# Heat-Assisted Batch Settling of Mineral Suspensions in Inclined Containers

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Governing Equations

## 3. Simulation Cases and Boundary Conditions

## 4. Results and Discussion

#### 4.1. Effect of Temperature

#### 4.2. Effect of Particle Diameter

#### 4.3. Effect of Particle Concentration

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Ihle, C.; Tamburrino, A. Variables affecting energy efficiency in turbulent ore concentrate pipeline transport. Miner. Eng.
**2012**, 39, 62–70. [Google Scholar] [CrossRef] - Ihle, C.F.; Kracht, W. The relevance of water recirculation in large scale mineral processing plants with a remote water supply. J. Clean. Prod.
**2018**, 177, 34–51. [Google Scholar] [CrossRef] - Herrera-León, S.; Lucay, F.A.; Cisternas, L.A.; Kraslawski, A. Applying a multi-objective optimization approach in designing water supply systems for mining industries. The case of Chile. J. Clean. Prod.
**2019**, 210, 994–1004. [Google Scholar] [CrossRef] - Wang, C.; Harbottle, D.; Liu, Q.; Xu, Z. Current state of fine mineral tailings treatment: A critical review on theory and practice. Miner. Eng.
**2014**, 58, 113–131. [Google Scholar] [CrossRef] [Green Version] - Tankosić, L.; Tančić, P.; Sredić, S.; Nedić, Z. Comparative Study of the Mineral Composition and Its Connection with Some Properties Important for the Sludge Flocculation Process-Examples from Omarska Mine. Minerals
**2018**, 8, 119. [Google Scholar] [CrossRef] - Ma, X.; Fan, Y.; Dong, X.; Chen, R.; Li, H.; Sun, D.; Yao, S. Impact of Clay Minerals on the Dewatering of Coal Slurry: An Experimental and Molecular-Simulation Study. Minerals
**2018**, 8, 400. [Google Scholar] [CrossRef] - Falconer, A. Gravity separation: Old technique/new methods. Phys. Sep. Sci. Eng.
**2003**, 12, 31–48. [Google Scholar] [CrossRef] - Concha, F. Solid-Liquid Separation in the Mining Industry; Springer: Berlin, Germany, 2014. [Google Scholar]
- Chen, G.; Xiong, Q.; Morris, P.J.; Paterson, E.G.; Sergeev, A.; Wang, Y. OpenFOAM for computational fluid dynamics. Not. AMS
**2014**, 61, 354–363. [Google Scholar] [CrossRef] - Leung, W.F.; Probstein, R.F. Lamella and tube settlers. 1. Model and operation. Ind. Eng. Chem. Process Des. Dev.
**1983**, 22, 58–67. [Google Scholar] [CrossRef] - Boycott, A.E. Sedimentation of blood corpuscles. Nature
**1920**, 104, 532. [Google Scholar] [CrossRef] - Davis, R.H.; Zhang, X.; Agarwala, J.P. Particle classification for dilute suspensions using an inclined settler. Ind. Eng. Chem. Res.
**1989**, 28, 785–793. [Google Scholar] [CrossRef] - Acrivos, A.; Herbolzheimer, E. Enhanced sedimentation in settling tanks with inclined walls. J. Fluid Mech.
**1979**, 92, 435. [Google Scholar] [CrossRef] - Ortega, A.; Escobar, R.; Colle, S.; De Abreu, S.L. The state of solar energy resource assessment in Chile. Renew. Energy
**2010**, 35, 2514–2524. [Google Scholar] [CrossRef] - Solangi, K.H.; Islam, M.R.; Saidur, R.; Rahim, N.A.; Fayaz, H. A review on global solar energy policy. Renew. Sustain. Energy Rev.
**2011**, 15, 2149–2163. [Google Scholar] [CrossRef] - Kaviany, M. Essentials of Heat Transfer: Principles, Materials, And Applications; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Fujii, T.; Imura, H. Natural-convection heat transfer from a plate with arbitrary inclination. Int. J. Heat Mass Transf.
**1972**, 15, 755–767. [Google Scholar] [CrossRef] - Palma, S.; Ihle, C.F.; Tamburrino, A.; Dalziel, S.B. Particle organization after viscous sedimentation in tilted containers. Phys. Fluids
**2016**, 28. [Google Scholar] [CrossRef] - Reyes, C.; Ihle, C.F. Numerical simulation of cation exchange in fine-coarse seawater slurry pipeline flow. Miner. Eng.
**2018**, 117, 14–23. [Google Scholar] [CrossRef] - Maidment, D.R. Handbook of Hydrology; McGraw-HillL: New York, NY, USA, 1993; Volume 1. [Google Scholar]
- Enwald, H.; Peirano, E.; Almstedt, A.E. Eulerian two-phase flow theory applied to fluidization. Int. J. Multiph. Flow
**1996**, 22, 21–66. [Google Scholar] [CrossRef] - Al-Shemmeri, T. Engineering Fluid Mechanics; Bookboon: London, UK, 2012. [Google Scholar]
- Boyer, F.; Guazzelli, É.; Pouliquen, O. Unifying suspension and granular rheology. Phys. Rev. Lett.
**2011**, 107, 188301. [Google Scholar] [CrossRef] [PubMed] - Baumgarten, A.S.; Kamrin, K. A general fluid–sediment mixture model and constitutive theory validated in many flow regimes. J. Fluid Mech.
**2019**, 861, 721–764. [Google Scholar] [CrossRef] - Hanley, E.J.; Dewitt, D.P.; Roy, R.F. The thermal diffusivity of eight well-characterized rocks for the temperature range 300–1000 K. Eng. Geol.
**1978**, 12, 31–47. [Google Scholar] [CrossRef] - MacIntyre, S.; Romero, J.R.; Kling, G.W. Spatial-temporal variability in surface layer deepening and lateral advection in an embayment of Lake Victoria, East Africa. Limnol. Oceanogr.
**2002**, 47, 656–671. [Google Scholar] [CrossRef] [Green Version] - Herbolzheimer, E.; Acrivos, A. Enhanced sedimentation in narrow tilted channels. J. Fluid Mech.
**1981**, 108, 485. [Google Scholar] [CrossRef] - Hill, W.D.; Rothfus, R.; Li, K. Boundary-enhanced sedimentation due to settling convection. Int. J. Multiph. Flow
**1977**, 3, 561–583. [Google Scholar] [CrossRef] - Herbolzheimer, E. Stability of the flow during sedimentation in inclined channels. Phys. Fluids
**1983**, 26, 2043–2054. [Google Scholar] [CrossRef] - Dobashi, T.; Idonuma, A.; Toyama, Y.; Sakanishi, A. Effect of concentration on enhanced sedimentation rate of erythrocytes in an inclined vessel. Biorheology
**1994**, 31, 383–393. [Google Scholar] [CrossRef] - Davis, R.H.; Acrivos, A. Sedimentation of noncolloidal particles at low Reynolds numbers. Annu. Rev. Fluid Mech.
**1985**, 17, 91–118. [Google Scholar] [CrossRef]

**Figure 1.**Cell. The heated downward-facing, heated wall corresponds to the right side boundary of the domain. The horizontal arrows denote the heat flux on the downward facing wall, while the diagonal arrows show a scheme of the liquid (and partially fine solid) fraction flowing upwards near it.

**Figure 2.**Typical flow and particle progression for the case $\Delta {T}_{\mathrm{DFW}}=30\text{}{}^{\xb0}\mathrm{C}$, ${\varphi}_{0}=0.05$, and ${d}_{S}=10\text{}\mathsf{\mu}\mathrm{m}$ and (from left to right) $t=200\text{}\mathrm{s}$, 800 s, 1600 s, and 3200 s. (

**a**) Particle concentration ($\varphi $, with color scale in logarithmic scale) and (

**b**) local parallel mean velocity, defined as $\langle \mathbf{u}\rangle \phantom{\rule{0.166667em}{0ex}}\xb7\phantom{\rule{0.166667em}{0ex}}\widehat{\mathit{p}}$, with $\widehat{\mathit{p}}$ a unit vector parallel to the upward facing wall.

**Figure 4.**Spatiotemporal diagram of concentration for (

**a**) $\Delta {T}_{\mathrm{DFW}}=0$, (

**b**) $\Delta {T}_{\mathrm{DFW}}=20\text{}{}^{\xb0}\mathrm{C}$, (

**c**) $\Delta {T}_{\mathrm{DFW}}=30\text{}{}^{\xb0}\mathrm{C}$, and (

**d**) $\Delta {T}_{\mathrm{DFW}}=50\text{}{}^{\xb0}\mathrm{C}$. The x and y axes represent time and vertical position ($y=0$ standing for the top of the cell). False color represents horizontally-averaged particle concentration.

**Figure 5.**Effect of temperature on the mean particle volume concentration within $\mathrm{A}1={Y}_{z}W$, for ${d}_{s}=10\text{}\mathsf{\mu}\mathrm{m}$, $\theta =45{}^{\xb0}$, ${\varphi}_{0}=5\%$, and $W=5\text{}\mathrm{c}\mathrm{m}$. The mass in A1 in these cases is equivalent to 60% of the total mass in the cell. (

**a**) ${Y}_{z}=0.6{Y}_{\infty}$ and (

**b**) ${Y}_{z}=0.9{Y}_{\infty}$.

**Figure 6.**Particle accumulation at zone A3 for ${d}_{s}=10\text{}\mathsf{\mu}\mathrm{m}$, $\theta =45{}^{\xb0}$, ${\varphi}_{0}=5\%$, and $W=5\text{}\mathrm{c}\mathrm{m}$. (

**a**) Particle mass and (

**b**) the vertical position (${Y}_{\mathrm{sed}}$) of the particle sediment above the upward facing wall.

**Figure 7.**Mass resuspended at zone A2 for ${d}_{s}=10\text{}\mathsf{\mu}\mathrm{m}$, $\theta =45{}^{\xb0}$, ${\varphi}_{0}=5\%$, and $W=5\text{}\mathrm{c}\mathrm{m}$.

**Figure 8.**Spatiotemporal diagram of concentration for (

**a**) $({d}_{s},\Delta {T}_{\mathrm{DFW}})=(10\text{}\mathsf{\mu}\mathrm{m},0\text{}{}^{\xb0}\mathrm{C})$, (

**b**) $({d}_{s},\Delta {T}_{\mathrm{DFW}})=(10\text{}\mathsf{\mu}\mathrm{m},30\text{}{}^{\xb0}\mathrm{C})$, (

**c**) $({d}_{s},\Delta {T}_{\mathrm{DFW}})=(50\text{}\mathsf{\mu}\mathrm{m},0\text{}{}^{\xb0}\mathrm{C})$, (

**d**) $({d}_{s},\Delta {T}_{\mathrm{DFW}})=(50\text{}\mathsf{\mu}\mathrm{m},30\text{}{}^{\xb0}\mathrm{C})$, (

**e**) $({d}_{s},\Delta {T}_{\mathrm{DFW}})=(100\text{}\mathsf{\mu}\mathrm{m},0\text{}{}^{\xb0}\mathrm{C})$, and (

**f**) $({d}_{s},\Delta {T}_{\mathrm{DFW}})=(100\text{}\mathsf{\mu}\mathrm{m},30\text{}{}^{\xb0}\mathrm{C})$, with $\theta =45{}^{\xb0}$, ${\varphi}_{0}=5\%$, and $W=5\text{}\mathrm{cm}$. The x and y axes represent time and vertical position ($y=0$ standing for the top of the cell). False color represents horizontally-averaged particle concentration.

**Figure 9.**Average concentration at zone A1 as a function of particle diameter for (

**a**) ${d}_{s}=50\text{}\mathsf{\mu}\mathrm{m}$ and (

**b**) ${d}_{s}=100\text{}\mathsf{\mu}\mathrm{m}$.

**Figure 10.**Average concentration at zone A2 for ${d}_{s}=10\text{}\mathsf{\mu}\mathrm{m}$, 50 $\mathsf{\mu}$m and 100 $\mathsf{\mu}$m, $\Delta {T}_{\mathrm{DFW}}=0$ and 50 ${}^{\xb0}\mathrm{C}$ as a function of the dimensionless time $\tau =t{w}_{0}/b$, with ${w}_{0}$ the Stokes velocity for each particle size.

**Figure 13.**Dependence of the initial particle concentration on the normalized accumulation in A1, defined as ${\langle \varphi \rangle}_{\mathrm{A}1}/{\varphi}_{0}$.

**Figure 14.**Effect of the initial particle concentration in the particle concentration in the clear water zone or A2.

**Table 1.**Range of variables studied in the numerical simulations. The acronym DFW stands for downward facing wall. In all the cases, the initial temperature prior to the start of the heating of the downward facing wall was ${T}_{0}=20\text{}{}^{\xb0}\mathrm{C}$. At the start of each experiment, the temperature at the downward facing wall was set as ${T}_{\mathrm{DFW}}={T}_{0}+\Delta {T}_{\mathrm{DFW}}$. Variables ${d}_{s}$, ${\varphi}_{0}$, $\theta $, and W denote particle diameter (monosized), initial concentration (constant), cell inclination, and horizontal projection of cell spacing, respectively. ${H}_{0}$ is equivalent to $\mathrm{cos}\left(45\right)$, and the length of the cell is 1 m.

Variable | Cases Considered |
---|---|

${H}_{0}$ | $0.707$$\mathrm{m}$ |

$\Delta {T}_{\mathrm{DFW}}$ | 20, 30, 40, and 50 ${}^{\xb0}\mathrm{C}$ |

${d}_{s}$ | 5, 10, and 50 $\mathsf{\mu}$$\mathrm{m}$ |

${\varphi}_{0}$ | 2%, 5%, 8%, and 15% |

$\theta $ | 45${}^{\xb0}$ |

W | 5 $\mathrm{c}$$\mathrm{m}$ |

**Table 2.**Dimensionless particle accumulation lapse in A1 for temperature difference $\Delta {T}_{\mathrm{DFW}}$ at the downward facing wall (${t}_{\Delta {T}_{\mathrm{DFW}}}^{*}$), normalized by the particle accumulation time without heating (${t}_{\Delta {T}_{\mathrm{DFW}}=0}^{*}$), ${\psi}_{\Delta {T}_{\mathrm{DFW}}}\equiv {t}_{\Delta {T}_{\mathrm{DFW}}}^{*}/{t}_{\Delta {T}_{\mathrm{DFW}}=0}^{*}$, where a and bare the case where ${Y}_{z}=0.6{Y}_{\infty}$ and ${Y}_{z}=0.9{Y}_{\infty}$, respectively. Here, ${d}_{s}=10\text{}\mathsf{\mu}\mathrm{m}$, $\theta =45{}^{\xb0}$, ${\varphi}_{0}=5\%$, and $W=5\text{}\mathrm{cm}$.

$\mathbf{\Delta}{\mathit{T}}_{\mathbf{DFW}}$ (K) | ${\mathit{\psi}}_{\mathbf{\Delta}{\mathit{T}}_{\mathbf{DFW}}\mathbf{,}\mathit{a}}$ | ${\mathit{\psi}}_{\mathbf{\Delta}{\mathit{T}}_{\mathbf{DFW}}\mathbf{,}\mathit{b}}$ |
---|---|---|

20 | 0.62 | 0.54 |

30 | 0.58 | 0.53 |

40 | 0.53 | 0.43 |

50 | 0.51 | 0.29 |

**Table 3.**Dimensionless particle accumulation lapse in A1 for temperature difference $\Delta {T}_{\mathrm{DFW}}=50\text{}{}^{\xb0}\mathrm{C}$ at the downward facing wall for ${d}_{s}=10\text{}\mathsf{\mu}\mathrm{m}$, ${d}_{s}=50\text{}\mathsf{\mu}\mathrm{m}$, and ${d}_{s}=100\text{}\mathsf{\mu}\mathrm{m}$ (${t}_{50,{d}_{s}}^{*}$), normalized by the particle accumulation time without heating (${t}_{0,{d}_{s}}^{*}$), ${\psi}_{50,{d}_{s}}\equiv {t}_{50,{d}_{s}}^{*}/{t}_{0,{d}_{s}}^{*}$. Here, $\theta =45{}^{\xb0}$, ${\varphi}_{0}=5\%$, and $W=5\text{}\mathrm{cm}$.

${\mathit{d}}_{\mathit{s}}$ ($\mathsf{\mu}$m) | ${\mathit{\psi}}_{\mathbf{50}\mathbf{,}{\mathit{d}}_{\mathit{s}}}$ |
---|---|

10 | 0.94 |

50 | 0.94 |

100 | 0.70 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Reyes, C.; Ihle, C.F.; Apaz, F.; Cisternas, L.A.
Heat-Assisted Batch Settling of Mineral Suspensions in Inclined Containers. *Minerals* **2019**, *9*, 228.
https://doi.org/10.3390/min9040228

**AMA Style**

Reyes C, Ihle CF, Apaz F, Cisternas LA.
Heat-Assisted Batch Settling of Mineral Suspensions in Inclined Containers. *Minerals*. 2019; 9(4):228.
https://doi.org/10.3390/min9040228

**Chicago/Turabian Style**

Reyes, Cristian, Christian F. Ihle, Fernando Apaz, and Luis A. Cisternas.
2019. "Heat-Assisted Batch Settling of Mineral Suspensions in Inclined Containers" *Minerals* 9, no. 4: 228.
https://doi.org/10.3390/min9040228