(23), 3353; https://doi.org/10.3390/w16233353 - 22 Nov 2024
Cited by 1 | Viewed by 1233
Abstract
A comprehensive understanding of water-quality spatiotemporal variations is essential for the long-term management of aquatic environments. However, the absence of indicators that fully capture the extent of eutrophication, the lack of long-term water-quality monitoring data, and the complexity of water pollutants sources have [...] Read more.
A comprehensive understanding of water-quality spatiotemporal variations is essential for the long-term management of aquatic environments. However, the absence of indicators that fully capture the extent of eutrophication, the lack of long-term water-quality monitoring data, and the complexity of water pollutants sources have limited research on pollution characteristics and eutrophication assessments in plain river network areas. In this study, based on the monitoring data of water-quality indicators in the Beijing–Hangzhou Grand Canal (Changzhou section), the temporal and spatial distribution characteristics of nutrient salts, as well as the eutrophication status of the water body, were revealed by using the comprehensive trophic level index (TLI) method. Meanwhile, the main sources of water pollutants were defined, and targeted control measures were proposed. The results showed that water-quality deterioration is more pronounced during the non-flood season, with significantly higher concentrations of ammonia nitrogen (NH3-N) and total phosphorus (TP) compared to the flood season. Additionally, the analysis of the nitrogen-to-phosphorus (N:P) ratio suggested that some sampling sites exhibited phosphorus limitation. The eutrophication assessment indicated that most sections are eutrophic, with S8 and S2 being the most heavily polluted and at risk of cyanobacterial blooms. The primary sources of pollutants were identified as agricultural runoff, domestic sewage, and industrial discharges. To address these issues, it was recommended to reduce external pollution sources while focusing on internal control (1. Enhance the management of livestock and poultry farming; 2. Upgrade wastewater purification facilities; 3. Establish ecological protection zones along the riverbanks) and enhance aquatic ecosystem restoration. A coordinated and watershed-wide approach is crucial to improving water quality in this region. The findings of this study provide a scientific basis for the protection of the water environment and pollution control in plain river network areas. Full article
Show Figures

Figure 1

14 pages, 2526 KiB  
Article
Study on the Spatial–Temporal Variation of Groundwater Depth and Its Impact on Vegetation Coverage in Ejina Oasis
by Dongyang Song, Xiaolong Pei, Lei Mao, Jiangyulong Wang, Ye Tian, Xiaoyu An and Hongyan An
Forests 2024, 15(11), 2034; https://doi.org/10.3390/f15112034 - 18 Nov 2024
Cited by 2 | Viewed by 958
Abstract
Ejina, a representative inland river basin situated in the arid region of northwest China, exhibits a delicate ecological environment and its vegetation coverage is intrinsically linked to regional ecological security. Based on MOD13Q1-NDVI data from 2018 to 2023 and groundwater depth monitoring data [...] Read more.
Ejina, a representative inland river basin situated in the arid region of northwest China, exhibits a delicate ecological environment and its vegetation coverage is intrinsically linked to regional ecological security. Based on MOD13Q1-NDVI data from 2018 to 2023 and groundwater depth monitoring data during the same period, this study analyzed the spatial–temporal variation characteristics of vegetation coverage and its relationship with groundwater depth in Ejina. It is found that the vegetation coverage in Ejina is generally low and mainly distributed along the riverbanks in the form of strips. During the study period, the overall trend of vegetation coverage showed a fluctuating pattern of first increasing and then decreasing, revealing the fragility of the regional ecology. The groundwater depth shows the characteristic of being higher in the east river than the west, and the trend of groundwater depth along the river flow is first increasing and then decreasing. The spatial groundwater depth indicates that the east river is higher than that of the west river, and the groundwater depth along the river flow first increases and then decreases. In terms of inter-annual changes, the groundwater depth experiences a process of first decreasing and then stabilizing. Further analysis indicates that vegetation growth and coverage in Ejina are significantly affected by water conditions, and areas with high Normalized Difference Vegetation Index (NDVI) values are mainly distributed along the riverbanks. In addition, there is a certain degree of correlation between groundwater depth and NDVI. When the depth of groundwater is too deep or too shallow, the positive correlation between NDVI and groundwater depth increases slightly and the negative correlation decreases slightly. The findings of this study are of great significance for understanding and predicting the response of vegetation coverage to groundwater changes in arid areas, and provide a scientific basis for water resources management and ecological protection in Ejina. Full article
(This article belongs to the Special Issue Soil Carbon Storage in Forests: Dynamics and Management)
Show Figures

Figure 1

16 pages, 18082 KiB  
Article
Land-Use-Change-Driven Erosion and Sediment Transport in the Yaqui River Sub-Basin (Mexico): Insights from Satellite Imagery and Hydraulic Simulations
by Omar Salvador Areu-Rangel, Miguel Ángel Hernández-Hernández and Rosanna Bonasia
Land 2024, 13(11), 1846; https://doi.org/10.3390/land13111846 - 6 Nov 2024
Cited by 1 | Viewed by 2008
Abstract
Soil erosion and sediment transport are significant concerns in the Yaqui River sub-basin in northwest Mexico, driven by land use changes and environmental degradation. This study aims to evaluate erosion processes between 2000 and 2020 using a combination of satellite imagery and numerical [...] Read more.
Soil erosion and sediment transport are significant concerns in the Yaqui River sub-basin in northwest Mexico, driven by land use changes and environmental degradation. This study aims to evaluate erosion processes between 2000 and 2020 using a combination of satellite imagery and numerical simulations with Iber software (Version 2.5.2). The primary objective is to assess the impacts of land use changes, particularly the conversion of forest to grassland, on erosion rates and sediment transport. Satellite images from 2000 and 2020 were analyzed to detect land cover changes, while Iber’s sediment transport module was used to simulate erosion patterns based on the Meyer–Peter and Müller equation for bedload transport. Hydrological and topographical data were incorporated to provide accurate simulations of flow velocity, depth, and erosion potential. The results reveal a 35.3% reduction in forest cover, leading to increased erosion and sediment transport in steep areas. Simulation predictions highlighted areas with high future erosion potential, which are at risk of further soil loss if current trends continue. Flow velocity increased, contributing to riverbank destabilization and higher sediment yield, posing a risk to infrastructure such as the Álvaro Obregón Dam. This study underscores the need for targeted erosion control measures and sustainable land management practices to mitigate future risks and protect vital infrastructure in the Yaqui River Basin. Full article
(This article belongs to the Special Issue Ecological and Disaster Risk Assessment of Land Use Changes)
Show Figures

Figure 1

17 pages, 3376 KiB  
Article
Estimation of the Potential for Soil and Water Conservation Measures in a Typical Basin of the Loess Plateau, China
by Beilei Liu, Peng Li, Zhanbin Li, Jianye Ma, Zeyu Zhang and Bo Wang
Water 2024, 16(19), 2868; https://doi.org/10.3390/w16192868 - 9 Oct 2024
Cited by 1 | Viewed by 1538
Abstract
Abstract: In the context of the large-scale management of the Loess Plateau and efforts to reduce water and sediment in the Yellow River, this study focuses on a typical watershed within the Loess Plateau. The potential for vegetation restoration in the Kuye River [...] Read more.
Abstract: In the context of the large-scale management of the Loess Plateau and efforts to reduce water and sediment in the Yellow River, this study focuses on a typical watershed within the Loess Plateau. The potential for vegetation restoration in the Kuye River Basin is estimated based on the assumption that vegetation cover should be relatively uniform under similar habitat conditions. The potential for terrace restoration is assessed through an analysis of topographic features and soil layer thickness, while the potential for silt dam construction is evaluated by considering various hydrological and geomorphological factors. Based on these assessments, the overall potential for soil erosion control in the watershed is synthesized, providing a comprehensive understanding of target areas for ecological restoration within the Kuye River Basin. The study demonstrates that the areas with the greatest potential for vegetation restoration in the Kuye River Basin are concentrated in the upper and middle reaches of the basin, which are in closer proximity to the river. The total potential for terracing is 1013.85 km2, which is primarily distributed across the river terraces, farmlands, and gentle slopes on both sides of the riverbanks. Additionally, the potential for the construction of check dams is 14,390 units. The target areas for terracing measures in the Kuye River Basin are primarily situated in the middle and lower reaches of the basin, which are in closer proximity to the river. Conversely, the target areas for forest, grass, and check dams, as well as other small watershed integrated management measures, are predominantly located in the hill and gully areas on the eastern and southern sides of the basin. The implementation of the gradual ecological construction of the watershed, based on the aforementioned objectives, will facilitate the protection, improvement, and rational utilization of soil, water, and other natural resources within the watershed. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation)
Show Figures

Figure 1

Back to TopTop