Effect of Chitosan and Alginate-Based Edible Membranes with Oregano Essential Oil and Olive Oil in the Microbiological, Physicochemical and Organoleptic Characteristics of Mutton
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meat Samples
2.2. Preparation of Edible Coatings and Essential Oil Solutions
2.3. Application of the Edible Coatings and Their Emulsions to Meat Samples
2.4. Microbiological Analysis
2.5. Physicochemical Analyses
2.6. Sensory Evaluation
2.7. Statistical Analysis
3. Results
3.1. Microbiological Analysis
3.2. Physicochemical Analyses
3.3. Sensory Evaluation
4. Discussion
4.1. Microbiological Analysis
4.2. Chemical Analysis
4.3. Sensory Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- González, N.; Marquès, M.; Nadal, M.; Domingo, J.L. Meat consumption: Which are the current global risks? A review of recent (2010–2020) evidences. Food Res. Int. 2020, 137, 109341. [Google Scholar] [CrossRef]
- Tsitsos, A.; Economou, V.; Arsenos, G.; Kalitsis, T.; Argyriadou, A.; Theodouridis, A. Greek and European consumer behaviour towards beef, lamb and mutton meat safety and quality: A review. Int. J. Agric. Resour. Gov. Ecol. 2021, 17, 414–431. [Google Scholar] [CrossRef]
- Pethick, D.W.; Hocquette, J.; Scollan, N.D.; Dunshea, F.R. Review: Improving the nutritional, sensory and market value of meat products from sheep and cattle. Animal 2021, 15 (Suppl. S1), 100356. [Google Scholar] [CrossRef]
- Tsitsos, A.; Economou, V.; Chouliara, E.; Ambrosiadis, I.; Arsenos, G. A comparative study on microbiological and chemical characteristics of small ruminant carcasses from abattoirs in Greece. Foods 2022, 11, 2370. [Google Scholar] [CrossRef]
- Zhou, G.H.; Xu, X.L.; Liu, Y. Preservation technologies for fresh meat—A review. Meat Sci. 2010, 86, 119–128. [Google Scholar] [CrossRef]
- Song, D.-H.; Hoa, V.B.; Kim, H.W.; Khang, S.M.; Cho, S.-H.; Ham, J.-S.; Seol, K.-H. Edible Films on Meat and Meat Products. Coatings 2021, 11, 1344. [Google Scholar] [CrossRef]
- Kumar, S.; Mukherjee, A.; Dutta, J. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends Food Sci. Technol. 2020, 97, 196–209. [Google Scholar] [CrossRef]
- Yuan, G.; Chen, X.; Li, D. Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Res. Int. 2016, 89, 117–128. [Google Scholar] [CrossRef]
- Economou, V.; Tsitsos, A.; Theodouridis, A.; Ambrosiadis, I.; Arsenos, G. Effects of chitosan coatings on controlling Listeria monocytogenes and methicillin-resistant Staphylococcus aureus in beef and mutton cuts. Appl. Sci. 2022, 12, 11345. [Google Scholar] [CrossRef]
- Campos, C.A.; Gerschenson, L.N.; Flores, S.K. Development of edible films and coatings with antimicrobial activity. Food Bioprocess Technol. 2011, 4, 849–875. [Google Scholar] [CrossRef]
- Kontominas, M.G. Use of alginates as food packaging materials. Foods 2020, 9, 1440. [Google Scholar] [CrossRef]
- Vital, A.C.P.; Guerrero, A.; Monteschio, J.D.O.; Valero, M.V.; Carvalho, C.B.; De Abreu Filho, B.A.; Madrona, G.S.; Do Prado, I.N. Effect of edible and active coating (with rosemary and oregano essential oils) on beef characteristics and consumer acceptability. PLoS ONE 2016, 11, e0160535. [Google Scholar] [CrossRef] [Green Version]
- Şen, F.; Uzunsoy, İ.; Baştürk, E.; Kahraman, M.V. Antimicrobial agent-free hybrid cationic starch/sodium alginate polyelectrolyte films for food packaging materials. Carbohydr. Polym. 2017, 170, 264–270. [Google Scholar] [CrossRef]
- Heydari, R.; Bavandi, S.; Javadian, S.R. Effect of sodium alginate coating enriched with horsemint (Mentha longifolia) essential oil on the quality of bighead carp fillets during storage at 4 °C. Food Sci. Nutr. 2015, 3, 188–194. [Google Scholar] [CrossRef]
- Ruiz-Navajas, Y.; Viuda-Martos, M.; Sendra, E.; Perez-Alvarez, J.A.; Fernández-López, J. In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control 2013, 30, 386–392. [Google Scholar] [CrossRef]
- Asensio, C.M.; Nepote, V.; Grosso, N.R. Chemical stability of extra-virgin olive oil added with oregano essential oil. J. Food Sci. 2011, 76, S445–S450. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, I.; Silva-Espinoza, B.A.; Ortega-Ramirez, L.A.; Leyva, J.M.; Siddiqui, M.W.; Cruz-Valenzuela, M.R.; Gonzalez-Aguilar, G.A.; Ayala-Zavala, J.F. Oregano Essential Oil as an Antimicrobial and Antioxidant Additive in Food Products. Crit. Rev. Food Sci. Nutr. 2016, 56, 1717–1727. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the use of oregano and lemon balm extracts as a food additive on request of the European Commission. EFSA J. 2010, 8, 1514. [Google Scholar] [CrossRef] [Green Version]
- Sedaghat Doost, A.; Stevens, C.V.; Claeys, M.; Van Der Meeren, P. Fundamental Study on the salt tolerance of oregano essential oil-in-water nanoemulsions containing Tween 80. Langmuir 2019, 35, 10572–10581. [Google Scholar] [CrossRef]
- Sedaghat Doost, A.; Devlieghere, F.; Stevens, C.V.; Claeys, M.; Van der Meeren, P. Self-assembly of Tween 80 micelles as nanocargos for oregano and trans-cinnamaldehyde plant-derived compounds. Food Chem. 2020, 327, 126970. [Google Scholar] [CrossRef]
- Beriain, M.J.; Gómez, I.; Petri, E.; Insausti, K.; Sarriés, M.V. The effects of olive oil emulsified alginate on the physicochemical, sensory, microbial, and fatty acid profiles of low-salt, inulin-enriched sausages. Meat Sci. 2011, 88, 189–197. [Google Scholar] [CrossRef]
- Parreidt, T.S.; Schott, M.; Schmid, M.; Müller, K. Effect of presence and concentration of plasticizers, vegetable oils, and surfactants on the properties of sodium-alginate-based edible coatings. Int. J. Mol. Sci. 2018, 19, 742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stark, A.H.; Madar, Z. Olive oil as a functional food: Epidemiology and nutritional approaches. Nutr. Rev. 2002, 60, 170–176. [Google Scholar] [CrossRef]
- Acevedo-Fani, A.; Salvia-Trujillo, L.; Rojas-Graü, M.A.; Martín-Belloso, O. Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocoll. 2015, 47, 168–177. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs (Text with EEA relevance). OJEU 2005, 338, 1–26. [Google Scholar]
- ISO 15214; Microbiology of food and animal feeding stuffs—Horizontal method for the enumeration of mesophilic lactic acid bacteria—Colony-count technique at 30 °C. International Organization for Standardization: Geneva, Switzerland, 1998.
- ISO 4833-1; Microbiology of the food chain—Horizontal method for the enumeration of microorganisms—Part 1: Colony count at 30 °C by the pour plate technique. International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 13722; Microbiology of the food chain—Enumeration of Brochothrix spp.—Colony-count technique. International Organization for Standardization: Geneva, Switzerland, 2017.
- American Meat Science Association (AMSA). AMSA Meat Color Measurement Guidelines; American Meat Science Association (AMSA): Champaign, IL, USA, 2012; ISBN 61820 800-517-2672. [Google Scholar]
- Pabast, M.; Shariatifar, N.; Beikzadeh, S.; Jahed, G. Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control 2018, 91, 185–192. [Google Scholar] [CrossRef]
- Chounou, N.; Chouliara, E.; Mexis, S.F.; Stavros, K.; Georgantelis, D.; Kontominas, M.G. Shelf life extension of ground meat stored at 4 °C using chitosan and an oxygen absorber. Int. J. Food Sci. Technol. 2013, 48, 89–95. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Rao, M.S.; Chawla, S.P.; Sharma, A. Effects of chitosan coating on shelf-life of ready-to-cook meat products during chilled storage. LWT 2013, 53, 321–326. [Google Scholar] [CrossRef]
- He, L.; Zou, L.; Yang, Q.; Xia, J.; Zhou, K.; Zhu, Y.; Han, X.; Pu, B.; Hu, B.; Deng, W.; et al. Antimicrobial activities of nisin, tea polyphenols, and chitosan and their combinations in chilled mutton. J. Food Sci. 2016, 81, M1466–M1471. [Google Scholar] [CrossRef]
- Hamedi, H.; Kargozari, M.; Shotorbani, P.M.; Mogadam, N.B.; Fahimdanesh, M. A novel bioactive edible coating based on sodium alginate and galbanum gum incorporated with essential oil of Ziziphora persica: The antioxidant and antimicrobial activity, and application in food model. Food Hydrocoll. 2017, 72, 35–46. [Google Scholar] [CrossRef]
- Raeisi, M.; Hashemi, M.; Aminzare, M.; Ghorbani Bidkorpeh, F.; Ebrahimi, M.; Jannat, B.; Tepe, B.; Noori, S.M.A. Effects of sodium alginate and chitosan coating combined with three different essential oils on microbial and chemical attributes of rainbow trout fillets. J. Aquat. Food Prod. Technol. 2020, 29, 253–263. [Google Scholar] [CrossRef]
- Chidanandaiah Keshri, R.C.; Sanyal, M.K. Effect of sodium alginate coating with preservatives on the quality of meat patties during refrigerated (4 ± 1C) storage. J. Muscle Foods 2009, 20, 275–292. [Google Scholar] [CrossRef]
- Hamzeh, A.; Rezaei, M. The effects of sodium alginate on quality of rainbow trout (Oncorhynchus mykiss) fillets stored at 4 ± 2 °C. J. Aquat. Food Prod. Technol. 2012, 21, 14–21. [Google Scholar] [CrossRef]
- Govaris, A.; Solomakos, N.; Pexara, A.; Chatzopoulou, P.S. The antimicrobial effect of oregano essential oil, nisin and their combination against Salmonella Enteritidis in minced sheep meat during refrigerated storage. Int. J. Food Microbiol. 2010, 137, 175–180. [Google Scholar] [CrossRef]
- Vergara, H.; Cózar, A.; Rubio, N. Effect of adding of different forms of oregano (Origanum vulgare) on lamb meat burgers quality during the storage time. CYTA J. Food 2020, 18, 535–542. [Google Scholar] [CrossRef]
- Fernandes, R.P.P.; Trindade, M.A.; Lorenzo, J.M.; Munekata, P.E.S.; de Melo, M.P. Effects of oregano extract on oxidative, microbiological and sensory stability of sheep burgers packed in modified atmosphere. Food Control 2016, 63, 65–75. [Google Scholar] [CrossRef]
- Camo, J.; Beltrán, J.A.; Roncalés, P. Extension of the display life of lamb with an antioxidant active packaging. Meat Sci. 2008, 80, 1086–1091. [Google Scholar] [CrossRef]
- Rubel, S.A.; Yu, Z.N.; Murshed, H.M.; Islam, S.M.A.; Sultana, D.; Rahman, S.M.E.; Wang, J. Addition of olive (Olea europaea) leaf extract as a source of natural antioxidant in mutton meatball stored at refrigeration temperature. J. Food Sci. Technol. 2021, 58, 4002–4010. [Google Scholar] [CrossRef]
- Martiny, T.R.; Raghavan, V.; de Moraes, C.C.; da Rosa, G.S.; Dotto, G.L. Bio-based active packaging: Carrageenan film with olive leaf extract for lamb meat preservation. Foods 2020, 9, 1759. [Google Scholar] [CrossRef]
- Assanti, E.; Karabagias, V.K.; Karabagias, I.K.; Badeka, A.; Kontominas, M.G. Shelf life evaluation of fresh chicken burgers based on the combination of chitosan dip and vacuum packaging under refrigerated storage. J. Food Sci. Technol. 2021, 58, 870–883. [Google Scholar] [CrossRef]
- Duran, A.; Kahve, H.I. The effect of chitosan coating and vacuum packaging on the microbiological and chemical properties of beef. Meat Sci. 2020, 162, 107961. [Google Scholar] [CrossRef]
- Karabagias, I.; Badeka, A.; Kontominas, M.G. Shelf life extension of lamb meat using thyme or oregano essential oils and modified atmosphere packaging. Meat Sci. 2011, 88, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Vital, A.C.P.; Guerrero, A.; Guarnido, P.; Cordeiro Severino, I.; Olleta, J.L.; Blasco, M.; Nunes do Prado, I.; Maggi, F.; Campo, M.D.M. Effect of active-edible coating and essential oils on lamb patties oxidation during display. Foods 2021, 10, 263. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, A.; Ferrero, S.; Barahona, M.; Boito, B.; Lisbinski, E.; Maggi, F.; Sañudo, C. Effects of active edible coating based on thyme and garlic essential oils on lamb meat shelf life after long-term frozen storage. J. Sci. Food Agric. 2020, 100, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Giatrakou, V.; Ntzimani, A.; Savvaidis, I.N. Effect of chitosan and thyme oil on a ready to cook chicken product. Food Microbiol. 2010, 27, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Marsh, K.S.; Dawson, P. Application of chitosan-incorporated LDPE film to sliced fresh red meats for shelf life extension. Meat Sci. 2010, 85, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.P.P.; Trindade, M.A.; Lorenzo, J.M.; de Melo, M.P. Assessment of the stability of sheep sausages with the addition of different concentrations of Origanum vulgare extract during storage. Meat Sci. 2018, 137, 244–257. [Google Scholar] [CrossRef]
- Barbosa, T.C.M.; Grisi, C.V.B.; da Fonseca, S.B.; Meireles, B.R.L.D.A.; Cordeiro, A.M.T.D.M. Effect of active gelatin-starch film containing Syzygium cumini and Origanum vulgare extract on the preservation of lamb burgers. Meat Sci. 2022, 191, 108844. [Google Scholar] [CrossRef]
- Fernandes, R.P.P.; Trindade, M.A.; Tonin, F.G.; Pugine, S.M.P.; Lima, C.G.; Lorenzo, J.M.; de Melo, M.P. Evaluation of oxidative stability of lamb burger with Origanum vulgare extract. Food Chem. 2017, 233, 101–109. [Google Scholar] [CrossRef]
Thigh | Shoulder | ||||||
---|---|---|---|---|---|---|---|
Lot | Storage (Days) | Moisture (%) | Total Fats (%) | Total Proteins (%) | Moisture (%) | Total Fats (%) | Total Proteins (%) |
Control | 0 | 71.05 | 9.60 | 18.50 | 75.25 | 6.20 | 17.55 |
1 | 75.80 | 2.80 | 20.80 | 71.50 | 8.40 | 18.60 | |
3 | 73.30 | 5.60 | 20.80 | 75.70 | 4.40 | 19.60 | |
7 | 74.10 | 4.80 | 19.00 | 71.50 | 9.50 | 19.10 | |
14 | 72.20 | 6.50 | 20.20 | 73.90 | 5.80 | 18.80 | |
21 | 73.00 | 6.30 | 19.60 | 72.40 | 6.80 | 19.30 | |
Chitosan | 0 | 71.05 | 9.60 | 18.50 | 75.25 | 6.20 | 17.55 |
1 | 74.60 | 3.90 | 18.80 | 72.10 | 7.60 | 18.90 | |
3 | 76.00 | 3.60 | 18.60 | 72.70 | 6.10 | 19.70 | |
7 | 75.60 | 5.00 | 18.20 | 71.10 | 8.50 | 19.70 | |
14 | 74.90 | 4.60 | 18.50 | 68.80 | 11.10 | 17.70 | |
21 | 74.30 | 5.40 | 17.90 | 74.00 | 6.70 | 18.40 | |
Chitosan + oregano | 0 | 71.05 | 9.60 | 18.50 | 75.25 | 6.20 | 17.55 |
1 | 73.90 | 8.10 | 17.60 | 71.50 | 8.70 | 19.10 | |
3 | 72.90 | 7.40 | 18.00 | 72.50 | 8.10 | 18.00 | |
7 | 73.30 | 7.40 | 18.40 | 73.50 | 7.50 | 17.90 | |
14 | 75.40 | 3.80 | 19.60 | 72.50 | 5.90 | 19.20 | |
21 | 75.00 | 6.10 | 17.80 | 74.60 | 5.50 | 18.70 | |
Chitosan + vacuum | 0 | 71.05 | 9.60 | 18.50 | 75.25 | 6.20 | 17.55 |
1 | 73.60 | 9.10 | 17.40 | 74.20 | 6.00 | 19.50 | |
3 | 73.80 | 5.30 | 19.80 | 75.50 | 5.10 | 18.10 | |
7 | 74.70 | 5.90 | 18.60 | 73.10 | 7.60 | 18.30 | |
14 | 73.40 | 7.40 | 18.50 | 73.60 | 8.40 | 16.90 | |
21 | 73.40 | 6.80 | 18.70 | 72.10 | 9.10 | 18.10 | |
Chitosan + oregano + vacuum | 0 | 71.05 | 9.60 | 18.50 | 75.25 | 6.20 | 17.55 |
1 | 73.10 | 6.60 | 19.80 | 71.90 | 9.60 | 18.60 | |
3 | 74.50 | 3.90 | 20.10 | 75.80 | 4.50 | 19.20 | |
7 | 72.70 | 6.30 | 19.10 | 74.10 | 6.00 | 18.00 | |
14 | 74.90 | 3.90 | 20.20 | 73.40 | 5.20 | 20.00 | |
21 | 74.90 | 3.80 | 19.30 | 71.30 | 6.80 | 20.00 | |
Vacuum | 0 | 71.05 | 9.60 | 18.50 | 75.25 | 6.20 | 17.55 |
1 | 72.80 | 6.70 | 21.00 | 74.70 | 4.90 | 19.50 | |
3 | 70.50 | 10.20 | 17.60 | 73.50 | 5.70 | 18.00 | |
7 | 72.90 | 8.40 | 17.70 | 71.30 | 8.00 | 19.60 | |
14 | 73.80 | 4.90 | 20.80 | 72.30 | 8.30 | 18.10 | |
21 | 73.00 | 4.20 | 20.90 | 72.90 | 7.00 | 19.60 | |
Alginate | 0 | 71.05 | 9.60 | 18.50 | 75.25 | 6.20 | 17.55 |
1 | 75.50 | 4.30 | 18.90 | 74.20 | 7.70 | 17.00 | |
3 | 75.80 | 2.30 | 21.60 | 75.20 | 7.50 | 16.20 | |
7 | 74.90 | 5.10 | 18.70 | 76.90 | 2.80 | 18.60 | |
14 | 76.50 | 4.80 | 17.70 | 74.10 | 6.60 | 18.00 | |
21 | 76.00 | 5.80 | 16.50 | 72.60 | 8.30 | 17.20 | |
Alginate + oregano | 0 | 71.05 | 9.60 | 18.50 | 75.2 | 6.20 | 17.55 |
1 | 77.20 | 4.40 | 17.30 | 76.20 | 4.20 | 18.60 | |
3 | 74.50 | 5.60 | 19.40 | 73.20 | 8.80 | 17.00 | |
7 | 76.90 | 4.80 | 18.00 | 75.50 | 5.50 | 17.90 | |
14 | 76.00 | 2.70 | 19.40 | 74.00 | 7.20 | 17.60 | |
21 | 69.30 | 11.10 | 17.80 | 73.20 | 7.50 | 17.70 | |
Alginate + vacuum | 0 | 71.05 | 9.60 | 18.50 | 75.25 | 6.20 | 17.55 |
1 | 75.00 | 5.90 | 17.70 | 73.60 | 8.80 | 17.60 | |
3 | 76.80 | 3.50 | 18.90 | 74.50 | 7.30 | 17.20 | |
7 | 74.70 | 6.80 | 18.00 | 75.00 | 8.10 | 15.70 | |
14 | 75.50 | 6.30 | 19.00 | 69.60 | 11.60 | 18.80 | |
21 | 77.30 | 3.00 | 18.50 | 72.80 | 8.60 | 16.60 | |
Alginate + oregano + vacuum | 0 | 71.05 | 9.60 | 18.50 | 75.25 | 6.20 | 17.55 |
1 | 74.10 | 5.10 | 20.30 | 73.90 | 8.00 | 17.00 | |
3 | 75.70 | 5.30 | 18.60 | 76.20 | 4.70 | 17.50 | |
7 | 73.50 | 6.30 | 18.30 | 74.10 | 6.30 | 17.70 | |
14 | 73.60 | 7.70 | 17.60 | 74.30 | 7.50 | 16.90 | |
21 | 76.80 | 5.10 | 17.10 | 73.60 | 8.50 | 17.10 | |
Alginate + olive + vacuum | 0 | 71.05 | 9.60 | 18.50 | 75.25 | 6.20 | 17.55 |
1 | 73.60 | 8.60 | 16.90 | 73.00 | 8.80 | 17.40 | |
3 | 77.70 | 4.30 | 16.70 | 74.40 | 9.20 | 15.20 | |
7 | 76.50 | 4.70 | 17.70 | 75.80 | 6.00 | 16.30 | |
14 | 70.70 | 12.70 | 16.00 | 74.50 | 7.00 | 17.40 | |
21 | 76.10 | 5.60 | 16.80 | 74.00 | 11.20 | 15.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsitsos, A.; Economou, V.; Chouliara, E.; Koutouzidou, G.; Arsenos, G.; Ambrosiadis, I. Effect of Chitosan and Alginate-Based Edible Membranes with Oregano Essential Oil and Olive Oil in the Microbiological, Physicochemical and Organoleptic Characteristics of Mutton. Microorganisms 2023, 11, 507. https://doi.org/10.3390/microorganisms11020507
Tsitsos A, Economou V, Chouliara E, Koutouzidou G, Arsenos G, Ambrosiadis I. Effect of Chitosan and Alginate-Based Edible Membranes with Oregano Essential Oil and Olive Oil in the Microbiological, Physicochemical and Organoleptic Characteristics of Mutton. Microorganisms. 2023; 11(2):507. https://doi.org/10.3390/microorganisms11020507
Chicago/Turabian StyleTsitsos, Anestis, Vangelis Economou, Eirini Chouliara, Georgia Koutouzidou, Georgios Arsenos, and Ioannis Ambrosiadis. 2023. "Effect of Chitosan and Alginate-Based Edible Membranes with Oregano Essential Oil and Olive Oil in the Microbiological, Physicochemical and Organoleptic Characteristics of Mutton" Microorganisms 11, no. 2: 507. https://doi.org/10.3390/microorganisms11020507
APA StyleTsitsos, A., Economou, V., Chouliara, E., Koutouzidou, G., Arsenos, G., & Ambrosiadis, I. (2023). Effect of Chitosan and Alginate-Based Edible Membranes with Oregano Essential Oil and Olive Oil in the Microbiological, Physicochemical and Organoleptic Characteristics of Mutton. Microorganisms, 11(2), 507. https://doi.org/10.3390/microorganisms11020507