Early Permian Post-Collision Extensional Setting in the Southern Beishan Orogenic Belt: Evidence from the Zhangfangshan Granodiorite and the Baishantang Bimodal Volcanic Rocks
Abstract
:1. Introduction
2. Geological Setting
3. Sample Description
3.1. Zhangfangshan Granodiorite
3.2. Baishantang Bimodal Volcanic Rocks
4. Analytical Methods
4.1. Zircon U-Pb Dating
4.2. Whole-Rock Major Oxides and Trace Elements Analyses
4.3. Whole-Rock Nd-Hf Isotope Analyses
5. Analytical Results
5.1. Zircon U-Pb Geochronology
5.2. Whole-Rock Major Oxides and Trace Elements
5.2.1. The Zhangfangshan Granodiorite
5.2.2. Baishantang Bimodal Volcanic Rocks
5.3. Whole-Rock Nd-Hf Isotope of the Baishantang Bimodal Volcanic Rocks
6. Discussion
6.1. Early Permian Magmatism in the SBOB
6.2. Petrogensis
6.2.1. The Zhangfangshan Granodiorite
6.2.2. The Baishantang Bimodal Volcanic Rocks
6.3. Tectonic Implications
7. Conclusions
- The Zhangfangshan granodiorites have 206Pb/238U ages of 288.7 ± 1.7 Ma, and the Baishantang rhyolites have 206Pb/238U ages of 272.3 ± 1.6 Ma.
- The Zhangfangshan granodiorite belong to the A2-type granite and are generated from magma mixing between mafic and felsic magmas.
- The Baishantang rhyolites belong to the A2-type granite and are generated from the partial melting of crust. The Baishantang basaltic andesites belong to the calc-alkaline series, which originated from the partial melting of the mantle and mixing via sediment-derived melts.
- The Zhangfangshan granodiorites and the Baishantang bimodal volcanic rocks were formed in the post-collision extensional setting. The SBOB was in the post-collision period, and the HZ ocean was closed before the early Permian.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Briggs, S.M.; Yin, A.; Manning, C.E.; Chen, Z.L.; Wang, X.F.; Grove, M. Late Paleozoic tectonic history of the Ertix Fault in the Chinese Altai and its implications for the development of the Central Asian Orogenic System. Geol. Soc. Am. Bull. 2007, 119, 944–960. [Google Scholar] [CrossRef]
- Briggs, S.M.; Yin, A.; Manning, C.E.; Chen, Z.L.; Wang, X.F. Tectonic development of the southern Chinese Altai Range as determined by structural geology, thermobarometry, 40Ar/39Ar thermochronology, and Th/Pb ion microprobe monazite geochronology. Geol. Soc. Am. Bull. 2009, 121, 1381–1393. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.Y.; Chen, B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Geol. Soc. Am. Spec. Pap. 2000, 350, 181–193. [Google Scholar]
- Windley, B.F.; Alexeiev, D.; Xiao, W.; Kroner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. Lond. 2007, 164, 31–47. [Google Scholar] [CrossRef]
- Xiao, W.J.; Pirajno, F.; Seltmann, R. Geodynamicsand metallogeny of the Altaid orogen. J. Asian Earth Sci. 2008, 32, 77–81. [Google Scholar] [CrossRef]
- Khain, E.V.; Bibikova, E.V.; Kröner, A.; Zhuravlev, D.Z.; Sklyarov, E.V.; Fedotova, A.A.; Kravchenko-Berezhnoy, I.R. The most ancient ophiolite of the Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications. Earth Planet. Sci. Lett. 2002, 199, 311–325. [Google Scholar] [CrossRef]
- Chen, X.H.; Dong, S.W.; Shi, W.; Ding, W.C.; Zhang, Y.P.; Li, B.; Shao, Z.G.; Wang, Y. Construction of the continental Asia in Phanerozoic: A review. Acta Geol. Sin. 2022, 96, 26–51, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Xiao, W.J.; Song, D.F.; Windley, B.F.; Li, J.L.; Han, C.M.; Wan, B.; Zhang, J.E.; Ao, S.J.; Zhang, Z.Y. Accretionary processes and metallogenies of the Central Asian Orogenic Belt. Advances and perspectives. Science China. Earth Sci. 2020, 63, 329–361. [Google Scholar] [CrossRef]
- Huang, H.; Wang, T.; Tong, Y.; Qin, Q.; Ma, X.X.; Yin, J.Y. Rejuvenation of ancient micro-continents during accretionary orogenesis: Insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt. Earth-Sci. Rev. 2020, 208, 103255. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Natal’in, B.A.; Sunal, G.; Van der Voo, R. The tectonics of the Altaids: Crustal growth during the construction of the continental lithosphere of central asia between ∼750 and ∼130 Ma ago. Annu. Rev. Earth Planet. Sci. 2018, 46, 439–494. [Google Scholar] [CrossRef]
- Li, S.; Wilde, S.A.; Wang, T. Early Permian post-collisional high-K granitoids from Liuyuan area in southern Beishan orogen, NW China: Petrogenesis and tectonic implications. Lithos 2013, 179, 99–119. [Google Scholar] [CrossRef]
- Zhang, W.; Pease, V.; Meng, Q.P.; Zheng, R.G.; Thomsen, T.B.; Wohlgemuth-Ueberwasser, C.; Wu, T.R. Timing, petrogenesis, and setting of granites from the southern Beishan late Palaeozoic granitic belt, Northwest China and implications for their tectonic evolution. Int. Geol. Rev. 2015, 57, 1975–1991. [Google Scholar] [CrossRef]
- Zheng, R.G.; Li, J.Y.; Zhang, J.; Xiao, W.J. A prolonged subduction-accretion in the southern Central Asian Orogenic Belt: Insights from anatomy and tectonic affinity for the Beishan complex. Gondwana Res. 2021, 95, 88–112. [Google Scholar] [CrossRef]
- Xiao, W.J.; Mao, Q.G.; Windley, B.F.; Han, C.M.; Qu, J.F.; Zhang, J.E.; Ao, S.J.; Guo, Q.Q.; Cleven, N.R.; Lin, S.F.; et al. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage. Am. J. Sci. 2010, 310, 1553–1594. [Google Scholar] [CrossRef]
- Li, J.; Wu, C.; Chen, X.H.; Zuza, A.V.; Haproff, P.J.; Yin, A.; Shao, Z.G. Tectonic evolution of the Beishan orogen in central Asia: Subduction, accretion, and continent-continent collision during the closure of the Paleo-Asian Ocean. Geol. Soc. Am. Bull. 2023, 135, 5–6. [Google Scholar] [CrossRef]
- Yuan, Y.; Zong, K.Q.; Cawood, P.A.; Cheng, H.; Yu, Y.Y.; Guo, J.L.; Liu, Y.S.; Hu, Z.C.; Zhang, W.; Li, M. Implication of Mesoproterozoic (∼1.4 Ga) magmatism within microcontinents along the southern Central Asian Orogenic Belt. Precambrian Res. 2019, 327, 314–326. [Google Scholar] [CrossRef]
- He, Z.Y.; Sun, L.X.; Mao, L.J.; Zong, K.Q.; Zhang, Z.M. Zircon U-Pb and Hf isotopic study of gneiss and granodiorite from the southern Beishan orogenic collage: Mesoproterozoic magmatism and crustal growth. Chin. Sci. Bull. 2015, 60, 389–399, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Wang, B.R.; Yang, X.S.; Li, S.C.; Teng, C.; Yang, X.J.; Huang, F.Y.; Zhang, X.F.; Cao, J.; Zhou, Y.; Zhang, H.C.; et al. Geochronology, geochemistry, and tectonic implications of early Neoproterozoic granitic rocks from the eastern Beishan Orogenic Belt, southern Central Asian Orogenic Belt. Precambrian Res. 2021, 352, 106016. [Google Scholar] [CrossRef]
- Soldner, J.; Yuan, C.; Schulmann, K.; Štípská, P.; Jiang, Y.; Zhang, Y.; Wang, X. Grenville an evolution of the Beishan Orogen, NW China: Implications for development of an active Rodinian margin. Geol. Soc. Am. Bull. 2020, 132, 1657–1680. [Google Scholar] [CrossRef]
- Lv, C.L.; Yang, F.Q.; Luo, J.S.; Ma, W.F.; Liu, W.X.; Shi, W.M. Isotopic age of rock mass in Gongpoquan mining area in Beishan of Gansu and its geological significance. Miner. Resour. Geol. 2021, 35, 83–89, (In Chinese with English abstract). [Google Scholar]
- Song, D.F.; Xiao, W.J.; Han, C.M.; Tian, Z.H. Geochronological and geochemical study of gneiss schist complexes and associated granitoids, Beishan Orogen, southern Altaids. Int. Geol. Rev. 2013, 55, 1705–1727. [Google Scholar] [CrossRef]
- Yuan, Y.; Zong, K.Q.; He, Z.Y.; Klemd, R.; Jiang, H.Y.; Zhang, W.; Liu, Y.S.; Hu, Z.C.; Zhang, Z.M. Geochemical evidence for Paleozoic crustal growth and tectonic conversion in the Northern Beishan Orogenic Belt, southern Central Asian Orogenic Belt. Lithos 2018, 302–303, 189–202. [Google Scholar] [CrossRef]
- Zhao, K.Q.; Ma, S.M.; Xi, M.J.; Yang, J.Z.; Cai, Y.W.; Gong, J.J. The LA-ICP-MS Zircon U-Pb ages and geochemical characteristics of Late Paleozoic intermediate-acidic intrusive complexes in Shibanjing area, Beishan Mountains, Inner Mongolia, and their geological significance. Dizhi Lunping 2020, 66, 69–87, (In Chinese with English abstract). [Google Scholar]
- Zheng, R.G.; Li, J.Y.; Zhang, J.; Xiao, W.J.; Wang, Q.J. Permian oceanic slab subduction in the southmost of Central Asian Orogenic Belt: Evidence from adakite and high-Mg diorite in the southern Beishan. Lithos 2020, 358, 105406. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Yuan, C.; Sun, M.; Long, X.P.; Xia, X.P.; Wang, X.Y.; Huang, Z.Y. Permian doleritic dikes in the Beishan Orogenic Belt, NW China: Asthenosphere–lithosphere interaction in response to slab break-off. Lithos 2015, 233, 174–192. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, T.R.; Zheng, R.G.; Feng, J.C.; Luo, H.L.; He, Y.K.; Xu, C. Post-collisional Southeastern Beishan granites: Geochemistry, geochronology, Sr–Nd–Hf isotopes and their implications for tectonic evolution. J. Asian Earth Sci. 2012, 58, 51–63. [Google Scholar] [CrossRef]
- Su, B.X.; Qin, K.Z.; Patrick, A.S.; Liu, P.P.; Tang, D.M.; Malaviarachchi, S.P.K.; Xiao, Q.H.; Sun, H.; Dai, Y.C.; Hu, Y. Geochemistry and geochronology of acidic rocks in the Beishan region, NW China: Petrogenesis and tectonic implications. J. Asian Earth Sci. 2011, 41, 31–43. [Google Scholar] [CrossRef]
- Chen, S.; Guo, Z.J.; Qi, J.F.; Zhang, Y.Y.; Georgia, P.; David, J.W.P. Early Permian volcano-sedimentary successions, Beishan, NW China: Pepe rites demonstrate an evolving rift basin. J. Volcanol. Geotherm. Res. 2016, 309, 31–44. [Google Scholar] [CrossRef]
- Zuo, G.C.; Zhang, S.L.; He, G.Q.; Zhang, Y. Plate tectonic characteristics during the early Paleozoic in Beishan near the Sino-Mongolian border region, China. Tectonophysics 1991, 188, 385–392. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Allen, M.B.; Han, C.M. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res. 2013, 23, 1316–1341. [Google Scholar] [CrossRef]
- Wang, Y.H.; Zhang, F.F.; Li, B.C.; Xue, C.J.; Liu, J.J.; Zhao, Y.; Zhang, W. Geology and genesis of the Cihai mafic intrusions in Beishan Terrane, Xinjiang, Northwest China: Implication for iron mineralization and tectonic setting. Ore Geol. Rev. 2020, 121, 103573. [Google Scholar] [CrossRef]
- Yu, S.; Zhao, B.B.; Jia, X.; Zhai, X.W.; Ren, J.D. Geochemistry, Geochronology Characteristics and Tectonic Significance of Yitiaoshan Diorite in the Southern Margin of Beishan Orogenic Belt. Northwest. Geol. 2022, 55, 267–279, (In Chinese with English abstract). [Google Scholar]
- Luo, X.Q. Geochemistry and Geochronology of Wohushan Early Permian Syenogranite in the Southern Belt of the Beishan mountains. Gansu Geol. 2022, 31, 7–16, (In Chinese with English abstract). [Google Scholar]
- Guo, X.G.; Chen, S.Y.; Gou, R.; Liu, X.; Wang, Q.; Pu, Q.L. Geochemistry, Chronology and Genesis of Marine Basalts in HouhongquanArea, Beishan, Gansu and Inner Mongolia. Earth Sci. 2021, 46, 3945–3964, (In Chinese with English abstract). [Google Scholar]
- Zhang, W.; Feng, J.C.; Zheng, R.G.; Wu, T.R.; Luo, H.L.; He, Y.K.; Jing, X. LA-ICP MS zircon U–Pb ages of the granites from the south of Yin’aoxia and their tectonic significances. Acta Petrol. Sin. 2011, 27, 1649–16661, (In Chinese with English abstract). [Google Scholar]
- Wang, J.T.; Dong, Y.P.; Zeng, Z.C.; Yang, Z.; Sun, S.S.; Zhang, F.F.; Zhou, B.; Sun, J.P. Geochronology, geochemistry and geological significance of the Huangcaotan pluton in the southern Beishan Orogenic Belt. Geoscience 2016, 30, 937–949, (In Chinese with English abstract). [Google Scholar]
- Ao, S.J.; Xiao, W.J.; Han, C.M.; Li, X.H.; Qu, J.F.; Zhang, J.E.; Guo, Q.Q.; Tian, Z.H. Cambrian to early Silurian ophiolite and accretionary processes in the Beishan collage, NW China: Implications for the architecture of the Southern Altaids. Geol. Mag. 2012, 149, 606–625. [Google Scholar] [CrossRef]
- Tian, Z.; Xiao, W.; Windley, B.F.; Lin, L.N.; Han, C.; Zhang, J.E.; Wan, B.; Ao, S.; Song, D.; Feng, J. Structure, age, and tectonic development of the Huoshishan-Niujuanzi ophiolitic mélange, Beishan, southernmost Altaids. Gondwana Res. 2014, 25, 820–841. [Google Scholar] [CrossRef]
- Su, B.X.; Qin, K.Z.; Santosh, M.; Sun, H.; Tang, D. The Early Permian mafic-ultramafic complexes in the Beishan Terrane, NW China: Alaskan-type intrusives or rift cumulates? J. Asian Earth Sci. 2013, 66, 175–187. [Google Scholar] [CrossRef]
- Hou, Q.Y.; Wang, Z.; Liu, J.B.; Wang, J.; Li, D.P. Geochemistry Characteristics and SHRIMP Dating of Yueyashan Ophiolite in Beishan Orogen. Geoscience 2012, 26, 1008–1018, (In Chinese with English abstract). [Google Scholar]
- Zuo, G.C.; Zhang, S.L.; He, G.Q.; Zhang, Y. Early Paleozoic Plate Tectonics in Beishan Area. Sci. Geol. Sin. 1990, 25, 305–314+411, (In Chinese with English abstract). [Google Scholar]
- Niu, Y.Z.; Shi, G.R.; Wang, J.Q.; Liu, C.Y.; Zhou, J.L.; Lu, J.C.; Song, B.; Xu, W. The closing of the southern branch of the Paleo-Asian Ocean: Constraints from sedimentary records in the southern Beishan Region of the Central Asian Orogenic Belt, NW China. Mar. Pet. Geol. 2021, 124, 104791. [Google Scholar] [CrossRef]
- Wang, H.T. Tectono-Magmatism and Its Geological Significance in the Beishan Area of the Southern Part of the Central Asian Orogenic Belt. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2019. (In Chinese with English abstract). [Google Scholar]
- BGGP. Hongliudaquan Regional Geological Survey Report (1:200,000); Gansu Bureau of Geology: Gansu, China, 1971; (In Chinese with English abstract).
- BGGP. Shibanquan Regional Geological Survey Report (1:50,000); Gansu Bureau of Geology: Gansu, China, 2013; (In Chinese with English abstract).
- Song, B.; Zhang, Y.H.; Wan, Y.S.; Jian, P. Mount Making and Procedure of the SHRIMP Dating. Geol. Rev. 2002, 48, 26–30, (In Chinese with English abstract). [Google Scholar]
- Wiedenbeck, M.; Hanchar, J.M.; Peck, W.H.; Sylvester, P.; Vley, J.; Whitehouse, M.; Kronz, A.; Morishita, Y.; Nasdala, L.; Fiebig, J.; et al. Further characterisation of the 91500 zircon crystal. Geostand. Geoanal. Res. 2004, 28, 9–39. [Google Scholar] [CrossRef]
- Pearce, N.J.G.; Perkins, W.T.; Westgate, J.A.; Gorton, M.P.; Chenery, S.P. A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostand. Newsl. 1997, 21, 115–144. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Vermeesch, P. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Yuan, H.L.; Gao, S.; Liu, X.M.; Li, H.M.; Gunther, D.; Wu, F.Y. Accurate U–Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res. 2004, 28, 353–370. [Google Scholar] [CrossRef]
- Li, X.H.; Liu, Y.; Tu, X.L.; Hu, G.Q.; Zeng, W. Precise determination of chemical compositions in silicate rocks using ICP-AES and ICP-MS: A comparative study of sample digestion techniques of alkali fusion and acid dissolution. Geochimica 2002, 31, 289–294. [Google Scholar]
- Gao, J.J.; Liu, J.H.; Li, X.G.; Yan, Q.S.; Wang, X.J.; Wang, H.M. The determination of 52 elements in marine geological samples by an inductively coupled plasma optical emission spectrometry and an inductively coupled plasma mass spectrometry with a high-pressure closed digestion method. Acta Oceanol. Sin. 2017, 36, 113–121. [Google Scholar] [CrossRef]
- Bao, Z.; Zong, C.; Fang, L.; Yuan, H.; Chen, K.; Dai, M. Determination of Hf-Sr-Nd isotopic ratios by MC-ICP-MS using rapid acid digestion after flux-free fusion in geological materials. Acta Geochim. 2018, 37, 244–256. [Google Scholar] [CrossRef]
- Wu, Y.B.; Zheng, Y.F. Genetic mineralogy of zircon and its constraints on U-Pb dating interpretation. Chin. Sci. Bull. 2004, 49, 1589–1604, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef]
- Rickwood, P.C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 1989, 22, 247–263. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 35–643. [Google Scholar] [CrossRef]
- Sun, W.; McDonough, W. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Yu, J.Y.; Li, X.M.; Wang, G.Q.; Wu, P.; Yan, Q.J. Zircon U-Pb ages of Huitongshan and Zhangfangshan ophiolite in Beishan of Gansu-Inner Mongolia border area and their significance. Geol. Bull. China 2012, 31, 2038–2045, (In Chinese with English abstract). [Google Scholar]
- Yang, S.H.; Miao, L.C.; Zhang, F.C.; Meng, Q.R.; Zhu, M.S.; Munkhtsengel, B.; Chinmedtseren, A. Zircon age and geochemistry of the Tost bimodal volcanic rocks: Constraints on the Early Carboniferous tectonic evolution of the South Mongolia. J. Asian Earth Sci. 2016, 120, 29–42. [Google Scholar] [CrossRef]
- Niu, Y.Z.; Lu, J.C.; Liu, C.Y.; Xu, W.; Shi, J.Z.; Song, B. Geochronology and distribution of the Upper Carboniferous—Lower Permian Ganquan Formation in the Beishan region, northwestern China and its tectonic implication. Geol. Rev. 2018, 64, 806–827, (In Chinese with English abstract). [Google Scholar]
- Zheng, R.G.; Wu, T.R.; Zhang, W.; Meng, Q.P.; Zhang, Z.Y. Geochronology and geochemistry of late Paleozoic magmatic rocks in the Yinwaxia area, Beishan: Implications for rift magmatism in the southern Central Asian Orogenic Belt. J. Asian Earth Sci. 2014, 91, 39–55. [Google Scholar] [CrossRef]
- Xue, S.C.; Li, C.; Qin, K.Z.; Tang, D.M. A non-plume model for the Permian protracted (266–286 Ma) basaltic magmatism in the Beishan–Tianshan region, Xinjiang, Western China. Lithos 2016, 256–257, 243–249. [Google Scholar] [CrossRef]
- Chen, B.; Qin, K.Z.; Tang, D.M.; Mao, Y.J.; Feng, H.Y.; Xue, S.C.; Yao, Z.S. Lithological, chronological and geochemical characteristics of Cihai iron deposit, Eastern Xinjiang: Constraints on genesis of mafic-ultramafic and syenite intrusions and mineralization. Acta Petrol. Sin. 2015, 31, 2156–2174. [Google Scholar]
- Whalen, J.B. Geochemistry of an island–arc plutonic suite: The Uasilau-Yau Yau intrusive complex, New Britain, PNG. J. Petrol. 1985, 26, 603–632. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. I-and S-type granites in the Lachlan fold belt. Earth Environ. Earth Environ. Sci. Trans. R. Soc. Edinb. 1992, 83, 1–26. [Google Scholar] [CrossRef]
- Eby, G.N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 1990, 26, 115–134. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Quan, Y.K.; Mu, M.S.; Yang, D.B.; Yan, X.Y.; Wang, A.Q.; Hao, L.R.; Wang, F. Geochronology and in-situ apatite geochemistry of late Paleoproterozoic A-type granites in the Jiao-Liao-Ji Belt, North China Craton: Implications for petrogenesis and tectonic evolution. Geochemistry 2023, 126009. [Google Scholar] [CrossRef]
- King, P.L.; White, A.J.R.; Chappell, B.W.; Allen, C.M. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. J. Petrol. 1997, 3, 371–391. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Yan, D.D.; Zhao, H.; Gong, T.T.; Xiong, F.H. Petrogenesis and Geological implications of Early Paleozoic Gouli granite in East Kunlun: Constraints from U-Pb Geochronology and Petrogeochemistry. Mineral. Petrol. 2022, 42, 7–19, (In Chinese with English abstract). [Google Scholar]
- Wang, Q.; Zhao, Z.H.; Xiong, X.L. The ascertainment of Late-Yanshanian A-type granite in Tongbai-Dabie orogenic belt. Acta Petrol. Mineral. 2000, 19, 297–306+315, (In Chinese with English abstract). [Google Scholar]
- Wu, F.Y.; Liu, X.C.; Ji, W.Q.; Wang, J.M.; Yang, L. Highly fractionated granites: Recognition and research. Sci. China Earth Sci. 2017, 60, 1201–1219, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Eby, G.N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Turner, S.P.; Foden, J.D.; Morrison, R.S. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia. Lithos 1992, 28, 151–179. [Google Scholar] [CrossRef]
- Mushkin, A.; Navon, O.; Halicz, L.; Hartmann, G.; Stein, M. The petrogenesis of A-type magmas from the Amram Massif, southern Israel. J. Petrol. 2003, 44, 815–832. [Google Scholar] [CrossRef]
- Mu, M.S.; Yang, D.B.; Yang, H.T.; Wang, A.Q.; Hao, L.R.; Wang, F. Petrogenesis of late Paleoproterozoic post-collisional magmatism in southern North China Craton: Insights from geochemistry and Nd-Hf isotopic compositions of A-type granites. Precambrian Res. 2022, 383, 106887. [Google Scholar] [CrossRef]
- Chapman, J.B.; Ducea, M.N.; DeCelles, P.G.; Profeta, I. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology 2015, 43, 919–922. [Google Scholar] [CrossRef]
- Zhu, Y.; Lai, S.; Qin, J.; Zhu, R.; Zhao, S.W.; Liu, M.; Zhang, F.Y.; Zhang, Z.Z.; Yang, H. Magma mixing for the genesis of Neoproterozoic Mopanshan granitoids in the western Yangtze Block, South China. J. Asian Earth Sci. 2022, 231, 105227. [Google Scholar] [CrossRef]
- Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.S.; Zhou, X.M. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
- Wang, E.T.; Zhai, X.W.; Chen, W.F.; Ma, Z.; Wu, L.; Guo, Z.A.; Wang, Y.; Song, G.R.; Wang, J.R. Late Paleozoictec tonics of Southern Central Asian orogenic belt: Evidence from magmatic rocks in the northern Alxa, Northwest China. Front. Earth Sci. 2022, 10, 1046122. [Google Scholar] [CrossRef]
- Hofmann, A.W.; Jochum, K.P.; Seufert, M.; White, W.M. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet. Sci. Lett. 1986, 79, 33–45. [Google Scholar] [CrossRef]
- Saunders, A.D.; Storey, M.; Kent, R.W.; Norry, M.J. Consequences of plume lithosphere interactions. Geol. Soc. Lond. Spec. Publ. 1992, 68, 41–60. [Google Scholar] [CrossRef]
- Dong, M.; Lang, X.H.; Deng, Y.L.; Wang, X.H. Geochronology and Geochemistry Implications for Early Eocene Rongma Gabbros in Southern Margin of the Lhasa Terrane, Tibet. Earth Sci. 2022, 47, 1349–1370. [Google Scholar]
- Li, H.; Li, Y.J.; Xu, X.Y.; Yang, G.X.; Wang, Z.P.; Xu, Q.; Wang, L.J. Petrogenesis and tectonic implications of alkali basalts in Kalamaili area, east Junggar, Xinjiang (NW China): Constraints from petrology, geochronology and geochemistry. Acta Geol. Sin. 2021, 95, 3282–3300. [Google Scholar]
- Nowell, G.; Pearson, D.; Bell, D.; Carlson, R.; Smith, C.; Kempton, P.; Noble, S. Hf isotope systematics of kimberlites and their megacrysts: New constraints on their source regions. J. Petrol. 2004, 45, 1583–1612. [Google Scholar] [CrossRef]
- Schmitz, M.D.; Vervoort, J.D.; Bowring, S.A.; Patchett, P.J. Decoupling of the Lu- Hf and Sm-Nd isotope systems during the evolution of granulitic lower crust beneath Southern Africa. Geology 2004, 32, 405. [Google Scholar] [CrossRef]
- Sun, P.; Wang, Q.; Hao, L.L.; Dan, W.; Qu, Q.; Jiang, Z.Q.; Tang, G.J. A mélange contribution to arc magmas recorded by Nd–Hf isotopic decoupling: An example from the southern Qiangtang Block, central Tibet. J. Asian Earth Sci. 2021, 221, 104931. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Zheng, Y.F.; Gao, S. Lu-Hf isotopic systematics and their application in petrology. Acta Petrol. Sin. 2007, 23, 185–220. [Google Scholar]
- Yu, J.C.; Mo, X.X.; Yu, X.H.; Zhu, D.C.; Li, Y.C.; Huang, X.F. Petrogenesis and geological implications of the Late Triassic potassic-ultrapotassic rocks in Changdu Block, northern segment of the Sanjiang area. Acta Petrol. Sin. 2014, 30, 3334–3344, (In Chinese with English abstract). [Google Scholar]
- Marini, J.C.; Chauvel, C.; Maury, R.C. Hf Isotope Compositions of Northern Luzon Arc Lavas Suggest Involvement of Pelagic Sediments in Their Source. Contrib. Mineral. Petrol. 2005, 149, 216–232. [Google Scholar] [CrossRef]
- Yogodzinski, G.; Vervoort, J.; Brown, S.T.; Gerseny, M. Subduction Controls of Hf and Nd Isotopes in Lavas of the Aleutian Island Arc. Earth Planet. Sci. Lett. 2010, 300, 226–238. [Google Scholar] [CrossRef]
- Liu, X.C.; Chen, B.L.; Jahn, B.M.; Wu, G.G.; Liu, Y.S. Early Paleozoic (ca. 465 Ma) eclogites from Beishan (NW China) and their bearing on the tectonic evolution of the southern Central Asian Orogenic Belt. J. Asian Earth Sci. 2010, 42, 715–731. [Google Scholar] [CrossRef]
- Li, R.W.; Zhang, X.; Shi, Q.; Chen, W.F.; An, Y.; Huang, Y.S.; Liu, Y.X.; Wang, J.R. Geochemistry and Nd–Hf isotopes of the Early Permian volcanic rocks in Hangwula of northern Alxa area and their tectonic significance. Geol. Bull. China 2020, 39, 647–658, (In Chinese with English abstract). [Google Scholar]
- Nielsen, S.G.; Marschall, H.R. Geochemical evidence for me’lange melting in global arcs. Sci. Adv. 2017, 3, e1602402. [Google Scholar] [CrossRef]
- Zhang, G.Z.; Xin, H.T.; Duan, L.F.; Niu, W.C.; Tian, J.; Zhang, Y. Geochemical characteristics and tectonic implications of the end Early Permian high magnesium gabbro from northern Beishan orogenic belt, Inner Mongolia. Earth Sci. 2020, 47, 3258–3269, (In Chinese with English abstract). [Google Scholar]
- McKenzie, D.; O’Nions, R.K. Partial Melt Distribution From Inversion of Rare Earth Element Concentrations. J. Petrol. 1991, 32, 1021–1091. [Google Scholar] [CrossRef]
- Miller, C.F.; McDowell, S.M.; Mapes, R.W. Hot and cold granites? Implications of zircon saturation temperatures and preservation inheritance. Geology 2003, 31, 529–532. [Google Scholar] [CrossRef]
- Schiano, P.; Monzier, M.; Eissen, J.P.; Martin, H.; Koga, K.T. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contrib. Mineral. Petrol. 2010, 160, 297–312. [Google Scholar] [CrossRef]
- Zhu, D.C.; Mo, X.X.; Pan, G.T.; Zhao, Z.D.; Dong, G.C.; Shi, Y.R.; Liao, Z.L.; Wang, L.Q.; Zhou, C.Y. Petrogenesis of the Earliest Early Cretaceous Mafic Rocks from the Cona Area of the Eastern Tethyan Himalaya in South Tibet: Interaction between the Incubating Kerguelen Plume and the Eastern Greater India Lithosphere? Lithos 2008, 100, 147–173. [Google Scholar] [CrossRef]
- Xie, F.Q.; Wu, J.H.; Sun, Y.H.; Wang, L.D.; Wu, J.Z.; Jia, W.J. Permian to Triassic tectonic evolution of the Alxa Tectonic Belt, NW China: Constraints from petrogenesis and geochronology of felsic intrusions. Lithos 2021, 384, 105980. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. Treatise Geochem. 2003, 3, 1–64. [Google Scholar]
- Condie, K.C. Episodic continental growth models: After thoughts and extensions. Tectonophysics 2000, 322, 153–162. [Google Scholar] [CrossRef]
- Collins, W.J.; Belousova, E.A.; Kemp, A.I.S.; Murphy, J.B. Twocontrasting Phanerozoic orogenic systems revealed by hafnium isotope data. Nat. Geosci. 2011, 4, 333–337. [Google Scholar] [CrossRef]
- Bu, T.; Wang, G.Q.; Huang, B.T.; Dong, Z.C.; Guo, L. Neoproterozoic A-type granites in northern Beishan Orogenic Belt: Early response of the Rodinia supercontinent break-up. Acta Petrol. Sin. 2022, 38, 2988–3002. [Google Scholar] [CrossRef]
- Wang, H.T.; Ren, W.X.; Zhao, Q.X.; Liu, Z.R.; Wang, T.C.; Zhao, H.X. Geochemical Characteristics and Tectonic Significance of A-typeGranite in the South Margin of Zhaobishan, Beishan Area. Northwest. Geol. 2016, 49, 39–49, (In Chinese with English abstract). [Google Scholar]
- Zhang, Y.Y.; Guo, Z.J. Accurate constraint on formation and emplacement age of Hongliuhe ophiolite, boundary region between Xinjiang and Gansu Provinces and its tectonic implications. Acta Petrol. Sin. 2008, 24, 803–809, (In Chinese with English abstract). [Google Scholar]
- Zheng, R.G.; Wang, Y.P.; Zhang, Z.Y.; Zhang, W.; Meng, Q.P.; Wu, T.R. Geochronology and Geochemistry of Yinwaxia Acidic Volcanic Rocks in the Southern Beishan: New Evidence for Permian Continental Rifting. Geotecton. Metallog. 2016, 40, 1031–1048, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Xia, L.Q.; Xia, Z.C.; Xu, X.Y.; Li, X.M.; Ma, Z.P. The discrimination between continental basalt and island arc basalt based on geochemical method. Acta Petrol. Mineral. 2007, 26, 77–89, (In Chinese with English abstract). [Google Scholar]
- Zuo, G.C.; He, G.Q. Plate Tectonics and Metallogenic Regularities in Beishan Region; Peking University Press: Beijing, China, 1990; pp. 1–226, (In Chinese with English abstract). [Google Scholar]
- Zhang, D.D.; Wang, J.Q.; Niu, Y.Z.; Zhang, Y.X.; Shi, J.Z.; Liu, Z.L. Provenances of the Lower-Middle Permian in Beishan region, Central Asian Orogenic Belt and its paleo geographic implication. Acta Geol. Sin. 2023, 97, 307–324. [Google Scholar]
- Niu, Y.Z.; Liu, C.Y.; Shi, G.R.; Lu, J.C.; Xu, W.; Shi, J.Z. Unconformity-bounded upper Paleozoic mega sequences in the Beishan region (NW China) and implications for the timing of the Paleo-Asian Ocean closure. J. Asian Earth Sci. 2018, 167, 11–32. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Pearce, J.A.; Norry, M.J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 1979, 69, 33–47. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Zhai, X.; Wang, E.; Chen, W.; Song, G.; Zheng, F.; Zhao, J.; Wang, J.; Wang, H. Early Permian Post-Collision Extensional Setting in the Southern Beishan Orogenic Belt: Evidence from the Zhangfangshan Granodiorite and the Baishantang Bimodal Volcanic Rocks. Minerals 2023, 13, 1468. https://doi.org/10.3390/min13121468
Wu L, Zhai X, Wang E, Chen W, Song G, Zheng F, Zhao J, Wang J, Wang H. Early Permian Post-Collision Extensional Setting in the Southern Beishan Orogenic Belt: Evidence from the Zhangfangshan Granodiorite and the Baishantang Bimodal Volcanic Rocks. Minerals. 2023; 13(12):1468. https://doi.org/10.3390/min13121468
Chicago/Turabian StyleWu, Lei, Xinwei Zhai, Erteng Wang, Wanfeng Chen, Gaorui Song, Feifei Zheng, Jiaolong Zhao, Jinrong Wang, and Haidong Wang. 2023. "Early Permian Post-Collision Extensional Setting in the Southern Beishan Orogenic Belt: Evidence from the Zhangfangshan Granodiorite and the Baishantang Bimodal Volcanic Rocks" Minerals 13, no. 12: 1468. https://doi.org/10.3390/min13121468
APA StyleWu, L., Zhai, X., Wang, E., Chen, W., Song, G., Zheng, F., Zhao, J., Wang, J., & Wang, H. (2023). Early Permian Post-Collision Extensional Setting in the Southern Beishan Orogenic Belt: Evidence from the Zhangfangshan Granodiorite and the Baishantang Bimodal Volcanic Rocks. Minerals, 13(12), 1468. https://doi.org/10.3390/min13121468