Open AccessFeature PaperArticle
Laser-Driven Ramp Compression to Investigate and Model Dynamic Response of Iron at High Strain Rates
by
Nourou Amadou 1,2,3,*, Erik Brambrink 1,4, Thibaut De Rességuier 3, Adamou Ousmane Manga 2, Almoustapha Aboubacar 2, Björn Borm 5 and Anaïs Molineri 5
1
Laboratoire pour l’Utilisation des Lasers Intenes (LULI)–Centre National pour la Recherche Scientifique (CNRS), Ecole Polytechnique, Commissariat à l’Energie Atomique (CEA): Université Paris-Saclay, 91128 Palaiseau CEDEX, France
2
Département de Physique, Université Abdou Moumouni de Niamey, BP. 10662 Niamey, Niger
3
Institut P’. Centre National pour la Recherche Scientifique (CNRS). Ecole Nationale Supérieure de Mécanique et d’Aérotechnique (ENSMA) , Université de Poitiers, 86961 Futuroscope CEDEX, France
4
Sorbonne Université, Université Pierre et Marie Curie, Université Paris 06, Centre National pour la Recherche Scientifique (CNRS), Laboratoire d’Utilisation des Lasers Intenses (LULI), Place Jussieu, 75252 Paris CEDEX 05, France
5
Gesellschaft für Schwerionenforschung, Planck str. 1, Darmstadt 64287, Germany
Cited by 16 | Viewed by 5285
Abstract
Efficient laser shock processing of materials requires a good characterization of their dynamic response to pulsed compression, and predictive numerical models to simulate the thermomechanical processes governing this response. Due to the extremely high strain rates involved, the kinetics of these processes should
[...] Read more.
Efficient laser shock processing of materials requires a good characterization of their dynamic response to pulsed compression, and predictive numerical models to simulate the thermomechanical processes governing this response. Due to the extremely high strain rates involved, the kinetics of these processes should be accounted for. In this paper, we present an experimental investigation of the dynamic behavior of iron under laser driven ramp loading, then we compare the results to the predictions of a constitutive model including viscoplasticity and a thermodynamically consistent description of the bcc to hcp phase transformation expected near 13 GPa. Both processes are shown to affect wave propagation and pressure decay, and the influence of the kinetics of the phase transformation on the velocity records is discussed in details.
Full article
►▼
Show Figures